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ABSTRACT 
Authors presented recently an indoor location technique based on 
Time Of Arrival (TOA) obtained from Round-Trip-Time (RTT) 
measurements at data link level and trilateration. This new approach 
uses the existing IEEE 802.11 WLAN infrastructure with minor 
changes to provide an accurate estimation of the position of static 
wireless terminals. This paper presents advances on how to 
incorporate tracking capabilities to this approach in order to achieve 
a noticeable enhancement in the positioning accuracy while 
maintaining the computational cost low, both essential requirements 
in some critical applications of indoor pedestrian navigation in 
which people carrying light mobile devices has to be tracked with 
precision. Taking as a basis the Discrete Kalman Filter, 
customizations and optimizations have been designed and 
presented. Results obtained after conducting extensive simulations 
fed with actual ranging observables demonstrate the validity and 
suitability of the researched algorithms and its ability to provide 
very high performance level in terms of accuracy and robustness. 

Categories and Subject Descriptors 
C.2.1 [Computer-communication Networks]: Network 
Architecture and Design – wireless communication; C.4 
[Performance of Systems]: Modeling techniques 

General Terms: Algorithms, Measurement, Performance, 
Design, Experimentation. 

Keywords: IEEE 802.11, indoor, Kalman, navigation, 
positioning, time of arrival, TOA, tracking, WLAN. 

1. INTRODUCTION: PREVIOUS 
RESEARCH AND GOALS 
Some critical applications and services based on indoor localization 
-such as emergency rescue, fire brigade or incident management- 
need an easy-deployable location system able to provide high 
positioning accuracy (i.e near to 1m. of error) in medium and deep 
indoor environments. Since global (i.e.GPS) and wide-area (i.e. 

cellular networks) location systems remain inefficient in indoors, 
alternative positioning technologies are required. The research 
challenge corresponds to achieve an indoor location system capable 
to provide accurate tracking using the existing WLAN infrastructure 
with minor changes (i.e. taking the advantage of the wide 
deployment of the IEEE 802.11 standard), avoiding the need for 
synchronization between access points (e.g. as in TDOA based 
systems) or long system pre-calibrations (e.g. of a fingerprinting 
database). Following this trend, the authors presented in a previous 
paper ([1]) an indoor location technique based on Time Of Arrival 
(TOA) and trilateration. The system was divided into two 
subsystems: a) Ranging, in charge of obtaining the distances 
between the Mobile Terminal (MT) and the Access Points (APs) 
from TOA estimations obtained with Round-Trip-Time (RTT) 
measuremnts using IEEE 802.11b link layer frames, b) Positioning, 
a pure trilateration algorithm (Newton) which calculates the MT’s 
position using the distances already estimated and the APs’ known 
position. 

The accuracy of the location estimation and the MT trajectory (not 
smooth) provided the system [1] can be improved by incorporating 
tracking features. The intention is to apply tracking principles in a 
similar way as GPS system does: obtaining benefit from past 
estimated positions and taking as observables (measured data) the 
distance estimates for finally obtaining as output the location of the 
MT. It is out of the scope of this work using tracking algorithms to 
refine TOA or distance estimates in order to mitigate errors due to 
Non Line Of Sight (NLOS) conditions, as has been presented in [2] 
and [3]. In fact, this problem is dealt with in the ranging subsystem 
of our system. In terms of system architecture, the idea is to use the 
same ranging subsystem and replacing the positioning engine by the 
new tracking one. Thus, the overall goal is achieving a very accurate 
indoor TOA-based tracking system for pedestrian navigation which 
can be deployed over the existing WLAN infrastructure with minor 
changes. 

A decentralized approach is preferred in order to maximize the 
system scalability and user privacy, therefore some important design 
constraints have to be taken into account in order to guarantee a 
feasible implementation in an energy-constrained and processor-
limited terminal: keeping the computational cost at a low level and 
reducing the complexity of the algorithm as much as possible (i.e. 
not requiring digital environment maps information). According to 
this, the reported work corresponds to tailoring and improving 
existing tracking algorithms (explained in Section 3) -specifically 
based on Kalman filter- and exhaustively evaluating their 
performance through simulations (explained in Section 4) fed with 
actual observables obtained with the existing ranging subsystem. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
MobiWAC'06, October 2, 2006, Torremolinos, Malaga, Spain. 
Copyright 2006 ACM 1-59593-488-X/06/0010...$5.00. 

121



Research on tracking mobile devices using Kalman algorithms has 
produced vast literature ([4], [5]) during the last years, but it has 
been seldom applied to location in indoor environments. In several 
contributions that propose Kalman filtering for mobile location, the 
algorithm is applied to smooth the data measurements instead of 
using it to directly obtain the target location estimate. In [2] and [3] 
a biased Kalman filter is used to mitigate the effect of NLOS 
conditions in TOA based location systems. In [6] a received signal 
strength indicator (RSSI) based location technique is enhanced with 
Extended Kalman Filter (EKF) based on pre-calibration of 
measurement vectors and individual position block usage in final 
estimation of the target's position. A proposal to apply EKF to 
estimate the patients’ location in a hospital is presented in [7]: the 
ranging measurements obtained from RSSI are the observables of 
the filter and the patient’s location is the filter output; but only 
simplistic simulation cases are presented and obtained accuracy is 
not high. In [8] the performances of Kalman and Particle (which 
also uses the building’s map information) filters over WLAN 
fingerprinting are compared in order to obtain accurate indoor 
location. In all above-mentioned approaches Kalman filtering seems 
to be a suitable tool for mobile tracking, but the achieved accuracy 
is far from 1m of error. Our contribution demonstrates that it is 
possible to achieve very accurate (close to 1m error) and robust 
location estimation with not complex optimizations of this 
algorithm. 

2. THE TRACKING ALGORITHM 
Despite the existence of more sophisticated filters, Kalman filtering 
is widely known as being very useful to estimate system states that 
can only be observed inaccurately: it can be shown that of all 
possible filters, it is the one that minimizes the variance of the 
estimation error. Furthermore, the probability distribution of the 
measurement noise in our ranging system is Gaussian [1], and the 
premises supposed by the filter (see Section 2.1) are satisfied. 
Finally, it is not complex to implement it because its recursive 
nature. For a detailed description of the Kalman filter see [9] and 
[10]. 

2.1 Kalman Filter 
The Kalman filtering bases the state estimation on the weighted 
average between the measurement Zk at time t=tk and the prediction 

of the state ˆkx−  from the estimate 1ˆkx − . As we are applying the 
filter to track the trajectory of a target, the state corresponds to its 
position and the measurements are the noisy distances estimates 
between the target and the APs. This weighted average estimation 
process at a given time works in two steps: a) the filter estimates the 
current position from past ones (time update or prediction step), b) it 
obtains the feedback from the noisy measurements in order to 
improve the accuracy of the estimation (measurement update or 
correction step).  

The equations corresponding to each step are shown in Fig. 1. The 
weight of every source of information depends on the reliability that 
can be assumed for each one. The first equation of the prediction 
step represents the linear process that models the trajectory of the 
MT; the process noise has covariance matrix Q. The matrix R that 
appears in the first equation (Kalman gain Kk equation) of the 
correction step corresponds to the measurement noise covariance. 
Both noises are assumed to be independent of each other, white, and 
with normal probability distribution. The matrix A of the prediction 
step corresponds to the transition state matrix. Q and A have to be 

configured depending on the specific behavior of the target, as 
below shown. The other matrixes are assumed to change at each 
step: H is the measurement matrix, K is the Kalman gain matrix, 
which minimizes the final device position estimation error at each 
time, and P is the covariance matrix of the position estimation error, 
which is updated at every step. The algorithm needs an initial 
estimation of the MT position and the P matrix.  

3. ALGORITHM ADAPTATION 
The Kalman algorithm adaptation consists of defining in detail the 
prediction step and taking decisions to optimize some specific points 
of the algorithm design.  

 
Figure 1. Scheme of the Discrete Kalman Filter 

3.1 Prediction Step 
Q and A have to be chosen in order that they model as properly as 
possible the motion behavior of the MT. Theoretically, these 
matrixes can be defined following three motion models: static, 
cinematic and random walk. The first one represents processes in 
which the target is almost static (A would be the identity matrix and 
Q null). The second one is suitable for tracking devices with fast 
speed (represented as v); A would be null and Q depending on the 
time between measurements (T) and v. The last one can be used if 
the speed of the target is low. Assuming v=1 m/s (typical for 
pedestrian motion) it seems clear that the proper model is the last 
one. In this case, the A matrix is the identity one, and Q depends on 
T and v. Conceptually, this value of A means that the MT does not 
vary its position from one time to another; while Q is used to model 
the variation. Hence, Q is a diagonal matrix in which each value 
different to zero corresponds to the squared maximum variation of a 
coordinate between two position estimations (this is during T): 
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3.2 Improvement of the Prediction Step 
3.2.1 Motivation 
First evaluations demonstrated that the Kalman algorithm including 
the prediction step described provided a low enhancement of 
accuracy with respect to the pure positioning (as shown below in 
Section 4). For this reason, it was decided to research into 
improving the method. Since it was difficult to introduce 
optimizations in the correction step, the work was aimed to improve 
the way the next position was predicted from the past ones, taking 
as basis a more geometrical approach. 

3.2.2 Approach 
This new approach relies on supposing that the target is going to 
follow the straight trajectory defined by the line that joins the last 
two estimated positions, with the same speed and direction. Hence, 
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the next time position ˆkx− can be predicted applying some basic 
geometrical laws, as can be appreciated in Fig. 2. Regarding the 
Kalman equations, the first prediction step is replaced by this new 
estimation. It must be noticed that the filter order is increased, 
because 1ˆkx−

−  and 2ˆkx−
−  are taken into account. For this reason, 

when the tracking subsystem starts running using this algorithm the 
first two position estimations are calculated using Newton, and it is 
in the third one when the filter really starts working. 

 
Figure 2. Geometrical scheme of the improved prediction step 

An important point of this approach is the estimation of the target 
speed v. In order to guarantee high accuracy, it was decided to 
estimate v from the last five position estimations, performing an 
average between the last five v values obtained taking pairs of 
consecutive positions. With the simulations it was proved that 
taking more than five past values was not suitable due to the 
possible actual speed variations, and also that taking less values 
made decrease the accuracy in most of the cases. So finally the filter 

takes into account from 1ˆkx−
−  to 5ˆkx−

− . 

It has to be noticed that this change on the prediction step involves a 
redefinition of the prediction error covariance matrix Q. In this new 
situation, the concept that represents this matrix corresponds to the 
estimation error that can be present if the MT follows the supposed 
straight trajectory. This error depends on the accuracy of the two 
last position estimations and the accuracy of the v estimation. For 
this reason, it is complex to predict the value of this matrix and it 
has been adjusted empirically through the simulations.  

3.3 Design issues 
For Kalman-based algorithms, an initial MT position estimate is 
necessary when the filter starts working (filter initialization). 
Furthermore, it is also necessary at the beginning of each correction 
step in order to obtain the measurement matrix H and the 
measurements prefit residuals vector Zk through a Taylor 
approximation.  Hence, a location method which doesn’t require any 
initial position estimation has to be chosen. The Newton trilateration 
algorithm has been chosen combined with the Linear Least Squares 
one, in the same way that it was used for the pure positioning 
algorithm in [1], because it turned out to provide accurate position 
estimations without entailing high computational cost.When 
carrying out the preliminary tests of the algorithms, we realized that 
it was desirable to perform several iterations in the correction step of 
the filter in order to achieve a better position estimate; we noticed 
that five iterations were enough. 

4. PERFORMANCE EVALUATION 
Simulations have been carried out in order to evaluate the 
performance of the tracking algorithms resulting from the described 

customizations and improvements running on the system approach 
proposed in [1]. Furthermore, the Non Linear Least Squares 
(Newton) trilateration algorithm has also been evaluated in order to 
evaluate the advantage of tracking results versus pure positioning 
techniques. The specific implemented algorithms are the following: 
a) Discrete Kalman filter with the prediction step described in 
Section 3.1 and the customizations described in Section 3.3 (this 
algorithm is named Kalman-1), b)Discrete Kalman filter with the 
improved prediction step described in Section 3.2 and the 
customizations described in section 3.3 (named Kalman-2) and 
c)Non Linear Least Squares (Newton) 

Two different sets of experiments have been conducted: first, the 
behavior of algorithms in different types of path intervals and 
relative situations between the MT and the APs is comparatively 
analyzed (Section 4.1). Second, reliable results about the tracking 
algorithms accuracy are obtained (Section 4.2). 

The observables that feed the filter (i.e. in the correction step) on 
every position estimate correspond to the distance estimations from 
the MT to the three nearest APs, using actual ranging results 
obtained with the WLAN TOA ranging prototype described in [1] 
either in LOS and NLOS conditions. Since the distance estimation 
results could be modeled by a Gaussian distribution 
with _ 1.12actual distμ = + , and 0.84σ = the matrix R of the 
Kalman filter is: 
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In practice, every observable is obtained by calculating a single 
random value from a normal random variable with the mentioned 
parameters. Hence, it is essential to perform a large number of runs 
of a specific route simulation in order to guarantee that the actual 
ranging model is really used. This way the results of these 
simulations are fair and theoretically almost the same as the ones 
obtained with a tracking prototype in an actual indoor environment. 

4.1 Tracking examples 
The main objective of this set of simulations is the performance 
assessment of the algorithms regarding different types of route 
intervals (changes of direction, straight trajectories…) and the 
dependence with the geometry of the MT with respect to the APs 
(i.e. the GDOP parameter). The best case for tracking algorithms is 
supposed to be a straight trajectory with APs placed in such a way 
that a good GDOP is available. However, in actual indoor situations 
worst cases are likely to occur often. For this purpose, a route is 
generated (see Fig. 3) in a scenario composed by a squared area of 
50 x 50 meters with an AP in every corner. The MT speed is 
variable with average 1m/s (pedestrian) and the positioning step T is 
set to 1 second. Several changes of direction and bad GDOP zones 
are included; specifically a part -close to the center of the squared 
area- in which the GDOP is expected to be so bad due to the 
collinear situation between the MT and two of the three APs 
involved in the position calculation. 
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Figure 3. Route for the first type of simulations 

4.1.1 Results 
Fig. 4 shows the average and variance of the position estimate error 
(in meters), and GDOP for each point of the routes; the points in 
which a change of direction occurs are highlighted. Since the 
initialization period of the algorithms has not been taken into 
account (to avoid edge effects) for this performance assessment, the 
first position represented corresponds to the sixth position of the 
route. 

 
Figure 4. Average and variance of the position estimate error, 

and GDOP for the generated route 

In terms of accuracy, Kalman-2 algorithm outperforms the other 
ones because the average position estimate error remains lower than 
1 meter in most of the points for both routes, while Kalman-1 and 
specially the Newton trilateration algorithm normally provide 
figures very close or higher than 1 meter. As expected, the pure 
positioning algorithm seems to provide the worst performance. 

Analyzing the error figures in the periods immediately subsequent 
to changes of direction in the actual routes, it is possible to 
appreciate that in some of them Kalman-1 responds better than 
Kalman-2 (Newton is out of scope of this analysis, due to its pure 
positioning nature that makes it insensitive to direction or speed 

changes): after the 5th and 19th positions of the route, Kalman-2 
provides its less accurate position estimates while Kalman-1 does 
not suffer this effect. The explanation for this can be found taking a 
look in the GDOP graph: the combination of noticeable change of 
direction and bad GDOP negatively impacts in the provided 
accuracy of Kalman-2, while Kalman-1 is able to almost maintain 
its usual accuracy. In situations of good GDOP, both algorithms 
respond well to changes of direction. 

If we focus on the performance dependence on the GDOP when the 
actual trajectory describes an almost straight line, it can be seen than 
the performance degradation due to bad GDOP is a little bit higher 
in Kalman-2 than in Kalman-1 (see the last positions of the route in 
Fig. 4), but even in this case the average error figures provided by 
Kalman-2 are not worse than the ones provided by Kalman-1. 

The expected behavior was that the impact of any relevant change 
of direction using Kalman-2 would be higher than for Kalman-1 due 
to its severe position prediction step, which is forcing in major 
degree to finally estimate a position that follows the straight line 
drawn by past target trajectory. However, it can be stated that 
Kalman-1 outperforms Kalman-2 only in points with bad GDOP in 
which a noticeable change of direction occurs. As expected, 
Kalman-2 provides very accurate position estimates in smoothed 
trajectories (around 0.7 m. of average error). Furthermore, the 
variance of the position estimate error obtained with Kalman-2 is 
always the lowest. 

Finally Fig. 5 shows an interval of the actual MT trajectory and the 
estimated ones obtained with Newton and Kalman-2 algorithms. It 
can be easily appreciated that the later provides an erratic path 
whereas the former is able to achieve a smoothed trajectory very 
similar to the actual one. 

 
Figure 5. Actual and estimated trajectories 

4.2 Performance assessment 
Through this part of simulations it is aimed to obtain reliable and 
representative positioning accuracy figures for both Kalman-based 
tracking algorithms and the pure positioning one, in order to assess 
the performance enhancement that specially is expected to provide 
the improved prediction step approach (Kalman-2). Taking into 
account the results obtained in the first phase of simulations, a large 
number of routes (5000) with bad GDOP zones and probable 
changes of direction were generated following a motion model as 
similar as possible to a real behavior of a pedestrian. The motion 
algorithm is managed by the following rules: a) probability of 
changing the direction at a given time is governed by a geometrical 
random distribution. with probability of change = 0.1, b)• speed of 
the MT is a normal random variable of mean 1 m/s and variance 0.2 
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m/s, c) change of direction can be up to 30 degrees respect the 
followed straight line. The scenario is composed by a squared area 
of 50x50 m2 with an AP in every corner. The positioning step T is 
set to 1 second. 

4.2.1 Results 
Fig. 6 shows the Cumulative Distribution Function (CDF) of the 
absolute positioning error for the algorithms. It can be seen that the 
Discrete Kalman algorithm with the improved prediction step 
provides the best accuracy, specifically less than 0.9m. of absolute 
positioning error for the 66% of the cases (one sigma), and less than 
1.4m. for the 90%. Comparing with Newton, the improvement 
seems to be noticeable, because it provides 1.8m. and 1.2m. for the 
90% and the 66% respectively. 

 
Figure 6. CDF of the absolute positioning error 

5. CONCLUSIONS 
The use of a non complex tracking algorithm in an indoor WLAN 
location system based on TOA has been treated in this paper. The 
main objective of incorporating tracking to the TOA location 
technique presented in [1] is to improve the achieved positioning 
accuracy. The Discrete Kalman Filter has been taken as a basis for 
obtaining a proper algorithm that provides good performance given 
our system constraints. Accordingly, two different adaptations and 
optimizations of this filter have been evaluated through simulations 
(comparing them with Newton algorithm) fed with actual TOA-
based ranging observables, in terms of positioning accuracy and 
robustness to changes of direction and GDOP. Results show that 
both tracking algorithms outperform Newton, specially the Kalman 
algorithm with an improved prediction step, which is able to 
enhance the accuracy half a meter. This achieved accuracy (less 
than 0.9 m of error for the 66% of cases) really encourages adopting 
this improved Kalman Filtering as the tracking algorithm in our 
indoor WLAN. The global result consists of an indoor TOA-based 
tracking system for pedestrian navigation which can be deployed 
over the existing WLAN infrastructure with minor changes, 
providing high robustness and accuracy. Further research is 
necessary to deal with important issues of the system performance 

such as the lack of localization availability in situations of less than 
3 APs being in the range of the MT. 
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