
150 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 2, FEBRUARY 2000

Nonlinear System Identification Using Additive
Dynamic Neural Networks—Two On-Line

Approaches
Robert Griñó, Member, IEEE, Gabriela Cembrano, and Carme Torras

Abstract—This paper proposes a class of additive dynamic con-
nectionist (ADC) models for identification of unknown dynamic
systems. These models work in continuous time and are linear in
their parameters. Also, for this kind of model two on-line learning
or parameter adaptation algorithms are developed: one based on
gradient techniques and sensitivity analysis of the model output
trajectories versus the model parameters and the other based on
variational calculus, that lead to an off-line solution and an in-
variant imbedding technique that converts the off-line solution to
an on-line one. These learning methods are developed using ma-
trix calculus techniques in order to implement them in an auto-
matic manner with the help of a symbolic manipulation package.
The good behavior of the class of identification models and the two
learning methods is tested on two simulated plants and a data set
from a real plant and compared, in this case, with a feedforward
static (FFS) identifier.

Index Terms—Additive dynamic neural networks, identification,
invariant imbedding theory, sensitivity analysis, variational cal-
culus.

I. INTRODUCTION

I N THE LAST few years, a growing interest in the study
of nonlinear systems in control theory has been observed.

This interest stems from the need to give new solutions to some
long-standing necessities of automatic control [1]: to work with
more and more complex systems, to satisfy stricter design cri-
teria, and to fulfill the previous points with less and lessa priori
knowledge of the plant.

In this context, a great effort is being made within the area
of system identification, towards the development of nonlinear
models of real processes. In addition to more classical identi-
fication methods such as NARMAX modeling [2], [3], a new
set of methods has been developed recently which apply arti-
ficial neural networks to the tasks of identification and control
of dynamic systems. These works are supported by two of the
most important capabilities of neural networks: their ability to
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learn [4], [5] (based on the optimization of an appropriate error
function) and their good performance for the approximation of
nonlinear functions [6], [7].

At present, most of the works on system identification using
neural networks are based on multilayer feedforward neural net-
works with backpropagation learning or more efficient varia-
tions of this algorithm. These methods have been applied to real
processes and they have shown an adequate behavior [8]–[12]. It
is important to remark that most of them use static discrete-time
models that capture the dynamics of the real process through
the use of tapped-delay lines in the model inputs and outputs
[13], [14]. A number of drawbacks associated with this type of
models may appear in the identification of complex dynamic
systems, such as difficulties in selecting the appropriate number
of required delays and, in some cases, poor identification per-
formance when implemented on line, after training off line, due
to training deficiencies. In order to avoid these limitations, re-
current neural networks with internal dynamics are adopted in
several works [15]–[17]. A common feature of the above con-
tributions is that they all work in discrete time leading to dis-
crete-time models of the real continuous system. This causes a
great dependence of the resulting models on the sampling period
used in the process and no information is given about the model
trajectories between the sampling instants. Furthermore, the the-
oretical support for a subsequent use of the generated models in
controller design is insufficient.

For these reasons, this paper presents the use of contin-
uous-time additive dynamic neural networks [18]–[21] to
identify real processes. Additionally, the identification methods
presented in the paper use on-line training, so that when the
training error is low, the network model can be reasonably
expected to have captured the dynamic behavior of the real
process/system. This approach has several advantages with
respect to the discrete-time tapped-delay line models [22]–[25].

• The number of configuration parameters (degrees of
freedom) of the model is considerably lower. It is only
necessary to specify the dimension of the state space,
since the number of inputs and outputs is determined by
their counterparts in the real process.

• The models obtained with this approach are in state–space
form and work in continuous time, which is very inter-
esting in order to apply differential geometric theory for
nonlinear control [26].

The rest of this paper is organized as follows. Section II
presents the architecture of the additive dynamic connectionist
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Fig. 1. Basic node in the additive neural model.

(ADC) models used in the system identification tasks. Sec-
tion III develops two on-line parameter adaptation methods
for the model of the previous section. More specifically, this
section derives two on-line parameter update approaches, the
first one based on a gradient method and sensitivity analysis
of the model and the second based on variational calculus and
invariant imbedding techniques. Then, Section IV discusses
the implementation issues of the parameter adaptation methods
of the previous section. In Section V, the developed method-
ologies are applied for the identification of several systems,
including one represented by a real experimental data set of a
hydroelectric power plant. Finally, Section VI summarizes the
conclusions of the present work.

II. A RCHITECTURE OF THECONNECTIONISTMODELS

The architecture of the connectionist models is described by
the structure of their basic elements and how they are intercon-
nected.

A. Basic Elements

The basic processing element of a neural model is the node,
also called the neuron by analogy with the biological neurons.
In general, the basic model of a node is composed of a weighted
adder, a linear dynamic SISO system, and a nonlinear static
function. In this paper these elements are shown in Fig. 1.

• The weighted adder is described by the equation

(1)

where the weighted sum is a linear combination of the
outputs of the nodes of the net, the external inputs ,
and the bias term . Taking (1) and arranging them in
matrix form gives

(2)

where
1 weight matrix of the network;

parameter matrix that applies the
input vector to the model;
bias vector of the network.

• The linear dynamic system has the weighted sumas
input and as output. In this work, a first-order linear
system with a variable time constant ( ) and a
static gain of value ( ) for each node in the network is
chosen. Then, each node in the network has the following
differential equation:

(3)

• The nonlinear static activation function selected in this
work is the hyperbolic tangent and it maps the state of a
node to its output : , .

B. Additive Models

The composition of a number of the basic elements described
above constitutes the additive dynamic connectionist (ADC)

1M ( ) is the set ofn rows bym columns matrices with elements over
the real field andM ( ) is the set ofn rows byn columns matrices with ele-
ments over the real field;
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model, each basic element being a node of the network.
Arranged in matrix form all of the nodes, together with a linear
output equation with constant parameters, has the following
structure (see Fig. 2):

(4)

(5)

where
state vector;
bias vector;
output of the model;
weight matrix;
input weight matrix;

fixed output matrix;

nonlinear vector field from to (−1, 1).

It is important to note that the special form (a mixed matrix
and Kronecker product2 [27], [28]) of the first term in (4) is
motivated by the need, for subsequent developments, to keep
the vector structure for the time constant vector. In particular,
matrix is formed as where

and is the th
vector of the standard basis of .

A study of the absolute stability of the class of contin-
uous-time additive dynamic neural network models defined by
(4) and (5) has been carried out, obtaining a set of sufficient
conditions developed from a frequency domain point of view
[29].

III. PARAMETER ADAPTATION IN DYNAMIC NEURAL

NETWORKS

The basic idea of the identification process is to arrange
the connectionist model in parallel with the real plant, i.e., the
model receives the same inputs as the plant and its outputs
predict the values of the plant outputs (see Fig. 3). Clearly,
the objective is to have the same output signals from the plant

and the model at any . Since the plant is structurally
and parametrically unknown, this will only be possible if the
model is able to identify the class of systems to which the plant
belongs. Neural networks have been shown to be good universal
approximators, for example, in [7], [30]–[33]. In particular, the
capabilities of continuous-time recurrent neural networks for
the approximation of dynamic systems were exposed in [34].
In these conditions, it is reasonable to assume that the proposed
models are capable of approximating the plant output, except
for a residual error due to the structural modeling mismatch
between the plant and the neural network model.

Then, parameter adaptation or learning techniques are
required to perform the identification. In this work, two on-line
adaptation methods are proposed.

2Also called the tensor product.

Fig. 2. Additive dynamic neural network model.

Fig. 3. Structure of the identification method.

A. Gradient Parameter Adaptation Based on Sensitivity
Analysis

1) Statement of the Problem:Taking the output of the real
process and the output from the model, the identification
error vector is defined as . This error is a function of
time and the model parameters

(6)

and is zero when the model represents exactly the dynamic be-
havior of the system to be identified. Therefore, the parametric
identification problem involves finding a parameter set such that

and, in order to achieve this, the parameter data set must
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be modified recursively to bring the identification error to zero
or to a small residual value which may be attributed to the noise
inherent to the real process.

For this purpose, it is necessary to define a cost functional of
the identification error which measures the goodness of fit of the
identification mechanism and which takes its minimum value
for a zero identification error. The selected cost functional is

(7)

where is a symmetric positive definite matrix that weighs the
components of the identification error vector.3

2) Parameter Updating Equations:As for the parameter
adaptation mechanism, a common method is to perform the
parameter modification in the opposite direction of the cost
function gradient vector with respect to the model parameters.
Specifically, for the proposed model, the parameter update
equations are

(8)

(9)

(10)

where the constants are the learning rates for each parameter
set.

Equations (8)–(10) express in a general form the update of
the model parameters, but they require some developments to
become useful. In particular, it is necessary to expand the deriva-
tives of the cost function with respect to all the model param-
eter sets using the extended chain rule for matrix operations.

For illustration, the derivative of the cost functional with re-
spect to vector , is derived below. Table I summarizes
the results for the , , and parameters

(11)

where the second term in the right-hand side is

(12)

according to the definition of the cost function in (7) and
taking into account the symmetry of. In the first term in the
right-hand side of (11), it is necessary to apply the chain rule
once more to obtain

(13)

which, according to the previous definition of the error vector
, results in

3A special case could beQQQ = III .

(14)

where is the transpose Jacobian matrix of the output
trajectories of the model versus the parameters, . This
term cannot be expanded further using the chain rule and it is
therefore necessary to rely on sensitivity analysis in order to
compute it. The application of this technique to the ADC model
will be carried out in the following section for the series of pa-
rameter sets in the model.

For illustration, if the derivative of the cost functional with
respect to matrix , is expanded and arranged in ma-
trix form

(15)

where the term in the rightmost factor is, by the chain rule

(16)

Substituting (16) in (15) gives

(17)

Consequently, the update equation of the parameter setis

(18)

where the term cannot be expanded further by the chain
rule, requiring the application of sensitivity analysis techniques
for dynamic systems.

As has been shown, the parameter-update equations contain
the constants that clearly modify their dynamic behavior,
specifically the learning or adaptation rate. In general practice,
these constants are given positive values close to zero to obtain
a slow dynamic behavior for the parameters. However, a rea-
soned justification of this fact appears in the following section
and arises naturally from the development of the sensitivity
equations of the model.

3) Sensitivity Analysis of the Connectionist Model:The
basic mathematical problem in sensitivity theory is the compu-
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TABLE I
UPDATE EQUATIONS FOR THE PARAMETER

SETS OF THECONNECTIONISTMODEL

tation of the change in the system behavior due to parameter
variations. In particular, in this work the following definition
taken from [35] is used.

Definition III.1: The absolute sensitivity function is

(19)

where
any function that characterizes the system behavior;
system parameter vector;
nominal value. .

According to the previous definition, the sensitivity to param-
eter variations is a function, not a coefficient, and is time de-
pendent. Also, as can be seen in the definition, the parameter
variations are treated in an infinitesimal manner, leading to the
representation of the sensitivity function as a partial derivative.

There are qualitative differences in the effects produced by
variations of the different parameters. The following classifica-
tion proposed in [35] can be established.

Definition III.2: There are three categories of parameter
variations in continuous-time dynamic systems.

-variations: These are parameter variations around a nom-
inal value that do not affect the order of
the mathematical model. A necessary condi-
tion is that .

-variations: These are variations of the initial conditions
from their nominal values .

-variations: These are parameter variations from a nom-
inal value that affect the order of the
mathematical model.

In this work, the parameter variations that occur in the identi-
fication model are of the type since the following assumptions
are made.

• The initial conditions of the identification models do not
depend on the parameters of the model.

• The initial conditions of the models are not known and
the parameter fit must be as insensitive as possible to their
values.

• None of the model parameters are strictly zero, but should
they be, the order of the mathematical model would not be
affected.4

• The inputs to the real system and the model do not depend
on the system parameters. This can be assumed because
the identification of the real system is made in open loop
and, for this reason, the system inputs are independent of
its dynamic behavior.

In order to find the trajectory sensitivity equations of the con-
nectionist model of (4) and (5) with respect to its parameters, it
is necessary to take the partial derivative with respect to the pa-
rameters in the state and output equations of the model. For ex-
ample, the expansions for vectorand matrix are performed.

Starting with vector , if the partial derivative with respect
to this vector is taken on both sides of (4) and the chain rule is
applied

(20)

It is important to remark that the derivative of the initial con-
ditions with respect to the parameter vector is equal to zero since
they have been assumed independent of the parameters. Now, if
the parameter vector is kept constant in time ( ), a swap of
the operator derivative with respect to time and derivative with
respect to the parameter vector can be performed as follows:

(21)

where

Taking partial derivatives in the output equation (5)

(22)

and putting it in matrix form with

gives

(23)

For the parameter matrix , the sensitivity state
and output equations take the following form:

4This fact can be observed in the equations of the model given the chosen
structure.
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(24)

(25)

Restating the last two equations in matrix form with
and

and taking into account the operator swap, the
following equations are obtained:

(26)

(27)

4) Identification Process Equations:Arranging the differ-
ential and algebraic equations that correspond to the model, the
sensitivity analysis and the parameter update together produce
the following set of equations:

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

where and
is the Kronecker matrix, being

the th vector of the natural basis of , being the th vector
of the natural basis of , and

with given the definition of .
Of the set of (28)–(39), (28) is the state equation of the con-

nectionist model, the differential matrix equations (29)–(31) are
the state sensitivity equations with respect to the model param-
eters, the differential matrix equations (32)–(34) are the param-
eter update equations according to the gradient method and, fi-
nally, the algebraic equations (35)–(39) correspond to the output

equation of the model, the output sensitivity equations, and the
identification error of the method.

Equations (28)–(39) make up, together with the initial condi-
tions

(40)

an initial value problem which can be solved in an on-line
manner. Then, the learning of the model parameters can be
performed from a random-value set in real-time operation if
necessary.

At this point, it is important to examine the following con-
siderations about the adaptation mechanism formulated above.
First, the impact of the value of constantsthat appear in the
parameter update equations and, second, the effect of the initial
conditions of the state equation of the model and the param-
eter update equations in the global behavior of the adaptation
process.

As for the impact of the constants (learning rates), in the
global dynamics it is important to remark that the sensitivity
equations of the model only give the Jacobian matrix of the
output trajectories of the model with respect to the parameters
when these are kept constant during the whole process. Actu-
ally, this fact is not so in an on-line parameter adaptation since
the parameters are changing continuously, thus, only an approx-
imation of the expected result is obtained. Then, if a correct op-
eration of the adaptation mechanism is desired, it is necessary
to assign to the constantsa positive small value in order to
provide a slow dynamics for the parameters for the purpose of
considering them quasi-stationary.

The following comments can be made concerning the initial
conditions of the equations involved in the adaptation process.

• The sensitivity state equations are given, as mentioned
above, zero initial conditions.

• The state equation of the model has unknown initial
conditions. Likewise, as the chosen approach is of the
black-box type, the knowledge of the initial conditions of
the physical system under study is not relevant. In general,
a random-valued or zero vector of initial conditions can
be taken.

• The parameter update equations also need a set of initial
conditions which must be nonzero so as not to reduce the
model to the trivial case. Obviously, the closer the initial
conditions are to the optimal values, the faster the adapta-
tion process will be.5

5) Complexity Issues:The complexity, in number of differ-
ential equations, of this on-line adaptation mechanism is the fol-
lowing.

• Necessary equations for the adaptation of the parameter
vector : .

• Necessary equations for the adaptation of the weight ma-
trix : .

• Necessary equations for the adaptation of the input matrix
: .

5In the error and cost-function sense.
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• Equations of the additive dynamic neural model:
.

Therefore, the total complexity is
where is the model state-vector dimension (number

of nodes in the neural network) andis the number of inputs.
For example, in the usual case which has a constant vector
and input matrix , the complexity is .

B. Variational and Invariant Imbedding Techniques

1) Statement of the Problem:As given in Section III-A1,
the learning error is defined as . The chosen functional
is the integral of a quadratic form of the learning error, i.e.,

(41)

and it must be minimized subject to the following constraints:

• the dynamics of the neural network: (4) and (5);
• the stationarity of the net parameters: , ,

.
2) A Variational Solution of the Learning Problem:This

section develops a variational solution as in [36] to the min-
imization problem stated above. First, the constraints are
adjoined to the cost functional with the corresponding
multiplier functions

(42)

The right side6 of the above equation is integrated by parts
and then the variation of due to variations in the parameters

of the model with a fixed final time is

(43)

where the stationarity of the parameters and the dynamic equa-
tions of the neural model are assumed in the simplification.
Now, if the variation in due to variations , , ,
and must be zero, it is necessary that the terms in
brackets and parentheses in (43) vanish. Taking into account
these conditions gives

(44)

(45)

6The column operatorcol applied to a matrixAAA 2 M ( ) yields a
vector that has as components the elements ofAAA stacked by columns. Formally,
colAAA = (eee 
 III )AAAeee 2 , whereeee is thejth vector of the stan-
dard basis of .
Likewise, the row operator is defined as(rowAAA) = colAAA 2 .

(46)

(47)

(48)

(49)

(50)

(51)

where (44)-(47) result from the stationarity of the parameters
and the dynamic neural model and (48)-(51) follow from the
need to nullify the terms in parentheses inside the integral of
(43). It is also important to state the boundary conditions, ex-
tracted from the transversality conditions, which take the fol-
lowing form:

(52)

Arranging the state vectors of the differential equations of the
boundary value problem as

and

the system (44)–(51) can be stated in compact form as

(53)

(54)

which constitutes a two-point boundary value problem
(TPBVP) which cannot be solved in a on-line manner because
of the fixed end time and the boundary conditions.

3) On-Line Operation Using Invariant Imbedding Tech-
niques: In order to solve the learning problem on line with
an infinite time horizon, an invariant imbedding (II) technique
[37], [38] may be used. The II methodology is based on the
transformation of the problem into a more general one that has
an easier solution. Then, when the more general problem is
solved, the previous problem is automatically solved.

When this approach is applied to the above TPVBP the fol-
lowing partial differential equation results [39]:

(55)

where
general value for the end condition of( );
function that relates the value of with
( ).

This is the partial differential equation of the invariant imbed-
ding technique and it does not have a known general solution.
However, the solution can be approximated through the fol-
lowing linear function:

(56)
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Fig. 4. Sketch of the generation, implementation, and validation of the elements involved in the identification process.

where is the correct solution of the problem, i.e., the so-
lution when . It is important to point out
that the linear structure chosen for the functionis appropriate
while is small ( ), i.e., near the optimal solution. For this
reason, in the following derivations, it will be assumed thatis
small and, therefore, the terms of and higher will not
be taken into account. Now, if (56) is substituted in (55)

(57)

However, since the functionsand are nonlinear, it is neces-
sary to perform a Taylor expansion around , , and

until the first order obtaining:

(58)

The derivation continues by substituting functionsand
by their expressions and removing the terms of and
higher. Then, the terms of degrees zero and one inare equated
separately.

4) Application to the Dynamic Additive Models:The results
obtained in the previous section can be applied to the TPBVP
equations (53) and (54) of the neural network identification
problem. However, beforehand, it is necessary to recast the
equations into a more explicit form as

(59)

(60)

where

(61)

and

where

(62)

Substituting (59) and (60) in (58) and equating the zero- and
first-degree terms produces the following equations7:

• Zero degree:

(63)

• First degree:

(64)

7Dropping the independent variables in the vector field expressions.
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Fig. 5. Second-order nonlinear systems used in the identifications.

where

(65)

(66)

and can be partitioned as

(67)

with , ; ,
; , ; ;

, ; , ;
; , and

. With this approach, the complexity
of the above equations is, in terms of number of differen-
tial equations, .
However, without loss of generality, it is possible to
assume that matrix is symmetric ( , ) in
order to reduce the complexity of the learning problem.
This assumption is feasible because in (56) of the in-
variant imbedding procedure thematrix can be chosen
to be symmetric without degrading the approximation it
involves.

With the above considerations, the equations for the
on-line identification problem can be formulated as

(68)

(69)

(70)

(71)

(72)

(73)

(74

(75)

(76)

(77)

(78)

(79)

(80)

(81)

where
and is the Kronecker matrix.
The above system of matrix differential equations have the
initial conditions , , and a
small absolute value and as close as possible to the
unknown correct values. This second group of initial con-
ditions cannot be knowna priori, so their values must be
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Fig. 6. Identification results in System A:� = 0:2, K = 2, � = 0:2, saturation limits= 3;�3. Gradient parameter adaptation based on sensitivity analysis.

set randomly. However, the closer they are to their correct
values, the faster the system convergence will be.

5) Complexity Issues:The complexity, in terms of the
number of differential equations, of this system of matrix
differential equations is the following.

• For the first group ( ): .
• For the second group ( ):

. In detail, by columns of the block matrix
:
First column ( ):

;
Second column ( ):

;
Third column ( ): ;
Fourth column ( ): .

Then, for the whole system the complexity in terms
of the number of differential equations is

.
It is important to remark that the complexity of this method is
greater than in the other approach based on sensitivity analysis
and gradient update of the parameters of the neural models
[21].

IV. I MPLEMENTATION CHARACTERISTICS

The two approaches to on-line system identification using ad-
ditive neural network models developed in the previous sections
have been implemented in an attempt to obtain a fully automated
approach to the generation of the identification models, the aux-
iliary equations and the parameter update equations.

The equations for the parameter update of the models have
been obtained through the implementation of the developed

methods using a symbolic manipulation program, specifically,
MapleV [40]. This fact also justifies the level of abstraction
used in the formalization of the developments.

The procedure to obtain an executable binary file to perform
the numerical experimentation is sketched in Fig. 4. First, the
specification of the architecture of the neural model (number of
inputs, outputs and nodes together with the values of the param-
eters which have been assumed constant) is input to the sym-
bolic manipulation package developed for the selected method.
The output is a set of source-code files ready to be compiled
and linked with the main program and the numerical integration
kernel. For the numerical integration itself, two different tools
have been used: the continuous-time simulation language ACSL
[41] and the ODEPACK [42] integration package (LSODES
routine). The reason for this choice lies in the higher perfor-
mance of the LSODES routine for large problems, since it works
with an explicit Jacobian matrix using sparse-matrix algebra.

In the numerical experiments, which will be presented in the
following section, the source-code program also includes the
necessary routines to simulate the real data set that must be input
to the simulation problem.

Also, it is important to remark that, in the case of an imple-
mentation of the identification methods with the real hardware
plant in the loop, it might be necessary to change the numerical
integration algorithms to others which are specifically suited for
real-time operation, such as described in [43].

V. VALIDATION OF IDENTIFICATION METHODS

This section presents several results obtained with the two de-
veloped on-line parameter update methods together with a refer-
ence solution consisting of an identification using feedforward
neural-network models with tapped delay lines.
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Fig. 7. Identification results in System B: same values as system A and a dead zone bounds of +1,−1. Gradient parameter adaptation based on sensitivity analysis.

Fig. 8. Identification results in System B: same values as system A and a dead zone bounds of+1,�1. Variational and invariant imbedding technique.

A. Test Cases

Three representative examples are used in this paper: two
simulated second-order nonlinear systems and a real data set

consisting of the electrical power demand and production read-
ings in a hydroelectric power plant.

1) Simulated Nonlinear Second-Order System:Fig. 5
shows the simulated nonlinear systems used for the experi-
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Fig. 9. Identification error (top) and reference (thick), output and model output (thin) (bottom) for the real power plant data set. Gradient parameter adaptation
based on sensitivity analysis.

Fig. 10. Identification error (top) and reference, output, and model output (bottom) for the real power plant data set. Variational and invariant imbedding technique.

ments. The first one contains a cascade of first-order systems
with a saturation element between them, and the second one is
composed of the same elements plus a dead band working in
closed loop. This kind of systems is very common in industrial
processes, especially in motion control systems.

In all the experiments a maximum length binary sequence has
been used as input to the plant and the model. This kind of input
has been chosen because its industrial use is more extended than
the pure white noise. Also, it is important to point out that no

tuning of the initial conditions of the models has been carried
out.

2) Real Data Set from a Hydroelectric Power Plant:In this
case, the system to be identified is a hydroelectric group from
a power plant of the utility company ENHER.8 The real data
set consists of two time series corresponding to the electrical
power desired from the plant, and the real power production.

8Empresa Nacional Hidroeléctrica Ribagorzana.
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Fig. 11. Sum squared network error for the first one hundred epochs of the training phase.

Fig. 12. Series-parallel prediction over the test set: (top) power demand (dotted), real output power (solid), and predicted output power (dash-dot); and (bottom)
identification error.

The sampling period of the data set is 3 s and the total time
recorded is 18 663 s.

B. Experimental Results

This section presents some results to illustrate the identifica-
tion performance of the proposed class of models together with
their on-line parameter adaptation algorithms.

1) Results with the Simulated Plants:For System A, Fig. 6
shows the identification error and the real and model output for
an experiment with a five-node ADC model with gradient pa-
rameter adaptation based on sensitivity analysis and .
At time s the adaptation mechanism has stopped and
the model performs its prediction task quite well, which implies
that the underlying dynamics of the plant have been acquired by
the ADC model.
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Fig. 13. Parallel prediction over the test set: (top) power demand (dotted), real output power (solid), and predicted output power (dash-dot); and (bottom)
identification error.

The five-node ADC model is the minimum configuration that
acquires the dynamic behavior of the real process, and this fact is
recognized because the weights maintain almost constant values
some time after the performance of the model is good. That is
to say, it is the model and not the adapter that learns the process
behavior.

For System B, Fig. 7 shows the identification error and the
real and predicted output, also with a five-node ADC model
using gradient parameter adaptation ( ). Fig. 8 shows
the same data for an ADC model of the same complexity with
the variational and invariant imbedding technique.

Among the numerical experiments performed in this work,
a lack of excitation in the input to the system has been tested
and the results show a high degree of robustness since no drift
is observed in the model parameters.

2) Results with the Real Data Set:Now, the parameter adap-
tation algorithms are applied to the real data set from the power
plant. In particular, only the first 3334 points from the input
and output time series are used, which correspond to the first
10 002 s.

Fig. 9 shows the real and predicted output power and the
demanded power (bottom), and the identification error (top)
for a five-node ADC model with gradient parameter adaptation
based on sensitivity analysis. As can be observed, the real
output power is virtually indistinguishable from the model
output power, except for the first moments of the on-line
adjustment.

Fig. 10 shows the same information as Fig. 9 for a five-node
ADC model, now, with variational and invariant imbedding
adaptation technique. It can also be observed that the identifi-
cation error is quite small except at the beginning of the on-line
adjustment of the model.

For both of the learning methods, when the predicted output
is very similar to the real output, the adaptation mechanism has
been stopped with little degradation of the identification error,
which implies that the ADC model has acquired the dynamics
of the process.

3) Comparison of Performance Against Feedforward Neural
Network Identifiers: In order to establish a reference for
comparison of the identification performance of the proposed
methods, an identifier using static feedforward neural networks
has been designed. This method has been chosen as a reference
since it is undoubtedly one of the most efficient state-of-the-art
nonlinear identification techniques. Neural network models
with tapped delay lines in the inputs and outputs have been
used. In particular, the considered models are

(82)

where subindex denotes an observation of the variable in ques-
tion at time , being the sampling period,and are the
maximum delays in the output and the input of the model, i.e.,
the depth of the historical windows in the input and output time
series, and is a static function that represents the neural model.

The approach followed for the training phase is a series-par-
allel one.The model is trained with real data of current and past
inputs, as well as past outputs, in order to predict the corre-
sponding current output.

The series-parallel approach to identification in the connec-
tionist context involves the teacher-forcing concept of learning.
This means that the test of performance is carried out by forcing
the inputs and the delayed values of the inputs and outputs of the
system to some prespecified values, previously measured in the
plant and contained in the test set. Then, the delayed data are not
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generated by the identifier. Conversely, in the parallel identifi-
cation configuration, the developed observations are generated
by the identifier itself.

When using feedforward neural networks, it is usually more
efficient to train the identifier with a series-parallel configura-
tion. However, in order to test the ability of the identifier to per-
form on-line, it is necessary to analyze its results in the parallel
configuration. A problem that is frequently encountered in this
situation, is that an identifier that performed extremely well in
the series-parallel configuration does not provide satisfactory
results in the parallel configuration. This implies that the dy-
namics of the process have not been captured correctly.

In the experiments shown below, a FFS neural identifier was
developed for the real data set. The FFS model was carefully
designed by performing a thorough search of the best number
of delays and hidden nodes. The neural network was trained off
line (in a series-parallel configuration) and tested on line (in a
parallel configuration).

The training of the FFS models (with hyperbolic tangent
sigmoid transfer functions in their nodes) is performed over
a training data set, made up of first 3364 values from the
input–output time series, with a Levenberg–Marquardt opti-
mization algorithm. The criterion to select the best model is its
prediction behavior over the test set, which is composed of the
remaining values (2857) of the input–output time series.

The learning evolution for the best model can be observed
in Fig. 11. This model has seven delays in the input, seven
delays in the output, and 15 nodes in its hidden layer. Fig. 12
shows the behavior of the model in the prediction of the test
set in a series-parallel configuration. Conversely, Fig. 13 shows
the prediction behavior of the same model over the test set in
a parallel configuration. In the ADC model presented in this
work, the parametric identification is performed on line, i.e.,
in a parallel configuration, involving an infinite-step prediction.
Therefore, the results of the FFS neural identifier and the ADC
model must be compared for the parallel configuration. From
the analysis of Figs. 9, 10, and 13 it follows that the tracking
performance and the identification error of the ADC model is
significantly better than that of the FFS model, especially in the
transitory parts of the system output.

VI. CONCLUSIONS ANDFURTHER WORK

The connectionist models presented in the paper have been
designed in order to obtain an efficient tool for the identification
of complex systems, where the dynamic process may be par-
tially or completely unknown. The selection of dynamic neural
networks provides the model with better abilities to capture the
unknown dynamics and to generate an internal state represen-
tation of the system, as opposed to other static connectionist
models. The use of continuous-time models makes it possible
to use an existing theoretical background for subsequent system
analysis and controller design.

The experimental results presented in the paper show how the
proposed ADC model can efficiently identify two synthetic non-
linear systems and one highly nonlinear real plant. The compar-
ison of identification performance with that of an FFS neural
network illustrates two facts. First, the FFS network requires

an important phase of iterative development in order to achieve
a structure that can efficiently approximate the nonlinear dy-
namics, whereas this process is almost automatic in the pro-
posed ADC model. Second, the tracking results with the ADC
model are significantly better than those obtained with the op-
timally selected FFS neural identifier. It may be argued that
the ADC method involves a relatively complex mathematical
formulation. However, in our implementation, a symbolic ma-
nipulation package based on MapleV automatically generates
the FORTRAN code whose on-line execution performs the ac-
tual identification task, thus reducing mathematical manipula-
tion and operation to the minimum.

Concerning the comparison of the two proposed ADC
learning methods, the gradient parameter adaptation based on
sensitivity analysis outperforms the variational and invariant
imbedding technique in the initial stages of learning. However,
once the model is adapted, their performances are qualitatively
similar, as shown in the numerical experiments. The detailed
quantitative behaviors depend on the dynamics of the identified
systems, without a clear predominance of one method over the
other. The latter method has, however, the important advantage
of being easily extendable to the treatment of noisy systems.

So far the ADC identification models have only been devel-
oped and tested for deterministic dynamic systems. A further
step of the research involves the extension of this method for
stochastic processes as well. In particular, it is envisaged to ex-
tend the invariant imbedding parameter update method to con-
sider the stochastic case. Additionally, research is ongoing in
the convergence characteristics of the parameter update methods
developed in this work.
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