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1 Introduction

Passivity–based control (PBC) is a generic name given to a family of con-
troller design techniques that achieves system stabilization via the route of
passivation, that is, rendering the closed–loop system passive with a desired
storage function (that usually qualifies as a Lyapunov function for the stabil-
ity analysis.) If the passivity property turns out to be output strict, with an
output signal with respect to which the system is detectable, then asymptotic
stability is ensured. See the monographs [5, 12], and [6] for a recent survey.

As is well–known, [12], a passive system can be rendered strictly passive
simply adding a negative feedback loop around the passive output—an ac-
tion sometimes called LgV control, [10]. For this reason, it has been found
convenient in some applications, in particular for mechanical systems, [11],
[8], to split the control action into the sum of two terms, an energy–shaping
term which, as indicated by its name, is responsible of assigning the desired
energy/storage function to the passive map, and a second LgV term that in-
jects damping for asymptotic stability. The purpose of this paper is to bring
to the readers attention the fact that splitting the control action in this way
is not without loss of generality, and effectively reduces the set of problems
that can be solved via PBC. This assertion is, of course, not surprising since it
is clear that, to achieve strict passivity, the procedure described above is just
one of many other possible ways. Our point is illustrated with the IDA–PBC
design methodology proposed in [4]. To enlarge the set of systems that can
be stabilized via IDA–PBC we suggest to carry out simultaneously the energy
shaping and the damping injection stages and refer to this variation of the
method as SIDA–PBC.
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We illustrate the application of SIDA–PBC with two practically important
examples. First, we show that the fundamental problem of induction motor
torque and rotor flux regulation cannot be solved with two stage IDA–PBC. It
is, however, solvable with SIDA–PBC. Second, we prove that with SIDA–PBC
we can shape the total energy of the full (electrical and mechanical) dynamics
of a doubly–fed induction generator used in power flow regulation tasks while,
as reported in [1], with two stage IDA–PBC only the electrical energy could
be shaped. Simulation results of these examples are presented to illustrate the
performance improvement obtained with SIDA–PBC.

2 PBC with Simultaneous Energy Shaping and Damping
Injection

We consider the problem of stabilization of an equilibrium point for nonlinear
systems of the form

ẋ = f(x, t) + g(x)u (1)

where x ∈ Rn is the state vector, u ∈ Rm,m < n is the control action and
g(x) is assumed full rank. In two–stage IDA–PBC this objective is achieved
as follows, see [4, 8] for further details. First, decompose the control signal in
two terms

u = ues + udi (2)

where ues is responsible of the energy–shaping stage and udi injects the damp-
ing. Second, solve the key matching equation4

g⊥(x)f(x, t) = g⊥(x)Jd(x, t)∇Hd (3)

for some functions

Jd : Rn × R→ Rn×n, Hd : Rn → R,

satisfying the skew–symmetry condition for the interconnection matrix

Jd(x, t) + J>d (x, t) = 0, (4)

and the equilibrium assignment condition for the desired total stored energy

x? = arg min Hd(x) (5)

with x? ∈ Rn the equilibrium to be stabilized5 and g⊥(x) ∈ R(n−m)×n a full–
rank left–annihilator of g(x), that is, g⊥(x)g(x) = 0 and rank g⊥(x) = n−m.

As shown in [4] system (1) in closed-loop with the control (2), with
4 All vectors in the paper are column vectors, even the gradient of a scalar function

denoted ∇(·) = ∂
∂(·) . When clear from the context the subindex will be omitted.

5 That is, x? is a member of the set {x̄ ∈ Rn | g⊥(x̄)f(x̄, t) = 0, ∀t ∈ R}.
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ues = [g>(x)g(x)]−1g>(x){Jd(x, t)∇Hd − f(x, t)}. (6)

yields a port–controlled Hamiltonian (PCH) system of the form

ẋ = Jd(x, t)∇Hd + g(x)udi

y = g>(x)∇Hd. (7)

The system (7) without damping injection term is conservative, i.e., Ḣd = 0,
with x? a stable equilibrium (with Lyapunov function Hd(x)). To add dissi-
pation we feedback the passive output y, for instance, with

udi = −Kdiy, Kdi = K>
di > 0,

to finally obtain the PCH system with dissipation

ẋ = [Jd(x, t)−Rd(x)]∇Hd + g(x)v
y = g>(x)∇Hd. (8)

where the damping matrix Rd(x) = R>d (x) ≥ 0 is defined by

Rd(x) = g(x)Kdig
>(x),

and we have added a signal v to (2) to define the port variables. Since the new
closed–loop system (with v = 0) satisfies Ḣd = −y>Kdiy, it can be proved
(see for example Lemma 3.2.8 of [12] for the autonomous systems case) that
the equilibrium x? will now be asymptotically stable if it is detectable from
y, i.e., if the implication (y(t) ≡ 0 ⇒ limt→∞ x(t) = x?) is true.

Obviously, the key for the success of IDA–PBC is the solution of the match-
ing equation (3). With the motivation of enlarging the class of systems for
which this equation is solvable we propose in this paper to avoid the de-
composition of the control into energy–shaping and damping injection terms.
Instead, we suggest to carry out simultaneously both stages and replace (3),
with the SIDA–PBC matching equations

g⊥(x)f(x, t) = g⊥(x)Fd(x, t)∇Hd, (9)

to replace the constraint (4) by the strictly weaker condition

Fd(x, t) + F>d (x, t) ≤ 0, (10)

and define the control as

u = [g>(x)g(x)]−1g>(x){Fd(x, t)∇Hd − f(x, t)}.
Since the set of skew–symmetric matrices is strictly contained in the set

of matrices with negative semi–definite symmetric part, it is clear that the
set of functions {f(x, t), g(x)} for which (3)—subject to the constraint (4)—
is solvable is strictly smaller than the set for which (9), subject to (10), is
solvable.
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Remark 1. There exists several techniques to solve the matching equations (3)
(resp., (9)), with two extremes cases being the purely algebraic approach of
[2] and the PDE approach of [4]. In the former Hd(x) is a priori fixed, which
makes (3) (resp., (9)) an algebraic equation that is solved for Jd(x, t) (resp.,
Fd(x, t))—subject to the constraint (4) (resp., (10)). On the other hand, in the
latter Jd(x, t) (resp., Fd(x, t)) is fixed making (3) (resp., (9)) a PDE that is
solved for Hd(x). We refer the interested reader to [6] for a detailed discussion
on these, as well as other, methods of solution of the matching equations. In
this paper we will adopt the algebraic approach.

Remark 2. Similarly to IDA–PBC, application of SIDA–PBC also yields a
closed–loop PCH system of the form (8) with

Jd(x, t) = 1
2 [Fd(x, t)− F>d (x, t)],

Rd(x, t) = 1
2 [Fd(x, t) + F>d (x, t)].

Remark 3. To make IDA–PBC applicable to non–autonomous systems, which
will be required in the induction motor application, we have presented above
a slight variation of the method. Notice that the matrices Jd and Rd may
depend explicitly on time. Clearly, their skew–symmetry and non–negativity
properties must now hold uniformly in time as well.

3 Induction Motor Control via SIDA–PBC

In this section we will show that the problem of output feedback torque control
of induction motors is not solvable via two–stage IDA–PBC but it is solvable
with SIDA–PBC. An interesting feature of our SIDA–PBC is that we establish
here (Lyapunov) stability of a given equilibrium that generates the desired
torque and rotor flux amplitude.

The standard two-phase model, which rotates at an arbitrary speed ωs ∈
R, is given by [13]

ẋ12 = − [γI2 + (npω + u3)J ] x12

+α1 (I2 − TrnpωJ )x34 + α2u12 (11)

ẋ34 = −(
1
Tr

I2 + J u3)x34 +
Lsr

Tr
x12 (12)

ω̇ = α3x
>
12J x34 − τL

Jm
(13)

in which I2 ∈ R2×2 is the identity matrix, J = −J T ∈ R2×2, x12 ∈ R2 are
the stator currents, x34 ∈ R2 the rotor fluxes, ω ∈ R the rotor speed, u12 ∈ R2

are the stator voltages, τL ∈ R is the load torque and u3 := ωs − npω. All
the parameters are positive and defined in the usual way. Notice that, as first
pointed out in the control literature in [7], the signal u3 acts as an additional
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control input. We will select u3 to transform the periodic orbits of the system
into constant equilibria.

We are interested in this paper in the problem of regulation of the motor
torque and the rotor flux amplitude

y =
[

y1

y2

]
=

[
Jmα3x

>
12J x34

|x34|
]

, (14)

to some constant desired values y? = col(y1?, y2?), where | · | is the Euclidean
norm, assuming that the only signals available for measurement are x12 and
ω.

To solve this problem using (S)IDA–PBC it is necessary to express the
control objective in terms of a desired equilibrium. In this sense, it can be
shown that for the induction motor model (11)–(13) with output functions
(14) and

u3 = u3? :=
Rr

np

y1?

y2
2?

. (15)

the set of assignable equilibrium points, denoted col(x̄12, x̄34, ω̄) ∈ R5, which
are compatible with the desired outputs y? is defined by

x̄12 =
1

Lsr

[
1 −Lr

np

y1?

y2
2?

Lr

np

y1?

y2
2?

1

]
x̄34

|x̄34| = y2? (16)

with ω̄ arbitrary.

Remark 4. From (13) and (14) we see that to operate the system in equilib-
rium, y1? = τL—hence, to define the desired equilibrium the load torque needs
to be known. In practical applications, an outer loop PI control around the
velocity error is usually added. The output of the integrator, on one hand,
provides an estimate of τL while, on the other hand, ensures that speed also
converges to the desired value as shown via simulations below. A scheme that
removes this assumption has recently been proposed in [3].

As indicated in Remark 1, in this paper we will adopt the algebraic
approach to solve the matching equations. To this end, we will consider a
quadratic in errors energy function of the form

Hd(x) =
1
2
(x− x?)>P (x− x?), (17)

with P = P> > 0 a matrix to be determined. Moreover, the problem formula-
tion is simplified by using the generic symbol F (x, t) to denote either Jd(x, t)
or Fd(x, t), and identifying the IDA and SIDA approaches by imposing either
F (x, t) + F>(x, t) = 0 or F (x, t) + F>(x, t) ≤ 0, respectively.
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Since we are interested here in torque control, and this is only defined
by the stator currents and the rotor fluxes, its regulation can be achieved
applying IDA–PBC to the electrical subsystem only. Boundedness of ω will be
established in a subsequent analysis.

If the electrical subsystem (11), (12), with u3 = u3? and u = u12, is written
in the form (1), then, selecting g⊥ =

[
02×2 I2

]
, it is possible to notice that

the matching equations (3) and (9) concern only the third and fourth rows of
f(x, t) and they take the form

−(
1
Tr

I2 + J u3?)x34 +
Lsr

Tr
x12 = [F3(x, t) F4(x, t)] P (x− x?), (18)

where, to simplify the notation, we partition F (x, t) into Fi ∈ R2×2, i =
1, . . . , 4, sub-matrices.

On the other hand, considering the constraint imposed by the possibility
of measuring only x12 and ω, from (6) it is possible to see that the control
can be written, factoring the components that depend on the unmeasurable
quantity x34, as

u12 = û12(x12, ω) +
1
α2

S(x, t)x34

with û12(x12, ω) given in (21). Hence, it is clear that to verify the output
feedback condition it must be satisfied that

S(x, t) := α1 [Trnpω(t)J − I2] + F1(x, t)P2 + F2(x, t)P3 = 0, (19)

where we have partitioned the symmetric matrix P into Pi ∈ R2×2, i = 1, 2, 3,
sub-matrices.

In order to show that the energy–shaping problem is not solvable, it is
possible to establish that condition F (x, t) + F>(x, t) = 0 is equivalent to

G = P−1
3 (−G>)P3.

where

G :=
1
λ

[
Lsr

Tr
P3 + P1 (α1I2 − λβ2J )

]

with λ ∈ R, λ 6= 0, β2 ∈ R and P3 a full rank matrix.
Consequently, G must be similar to −G>, and both necessarily have the

same eigenvalues. A necessary condition for the latter is that trace(G) = 0,
that clearly is not satisfied.

On the other hand, it can be shown that F2(t) = α1 [I2 − Trnpω(t)J ]P−1
3 ,

F3 = Lsr

Tr
P−1

1 , F4 = −
(

1
Tr

I2 + u3?J
)

P−1
3 and P2 = 0, with F1(x, t), P1, P3

free, provide a solution to (18) and (19). Moreover, if P1 = Lsr

Tr
I2, P3 = α1I2

and F1(t) = −K(ω(t)), with

K(ω(t)) >
Lsr

LsLr − L2
sr

[
1 +

1
4
(Trnpω(t))2

]
I2 (20)
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then F (t) + F>(t) < 0.
The final part of the design is the explicit definition of the resulting con-

troller, given by u3 = Rr

np

y1?

y2
2?

and u12 = û12(x12, ω) with

û12(x12, ω) =
1
α2

[γI2 + (npω + u3?)J ] x12 − α1

α2
(I2 − TrnpωJ )x34?

− Lsr

α2Tr
K(ω)(x12 − x12?) (21)

and K(ω) satisfying (20), which guarantees that the equilibrium x? is globally
exponentially stable while ω remains bounded.

The performance of the proposed SIDA–PBC was investigated by simula-
tions using the motor parameters reported in [7]. The rotor flux equilibrium
value was set to x34? = col (β, 0) with β = 2, while x12? were computed ac-
cording to (16). In the experiment, with the motor at standstill and a startup
zero load torque, a profile for this latter variable was considered going first
to τL = 20Nm and later on to τL = 40Nm. In Figure 1 it is shown how the
generated torque regulation objective is achieved.

The second experiment was aimed to illustrate the claim stated in Remark
4 regarding the estimation of the load torque with speed control purposes. In
this sense, the control input u3 was set to

u3 = û3? = Rr
ŷ1?

y2
2?

where the estimate of the load torque is obtained as the output of a PI con-
troller, defined over the speed error between the actual and the desired veloc-
ities, of the form

ŷ1?(t) = kp (ω(t)− ω?) + ki

∫ t

0

(ω(s)− ω?) ds

Figure 2 shows the rotor speed behavior when the desired velocity is initially
ω? = 100rpm and at t = 50sec it is changed to ω? = 150rpm. In this simu-
lation it was considered τL = 10Nm, ki = −.1 and kp = −1. All the other
parameters were the same than in the first experiment.

4 Total Energy–Shaping of a Doubly–Fed Induction
Generator

The second considered example in this paper is related with the control of a
doubly-fed induction machine (DFIM) [9]. In this case the device acts as an
energy–switching device between a local energy storing element (a flywheel)
and the electrical power network. The control objective is to change the direc-
tion of the power flow (towards or from the flywheel) depending on the load
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0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

time [sec]
ge

ne
ra

te
d 

an
d 

loa
d 

to
rq

ue
 [N

m]

Fig. 1. Generated and load torque of the IM

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

40

60

80

100

120

140

160

time [sec]

Sp
ee

d 
[rp

m
]

Fig. 2. Speed behavior with estimated load torque

demand. In [1] the equilibria associated to these regimes is stabilized with an
IDA–PBC that shapes the electrical energy, treating the mechanical dynamics
as a cascaded subsystem. The purpose of this section is to show that using
SIDA–PBC it is possible to shape the energy function of the complete sys-
tem dynamics, resulting in a controller with improved power–flow regulation
performance due to the possibility of considering a fast response of the me-
chanical speed. To the best of our knowledge, this is the first control algorithm
for this class of systems that provides for this additional degree of freedom.

We consider the configuration for the DFIM studied in [1] where a repre-
sentation in the dq framework rotating at the (constant) angular speed of
the AC source (ωs) is assumed. The energy function of the overall system is
H(z) = 1

2z>L−1z, and the model is given by

ż = [J(is, ω)−R]∇H +




vs

O2×1

τL


 +




O2×2

I2

O1×2


 u (22)

where

L =




LsI2 LsrI2 O2×1

LsrI2 LrI2 O2×1

O1×2 O1×2 Jm


 = L> > 0
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is the generalized inductance matrix, vs ∈ R2, τL ∈ R are, respectively, the
stator voltage and the external mechanical torque, which are constant, u ∈ R2

are the rotor control voltages, z = col(λs, λr, Jmω) ∈ R5, where λs, λr ∈ R2

are the stator and rotor fluxes, respectively, and ω ∈ R is the mechanical
speed. The (skew–symmetric) structure and damping matrices are

J(is, ω) :=



−ωsLsJ −ωsLsrJ O2×1

−ωsLsrJ −(ωs − ω)LrJ LsrJ is
O1×2 Lsri

>
s J 0


 ,

R :=




RsI2 O2×2 O2×1

O2×2 RrI2 O2×1

O1×2 O1×2 Br


 > 0,

All machine parameters are defined in the usual way. Also note that the vector
χ = col(is, ir, ω) ∈ R5×5, where is, ir ∈ R2 are the stator and rotor currents,
respectively, satisfies z = Lχ.

Clearly, the fixed point equations for (22) are given by z? = Lχ?, with
χ? := col(is?, ir?, ω?) the solutions of

−(ωsLsJ + RsI2)is? − ωsLsrJ ir? + vs = 0

Lsri
>
s?J ir? −Brω? + τL = 0, (23)

As discussed in [1], the direction of the power flow can be regulated commuting
between two controllers that stabilize two different equilibrium points.

In order to obtain the controller that stabilizes the desired equilibrium,
as done in Section 3 we will design our SIDA–PBC adopting the algebraic
approach. For, we fix the desired energy function as

Hd(z) =
1
2
(z − z?)>P (z − z?), P = P> > 0. (24)

Thus SIDA–PBC design reduces to finding a matrix Fd(z) such that the right–
hand term of (22) equals Fd(z)P (z− z?) and verifying Fd(z)+F>d (z) ≤ 0. To
simplify the solution we restrict P to be diagonal while

Fd(z) =




F11(z) F12(z) O2×1

F21(z) F22(z) F23(z)
F>31(z) F>32(z) F33(z)


 ,

It can be shown that if F11 = − 1
ps

(
ωsJ + Lr

µ RsI2

)
and F12 = Lsr

prµRsI2 with

µ := LsLr−L2
sr > 0, with F31 = Lsr

psµJ λr?, F32(z) = −Lsr

prµJ λs, F33 = − Br

pωJm
,

while
F21 = −F12, F23(z) = −F32(z), F22 = − kr

2pr
I2 < 0

yields
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Fd(z) + F>d (z) =



− 2LrRs

psµ I2 O2×2
Lsr

psµJ λr?

O2×2 −kr

pr
I2 O2×1

−Lsr

psµλ>r?J O1×2 − 2Br

pωJm


 . (25)

A simple Schur’s complement analysis establishes that Fd(z) + F>d (z) < 0 if
and only if the free parameters ps and pω satisfy

ps >

(
JmL2

sr

4BrLrRsµ
|λr?|2

)
pω. (26)

Once we have solved the SIDA–PBC matching equations, the design is
completed computing the controller which in this case is given as the static
feedback control

u =Rrir + (ωs − ω)J (Lsris + Lrir)

−ks(Lsĩs + Lsr ĩr)− kr(Lsr ĩs + Lr ĩr) + kωJ λsω̃ (27)

where kr > 0, kω > 0 and ks >
L2

sr

4BrLrµ |λr?|2kω. Considering this control law,
the equilibrium z? is globally exponentially stable.

In spite of the remarkable stability properties of the proposed scheme, it
can be seen that (27) has an strong dependence on Rr, which is in general
an uncertain parameter. With the aim of robustifying this control law it is
possible to develope an adaptive version in the following way.

Replacing (27) by

u =(ωs − ω)J (Lsris + Lrir)

−ks(Lsĩs + Lsr ĩr)− kr(Lsr ĩs + Lr ĩr) + kωJ λsω̃ + R̂rir, (28)

where R̂r is an estimate of Rr that we have to generate on-line, we define the
parameter error R̃r = R̂r −Rr. The closed-loop system has the form

ż = F∇Hd + R̃rBir,

where B = [O2×2, I2, O1×2]
T .

To complete the design we propose a Lyapunov function

W (z, R̃r) = Hd +
1

2ka
R̃2

r

where ka > 0 is the adaptation gain. Its derivative yields, selecting ˙̃Rr =
−ka(∇Hd)>Bir, that

Ẇ = −(∇Hd)>F∇Hd ≤ 0,

which proves the stability of the adaptive system. The resulting adaptation
law is
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˙̃Rr = −ka(Lsr ĩs
> − Lr ĩr

>
)prir.

The usefulness of the controller (27) was illustrated by some simulations
using the DFIM parameters of [1]. The controller parameters were selected as
ks = 1000, kr = 100 and kω = 0.01. In Figure 3 we compare the speed behavior
of the new SIDA-PBC with the IDA–PBC reported in [1]—that shapes only
the electrical energy. As can be noticed, SIDA–PBC achieves a much faster
speed response.

To evaluate the adaptive controller (28) the same experiment as before
was repeated but now varying the rotor resistance parameter Rr. At t = 0.5s
the value of Rr of the model is smoothly increased to Rr = 0.02, simulating
temperature effects. Figures 4 and 5 show the estimation behavior of R̂r and
the dynamics of the mechanical speed, respectively.The convergence of the
estimated value of R̂r to the real value (Figure 4) ensures that the performance
of the ideal system is recovered (Figure 5).
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Fig. 3. Mechanical speed, ω, for SIDA–PBC (continuous line) and IDA–PBC
(dashed line).

5 Conclusions

We have presented an extension of the highly successful IDA-PBC method-
ology, called SIDA–PBC, where the energy–shaping and damping injection
tasks are not performed sequentially, but simultaneously. In this way we en-
large the class of systems that can be stabilized using PBC and, furthermore,
through the consideration of a broader set of desired damping matrices, we
provide the designer with more tuning knobs to improve performance.

This new idea has been applied to solve the long standing problem of
IDA–PBC of induction motors, that turns out to be unsolvable with a two
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stage design. Also, by avoiding the classical nested–loop control configura-
tion prevalent in electromechanical systems, we have been able to improve
the mechanical response of a DFIM, working both as a motor and a genera-
tor. Experimental validation of the two control algorithms is currently being
terminated and will be reported in the near future.
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