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Demonstration of the Internal Model Principle
by Digital Repetitive Control of an
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Ramon Costa-Castelló, Member, IEEE, Jordi Nebot, and Robert Griñó, Member, IEEE

Abstract—A key topic in classical control theory is the Internal
Model Principle (IMP). A particular case of the IMP for tracking
periodic references or attenuating periodic disturbances in closed-
loop control systems is a technique called repetitive control. This
paper proposes and describes an educational laboratory plant to
show the students the advantages of repetitive controllers in sys-
tems with periodic references or disturbances. The plant has been
designed to be low cost, easy to build, and subject to periodic dis-
turbances with a clear physical explanation. More specifically, it
consists of a pulsewidth modulation (PWM) electronic amplifier,
a small dc motor, and a magnetic setup that generates a periodic
load torque under constant mechanical speed operation. The con-
trol objective for the closed-loop control system is to regulate the
mechanical speed to a constant value in spite of the periodic load
torque disturbance. In order to accomplish this performance spec-
ification, a detailed design of a digital repetitive controller is pre-
sented, and some basic experimental results are provided to prove
its good behavior. The paper also includes some repetitive control
concepts and facts that teaching experience shows as essential to
understand the design process.

Index Terms—Digital control, Internal Model Principle (IMP),
repetitive control, tracking and disturbance attenuation.

I. INTRODUCTION

AKEY topic in classical control theory is the Internal Model
Principle (IMP) [1]. This principle states that if a certain

signal must be tracked or rejected without steady-state error, the
generator must be inside the control loop, in the controller, or in
the plant itself. Standard classical control subjects include this
concept implicitly when they introduce the system-type concept
[2]. This concept relates the structure of the open-loop system
with closed-loop tracking/rejection capabilities in steady state.
However, this type concept can only be applied to polynomial
signals (step, ramp, and parabola) whose generator has the form

in the Laplace domain.
In practice, many real systems have to handle tracking and

rejecting periodic signals. For these cases, the tracking or re-
jection of these signals cannot be solved through this type con-
cept; these must include in the open-loop transfer function of
the system the corresponding generator of the signal to track or
to reject. A well-known technique that uses the IMP concept
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Fig. 1. Mechanical load: fixed and moving permanent magnets sketch (! and
� stand for the angular speed and the disturbance torque, respectively).

to address this problem is repetitive control [3]. This technique
has been extensively used in different engineering areas, such as
CD and hard-disk arm actuators [4], robotics [5], machining [6],
electrohydraulics [7], electronic rectifiers [8], pulsewidth mod-
ulation (PWM) inverters [9], and current harmonics active filters
[10]. For these reasons, the authors think that this subject must
be part of the control engineering students curricula at senior
undergraduate level or junior graduate level.

The main idea of this paper is to show an educational lab-
oratory plant with its corresponding theoretical support to in-
troduce the IMP and repetitive control in advanced digital con-
trol courses through laboratory experimentation. Therefore, the
plant has been designed to be low cost, to be easy to build, and
to illustrate periodic disturbances with a clear and an intuitive
physical explanation. The authors know of no commercial edu-
cational laboratory plant with this kind of disturbance load.

The paper is organized as follows. Section II describes the
proposed plant. Sections III and IV introduce the basic repeti-
tive control theory as it will be taught to the students. Section V
shows the application of the described techniques to the pro-
posed plant providing design criteria and showing some exper-
imental results. Finally, some conclusions are drawn.

II. PLANT DESCRIPTION

A. Basic Idea

Systems with rotary elements are usually affected by periodic
disturbances because of the movement of these parts (e.g., elec-
trical machines or CD players). This kind of system is supposed
to be moving, in some cases, at fixed angular speed, and under
these working conditions any friction, unbalance, or asymmetry
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Fig. 2. Block diagram of the closed-loop control system.

appearing on the system generates a periodic disturbance that
affects its dynamic behavior.

From this main fact, the basic idea of the plant is to attach
a mechanism to a dc motor to generate a pulsating load torque

. In case of fixed angular speed , the selected medium to
generate the periodic load torque is the magnetic system that can
be seen in Fig. 1. As the figure shows, a bar holding a permanent
magnet in each end (each magnet magnetically oriented in the
opposite way1) rotates inside the magnetic field generated by
two permanent magnets of different polarity placed on the same
plane of the bar.

In this experimental setup, the rotation of the dc motor causes,
as a result of the interaction between fixed and moving magnets,
a pulsating load torque that depends on the mechanical angle
of the motor axis. When the motor axis angular speed is constant

, the pulsating torque is a periodic signal with a fun-
damental period directly related to the axis speed. The control
goal for this plant will be to keep the motor axis angular speed
constant, i.e., to regulate the angular speed to the desired value.
Thus, the periodic load torque will be the disturbance signal of
the closed-loop system. Then, the control problem arises as a
periodic disturbance attenuation problem with a clear physical
explanation. Since the other components of the load torque, e.g.,
viscous friction, are small, all the torque can be considered of
periodic nature, and this fact stresses the different closed-loop
behavior between loops with classical controllers (lead-lag or
PID) and loops with controllers based on the application of the
IMP, like repetitive controllers.

B. Prototype Construction

The block diagram in Fig. 2 shows the general structure of
the closed-loop control system. Apart from the magnetic and
mechanical parts commented upon in the previous section, the
closed loop includes the actuator, the feedback sensor, and the
digital controller.

The actuator consists of the dc motor, the full-bridge inverter,
and the hardware PWM. The dc motor used in this plant is a
Johnson Electric HC615L (20 W, 5 A) that supplies enough
motor torque to counteract the pulsating load torque. The pulse-
amplitude-modulated (PAM) control signal of the digital con-
troller is converted to a PWM signal using the National Semi-
conductor PWM modulator LM3524D that drives the 3-A full-
bridge inverter LMD18200.

The speed sensor consists of an optical encoder, a quadrature
decoder, and a frequency to voltage converter. The main reason

1With this arrangement, the complete bar is seen as a large permanent magnet.

Fig. 3. Picture of the main part of the plant: dc motor, optical encoder,
magnetic system (load), and supporting structure.

for using the last element is to obtain an analog signal propor-
tional to the motor axis speed. Then, a low cost analog-to-dig-
ital/digital-to-analog (A/D–D/A) conversion PC card (e.g., Ad-
vantech PCL812-PG) is used to convert the continuous time
signals to discrete time, and vice versa. The optical quadra-
ture encoder used in the plant is the two-channel 500-pulse-per-
revolution Hewlett-Packard H9730A. Its output signal is then
converted to pulse and sign format using an LSI LS7804 de-
vice that feeds the frequency to voltage converter (Burr-Brown
VFC32C). The picture in Fig. 3 shows the magnetic and me-
chanic parts, the dc motor, and the encoder arranged in their
final form.

C. Plant Behavior Without Disturbances

This section shows the results of the modeling and identifica-
tion process of the plant without the pulsating load torque, that
is, the behavior of the actuator-dc motor-speed sensor cascade
(open-loop transfer function) under no-load conditions.

The static input–output calibration curve is almost linear
over the full operation range with only a nonlinear

distortion around 0 V because of the nonlinear behavior of the
dc motor near stall condition and the dry friction phenomenon.

In order to obtain an accurate dynamic model of the
open-loop system (including power electronics, sensor chain,
and A/D–D/A conversion process), a discrete-time transfer
function was identified from experiments on the real plant
using standard methods of identification theory for ARMAX
models. The final order was selected according to the Akaike
Information Criterion [11]. The input signal used in the ex-
periments was a pseudorandom binary signal (PRBS) with an
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Fig. 4. Dynamic model validation (no-load conditions). (Top) Scaled PRBS input signal to the experimental plant and the model, experimental output, and
simulated model output. (Bottom) Error between the experimental plant output and the simulated model output.

adequate bandwidth for the system under study. The sampling
period2 was fixed to 0.005 s. The resulting transfer
function model without incorporating the dc gain is

(1)

Fig. 4 shows some validation results of this model: the upper
plot shows the real and simulated output with a PRBS input,3

and the bottom plot shows the corresponding error between
them. Although the error is correlated, its magnitude is very
small compared with the output values (less than 2% in the
worst case). The model captures the complete linear relation
between the input and the output (the complete open-loop
chain, including sensor dynamics). However, between the
input and the output, there are several nonlinear phenomena
(A/D–D/A quantization, friction, etc.) that cannot be assumed
by a linear model, and for this reason, the error in Fig. 4 appears
correlated. In addition, since the sampling period is small, all
the dynamic modes are relevant, giving a high-order model.

D. Plant Behavior With Disturbances

If no disturbances are introduced in the system when a voltage
is applied to the motor, it rotates at a certain constant velocity
in steady state. When the fixed magnets are introduced in the

2The selected value of the sampling period will be justified hereafter.
3The PRBS signals used in the validation process are different from the ones

used in the identification process.

system, the interaction among them and the moving ones intro-
duces a periodic disturbance in the system so that it cannot keep
the velocity constant. Instead, its velocity describes a periodic
function that can be observed in the power spectrum of Fig. 5,
showing the typical shape of a periodic signal. The period of this
function depends on the input voltage (angular speed).

E. Programming Environment

In order to implement the controllers, one must use a plat-
form that allows closure of the loop at high frequency. This kind
of performance could be obtained through the use of a digital
signal processing (DSP) system or by using a real-time oper-
ating system (RTOS). The second option has been selected be-
cause special programming skills are not required. In this paper,
RTLinux has been selected; this RTOS is programmed using
standard POSIX (portable operating system interface) system
calls [12] and a standard PC platform working under the Linux
operating system.

To simplify the development and test, the real time controls
laboratory (RTIC-lab) environment [13] has been used. Within
this environment, the user is only in charge of defining the
controller in standard C language, while RTIC takes care of
handling the real-time implementation and the information
exchange between Linux and RTLinux. In addition, once the
experiments have been placed, RTIC allows one to obtain an
ASCII file with experimental data. These data can be analyzed
through any standard numerical package, such as MATLAB,
Octave, or Scilab.
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Fig. 5. System output with magnetic load (constant input control = 0.7 V): angular speed versus time and corresponding power spectrum.

Fig. 6. Basic structure for a continuous-time repetitive loop.

III. REPETITIVE CONTROL BASICS

A periodic signal (with period ) can be developed in
Fourier series as

(2)

Then, by the IMP, the following transfer function should be in-
cluded in the control loop:

(3)

which can be stated in closed form [14] as

(4)

Because is a delay term with a gain , it will
be enough to include inside the control loop.
This transfer function can be implemented as a positive feed-
back loop with in the feedback path (Fig. 6).

From a frequency point of view, the transfer function in (4)
has the property of infinity gain at frequencies .
This property assures zero-error tracking at these frequencies
in closed loop. Some works relate repetitive techniques with
control-learning techniques [14]. Therefore, the basic repetitive
structure learns a signal of length and repeats it as a period-
ical signal of period if the input to the system is set to zero
(Fig. 6).

The implementation of a time delay in continuous time is a
complicated matter. Fortunately, this implementation in discrete
time is an easier task. Thus, the transfer function that should be
included in the loop is

(5)

where , and is the sampling time. In
addition to the constraint in the relation between the signal pe-
riod and the sampling period, the discrete-time implementations
can only cancel those harmonics that are below the Nyquist fre-
quency .

IV. CONTROLLER STRUCTURE AND STABILITY ANALYSIS

Repetitive controllers are usually implemented in a “plug-in”
fashion; that is to say, the repetitive compensator is used to
augment an existing nominal controller (Fig. 7). This
nominal compensator is designed so that it stabilizes the plant
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Fig. 7. Closed-loop control system block diagram with the “plug-in” repetitive controller.

Fig. 8. Alternative block diagram for the closed-loop control system in Fig. 7.

and provides disturbance rejection across a broad
frequency spectrum. This scheme also introduces a filter
in charge of improving robustness and a filter in charge
of assuring closed-loop stability. The closed-loop stability of
this system could be studied by analyzing the closed-loop poles
or the Nyquist plot of the corresponding open-loop transfer
function. Although the closed-loop poles could be characterized
[15], the authors preferred to follow the original stability proof
in [16]. By algebraic manipulation, the block diagram in Fig. 7
can be redrawn as shown in Fig. 8. This new system consists
of the cascade connection of three systems whose stability can
be studied in a decoupled way. To prove the equivalence of the
systems of Figs. 7 and 8, the second system will be obtained
from the first one. The relation between the error signal
and the reference and disturbance can
be obtained from the analysis of Fig. 7.

(6)

By multiplying numerator and denominator by ,
this equation can be rewritten as4

(7)

Defining , multiplying numerator and denominator
by , and simplifying, the previous equation can be
rewritten as

(8)

4The dependency on z has been eliminated in order to improve compactness.

As previously stated, and shown in Fig. 8, the system can be
written as three systems connected in cascade.

Once the equivalence has been shown, one must establish
under which conditions each block in Fig. 8 is stable. The
first block is nothing more than a filter and
a time delay. is usually a finite-impulse response (FIR)
filter; under this assumption, the first system is always stable.
The second one has as denominator which has
the same roots as the closed-loop system without repetitive
controller; thus, it should be stable by construction (first
stability condition). Finally, the third one can be described
as a positive-feedback closed-loop system with the term

in the feedback
path. A sufficient condition for the stability of this loop is

(9)

This condition can be interpreted in the context of the Small
Gain Theorem, and it can be split into two additional conditions.

• Second stability condition:

(10)

Since is a designed filter, this condition introduces
some constraints over this filter.

• Third stability condition:

(11)

where should be designed to fulfill this condition.
These three stability conditions are an easy way of designing

repetitive control systems. Therefore, this relatively simple sta-
bility study can be easily introduced to students.

V. CONTROLLER DESIGN

In this section, the design procedure of a repetitive controller
from the plant presented in Section II will be described. An
important step is to select the sampling period. This selection
is carried out according to several criteria. The first one is to
have enough samples in transient response. From experimental
results, the plant time constant has been established as
0.135 s. One condition that is usually used is the selection of a
sampling time that is ten times lower than the lowest time con-
stant ; therefore, should be less than 0.01 s.
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Fig. 9. Closed-loop frequency response (k = 0:2): gain (decibels) versus frequency.

Fig. 10. Experimental closed-loop step response (with the repetitive “plug-in” controller) for the system under no-load condition.

As introduced in previous sections, the sampling period
should be a submultiple of the disturbance fundamental period

. In this paper, the authors are
interested in developing a controller that allows the system to
turn at a constant speed of 8 rad s . This constancy will
generate periodic disturbances with the fundamental period

0.125 s. The selection of must be large enough so
that the sampled-data disturbance can approximate the con-
tinuous-time one. In this paper, the authors have determined
that 25 would be adequate for this system. Taking into
account this condition and the previous one, a sampling period
of 0.005 s has been selected.

To conclude the design, one must establish , and
to fulfill the three stability conditions. should be de-

signed in order to fulfill the first stability condition and to assure
closed-loop stability without the repetitive controller. The plant
is open-loop stable and is in closed loop. According to simplicity
criteria, has been selected.

should fulfill the second stability condition; in this
paper, two different approaches will be used. In the first
one, is selected; thus, no filtering is introduced.
In the second one, a low-pass null-phase FIR filter is used

.5 No causality problems exist
because the filter is in cascade with an periods delay. This
filter allows for the reduction of gain at those frequencies at
which uncertainty exists, but unfortunately it slightly moves
the closed-loop pole positions in plane.

A common approach to design is using
. Unfortunately, this approach cannot

be applied to nonminimum-phase plants like this one because
forbidden cancellations would appear in the open-loop transfer
function construction, and then the system would no longer be
internally stable. Another approach is to cancel minimum-phase

5To assure unitary gain at dc frequency the parameters must fulfill the con-
straint q + 2 � q = 1.
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Fig. 11. Experimental closed-loop step response for the system with the magnetic load: without (left) and with (right) H(z) filter, and k = 0:1 (top) and
k = 0:4 (bottom). For each case, the top figure shows the reference and output signals, and the bottom figure shows the corresponding control effort. The vertical
bar indicates the introduction of the “plug-in” repetitive controller.

zeros and compensate the phase for the non-minimum-phase
ones [17]. In this approach, has the shape

(12)

where
. The roots of are non-min-

imum-phase zeros, the roots of are minimum-phase
zeros, and . Again,
the controller causality has no problem because it is in cascade
with several delays.

With this controller, the third stability condition can be
rewritten as

Since has null phase, should belong to
in order to fulfill the condition. The final value of

should be fixed, noting the tradeoff between robustness and
transient response [18].

Fig. 9 shows the closed-loop frequency response of the
system. For a value of (with ), one can see
that the closed-loop system has unitary gain at the disturbance
fundamental frequency, and all of its harmonics are within
the closed-loop system bandwidth. This fact assures that the
system will be able to reject the disturbance.

The complete controller has been experimentally validated in
the plant. In Fig. 10, the closed-loop system step response can be
seen when permanent magnets are not present; therefore, there
is no periodic disturbance (the experiment has been completed
for and several values of ). One can observe that
the system time response is slower than the original one, and
the system has complex dynamics behavior because of the high-
order controller. One can also see that high values of increase
system time response. For all values of , the system has no
steady-state error because of the open-loop pole placed in
by the repetitive controller.

Fig. 11 shows the experimental closed-loop step response for
the system under periodic disturbance for several values of
and . The system output and control action are shown for
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each experiment. One can see that in all cases, the system con-
verges to the desired value without steady-state error after en-
tering the repetitive “plug-in” controller at time 2 s (see vertical
bar in Fig. 11). However, for and without , some
oscillations appear. These oscillations are related to the control
action saturation and the high gain introduced at high frequen-
cies where model uncertainties are relevant. These problems can
be minimized through the use of a filter which reduces
gain at the high-frequency band.

VI. CONCLUSION

This paper has presented the description of a low-cost educa-
tional laboratory plant designed to show the application of the
IMP and, in particular, the digital repetitive control technique
that is based on it. The plant is easy to build with inexpensive
elements, and the magnetic setup generates, under speed regula-
tion, a periodic disturbance which shows clearly the advantages
of the repetitive controllers over the usual undergraduate-level,
classical-control course controllers.

In addition, the basic aspects of repetitive control are pre-
sented and applied to the designed plant to show a practical way
to teach them. The repetitive controller is designed in the usual
plug-in manner with detail of all the design steps involved. This
approach shows a systematic way of designing this class of con-
trollers and facilitates its use for the students. Besides, experi-
ence shows that, by comparing these results with the ones ob-
tained while using classical controllers, the students acquire a
deep understanding of the IMP meaning.
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