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Abstract 

This paper is devoted to the study of the feedback passivity property in nonlinear discrete-time 
systems. The relative degree and zero dynamics of the non-passive system are related to the 
feedback passivity of the system. Two main results are presented. First, some relative degree-
related properties of passive systems in general form are stated. Second, sufficient conditions in 
order to render a multiple-input multiple-output (MIMO) system passive by means of a static state 
feedback control law are obtained. 
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1. Introduction, motivations 

The study of dissipativity-related concepts in the nonlinear discrete-time setting is an interesting 
field in which many problems remain unsolved. This is the case of the problem of rendering 
nonlinear discrete-time systems dissipative (passive) by means of a static state feedback control 
law or the study of the relative degree properties of nonlinear discrete-time dissipative (passive) 
systems. 

The action of rendering a system dissipative (passive) by means of a static state feedback is known 
as feedback dissipativity (feedback passivity or passification). Systems which can be rendered 
dissipative (passive) are regarded as feedback dissipative (feedback passive) systems. In this paper, 
the feedback passivity problem is considered for MIMO nonlinear discrete-time systems in general 
form. Sufficient conditions for this class of systems to be feedback passive are obtained by means 
of the relative degree and zero dynamics of the original system. These results are also rewritten for 
those systems which are affine in the input. 

This paper follows the same approach given in Byrnes and Lin 1993 and Byrnes and Lin 1994, Lin 
(1993) and Navarro-López and Fossas-Colet (2002) in the sense that the feedback passivity 
problem is based on the properties of the relative degree and zero dynamics of the non-passive 
system, with the difference that in Byrnes and Lin 1993 and Byrnes and Lin 1994, Lin (1993) and 
in Navarro-López and Fossas-Colet (2002) the problem of feedback losslessness and the problem 
of feedback passivity is treated, respectively, for affine-in-input nonlinear systems with the 
restriction of considering storage functions V such that V(f(x)+g(x)u) are quadratic in u. Therefore, 
the results here presented can be considered as an extension to the passivity general case of those 
given in Byrnes and Lin (1994) and Navarro-López and Fossas-Colet (2002). In addition, the 
feedback passivity methodology presented in this paper is an alternative to those proposed in 
Navarro-López (2002), Navarro-López, Sira-Ramírez, and Fossas-Colet (2002b) and Navarro-
López, Fossas-Colet, and Cortés (2002a). In Navarro-López (2002), Navarro-López et al. (2002b) 
and Navarro-López et al. (2002a), the feedback dissipativity problem is treated for single-input 
single-output (SISO) nonlinear discrete-time systems which are non-affine in the states and the 
control input. Furthermore, the conditions proposed in these works are different in essence to those 
given here; the methodologies presented in Navarro-López (2002), Navarro-López et al. (2002b) 
and Navarro-López et al. (2002a) are based on the basic dissipativity inequality. In Navarro-López 
(2002), the discrete-time version of the speed-gradient algorithm is used. Two methodologies of 
approximate type are given in Navarro-López et al. (2002a), the underlying idea is that the control 
which makes the system dissipative is based on the control that makes the storage energy function 
V invariant or on the control that renders the system lossless. 

Conditions for a system to be feedback passive can be obtained by means of the properties of the 
relative degree and the zero dynamics of the system. This idea is inherited from the continuous-
time setting, where the study of the properties of the relative degree and zero dynamics of a passive 
system has played an important role in understanding problems such as feedback passivity or the 
stabilization of passive systems (see Byrnes, Isidori, & Willems, 1991). As the passivity property is 
an input–output property, the relative degree and zero dynamics of a passive system will present 
distinctive features. For general discrete-time systems, the implications of dissipativity and 
passivity in the relative degree and the zero dynamics have not been established yet; they have, 
however, been studied for the losslessness and passivity nonlinear affine-in-input case (see Byrnes 
& Lin, 1994; Navarro-López & Fossas-Colet, 2002, respectively) and the passivity linear case (see 
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Byrnes & Lin, 1994; Monaco & Normand-Cyrot, 1999). In this paper, the properties of the relative 
degree and the zero dynamics of passive nonlinear discrete-time systems in general form will be 
related to the feedback passivity property. 

The paper is organized as follows. Section 2 revisits the basic definitions about passive systems for 
the discrete-time case. Section 3 is devoted to the properties of the relative degree and zero 
dynamics of passive nonlinear discrete-time systems. Section 4 deals with the feedback passivity 
problem through the relative degree and zero dynamics properties. In addition, the results given are 
rewritten for the affine-in-input case. Conclusions and comments on future works are given in the 
last section. 

2. Basic definitions 

This section introduces some basic definitions concerning the notions of passivity in the discrete-
time setting. These concepts are an adaptation of those given in the continuous-time case (Willems, 
1972). 

Let a system of the form 

x(k+1)=f(x(k),u(k)),   (1a) 

y(k)=h(x(k),u(k)),   (1b) 

where  and are smooth maps, and . Let 
 be a fixed point of the system. There is no loss of generality in considering  

f(0,0)=0 and h(0,0)=0. 

 
 
Definition 1.  A positive definite function  such that V(x)=0⇔ x=0 is addressed as 
storage function. 

From now on, det(Hess(V(x))|x=0)≠0 is assumed. 

 
 
Definition 2.  System ((1a) and (1b)) is said to be locally passive if there exists a storage function V 
such that 

    (2) 

with  a neighbourhood of x=0, u=0. 

 
 
Lemma 3.  Let a system of form ((1a) and (1b)) be locally passive. Then, there exists a storage 
function  such that the functions , : 

φ1(x,u)=V(x)+hT(x,u)u−V(f(x,u))   (3) 

φ2(x,u)=V(x)+hT(x,u)u 

have a local minimum at x=0, u=0. 
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Proof.  : 

V(x)+hT(x,u)u ≥ V(x)−V(f(x,u))+hT(x,u)u ≥ 0. 

The first inequality is due to the positiveness of V. The second one to the local passivity of the 
system. Then, φ2(x,u) ≥ φ1(x,u), . Since φ1(0,0)=φ2(0,0)=0, φ1 and φ2 attain a local 
minimum at x=0, u=0.  

 
 
Definition 4.  Let  be a smooth function. A nonlinear static state feedback 
control law u=η(x,v) is regular if for all  it follows that ∂η/∂v is invertible. The 
system x(k+1)=f(x(k),η(x(k),v(k))) is referred to as the feedback transformed system. 

 
 
Definition 5.  Consider system ((1a) and (1b)) and assume that there exists a storage function V(x). 
The system is said to be locally feedback passive if there exists a regular static state feedback 
control law of the form u=η(x,v), with v as the new input, defined in a neighbourhood  of 
x=0,v=0, such that the feedback transformed system is locally passive. 

 

3. Relative degree and zero dynamics of passive nonlinear discrete-time systems 

In this section, the relative degree and zero dynamics of nonlinear passive discrete-time systems are 
analysed. 

The relative degree and zero dynamics for nonlinear discrete-time systems have been studied for 
systems with outputs independent of the inputs (see Monaco and Normand-Cyrot 1987 and 
Monaco and Normand-Cyrot 1988). This paper focuses on systems with outputs dependent of the 
inputs. The definition for relative degree is the same as that given in Byrnes and Lin (1994). 
 
Definition 6.  A system of form ((1a) and (1b)) is said to have local relative degree zero for all the 

outputs at x=0, u=0 if   is non-singular. 

 
 
Definition 7.  Consider system ((1a) and (1b)). Let  and  be neighbourhoods of x=0 and u=0, 
respectively, such that , . Consider  the control which makes 
h(x,u*(x))=0. The zero dynamics of the system is defined in  by the map f*(x)=f(x,u*(x)). 
 
Definition 8.  A system of form ((1a) and (1b)) has locally passive zero dynamics if there exists a 
storage function V locally defined in a neighbourhood  of x=0 in such that 

       (4) 
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with u* as given in Definition 7. 

The properties of the relative degree and zero dynamics of locally passive systems of form ((1a) 
and (1b)) are established as follows: 

 
 
Proposition 9.  Let system ((1a) and (1b)) be locally passive. Then, 

(i) if ∀ j=1,…,m, there exists i∈{1,…,n}, such that , then the system has local 

relative degree zero at x=0, u=0. 

(ii) If the system has local relative degree zero at x=0, u=0 then the zero dynamics of system ((1a) 

and (1b)) locally exists at x=0 and is locally passive. 

 
 
Proof.   

(i) Since the system is locally passive, there exists a storage function V(x)>0 such that 

V(x)=0⇔ x=0 and 

    (5) 

From Lemma 3 function φ2 has a local minimum at x=0, u=0. Consequently, the eigenvalues of the 

Hessian matrix of φ2 at x=0, u=0 must be positive or zero. This condition will now be checked. The 

Hessian matrix of φ2 at x=0, u=0 takes the following form: 

   (6) 

 

By linear changes of coordinates  and  , Eq. (6) is rewritten as 

   

  (7)  
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where  and D1, D2 stand for the diagonal matrices 

,  respectively, evaluated at  By hypothesis, V has 

a local minimum at x=0 and det(Hess(V(x))|x=0)≠0. Furthermore, Sylvester's condition applied to the 

minor of the Hessian matrix of φ2 corresponding to  yields 

    (8) 

 

where λ1,…,λn are the eigenvalues of D1 and the hat symbol denotes that the term is not present. 

Since ∃ i∈{1,…,m} such that 

 

the function  must be different from zero; otherwise, (8) would be strictly negative. 

Note that conditions 

 

and 

 

are equivalent. 

(ii) If the system has locally relative degree zero at x=0, u=0, it follows that,  is non-

singular and h(0,0)=0, then by the implicit function theorem, there exists  with , 

 neighbourhoods of x=0 and u=0, respectively, such that h(x,u*(x))=0,  and the set 

 is not empty. Consequently, the zero dynamics of system ((1a) and 
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(1b)) locally exists in a neighbourhood of x=0 in . As system ((1a) and (1b)) is locally passive, 

relation (5) is met. Setting u=u* relation (5) yields relation (4).  

 
 
Remark 10.  If there exists a storage function V such that the zero dynamics of a system is locally 
passive, the system does not have to be locally passive with the same storage function. On the 
contrary, if there exists a storage function V such that the system is locally passive, then the zero 
dynamics of the system is locally passive for the same storage function V, see Proposition (9). 
 
Remark 11.  The hypothesis in Proposition (9.1) is necessary. There are SISO systems of form 
((1a) and (1b)) with relative degree zero at x=0, u=0 which are locally passive and 

 

is singular. For instance, 

x(k+1)=ax(k)+bu2(k), 

y(k)=h(x(k),u(k))=u3(k), 

where  and a2+b2<1. Consider V(x)=x2; then, the system is locally passive. Namely, the 
function 

 

has a local maximum at x=0, u=0 for some neighbourhood of x=0, u=0. Nevertheless, 

 

 

4. The feedback passivity problem 

This section is devoted to rendering a system of form ((1a) and (1b)) passive by means of a static 
state feedback control law. 

The following Lemma is introduced for the sake of clarity. 

 
 
Lemma 12.  If λi>0, ∀ i=1,…,n, then there exists ks>0 such that ∀ k∈  (0,ks) 
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     (9) 

 

 
 
Proof.  The determinant can be written as 

D=kn(2sλ1…λn+α1k+ +αsks), 

where αj are constants related to λi, ail, brl, with j=1,…,s, i=1,…,n, r=1,…,s, l=1,…,s.  Then, taking 

 

with , it is concluded that 

 

 
 
Theorem 13.  Let a system of form ((1a) and (1b)) with locally passive zero dynamics and local 
relative degree zero at x=0, u=0. Consider V as the storage function on the zero dynamics. Assume 
that det(Hess(V(x)−V(f(x,0)))|x=0)≠0, then the system is locally feedback passive. 

 
 
Proof.  Since rank((∂h(x,u))/∂u)=m in a neighbourhood of x=0, u=0 and h(0,0)=0, the implicit 
function theorem applied to h(x,u)=v guarantees the existence of a function η(x,v) defined in a 
neighbourhood of x=0, v=0 such that h(x,η(x,v))=v. Thus, system ((1a) and (1b)) can be rewritten as 

   (10) 

The goal is to prove that system (10) is locally passive at x=0, v=0 with respect to the new input 
variable v. Note that the zero dynamics is defined by 
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By hypothesis, there exists a storage function V(x) in a neighbourhood of x=0 for which 

    (11) 

 

Let  with k>0 a constant. It will be shown that, for an appropriate k, 

 

in a neighbourhood of x=0, v=0. This is equivalent to proving that the function 

 

has an isolated local minimum at x=0, v=0.  Since V(x) has an isolated local minimum at x=0, 
φ(x,v) has a critical point at x=0, v=0. Namely, the partial derivatives are 

 

 

with i=1,…,n, r=1,…,m.  In order to obtain the Hessian matrix of φ(x,v) at x=0, v=0, the following 
terms are computed: 

 

with , h=1,…,n, l=1,…,n, i=1,…,n, j=1,…,n, r=1,…,m, s=1,…,m. δrs 
is equal to one if r=s, and otherwise zero. Note that 

    (12) 

where . Furthermore, matrix (12) is symmetric, thus it can be diagonalized by an 
appropriate linear change of coordinates. The eigenvalues of (12) are positive because  has a 
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local minimum at x=0 and the determinant of the Hessian matrix at x=0 is different from zero by 
hypothesis. In the new coordinates, the Hessian matrix of φ(x,v) evaluated at x=0, v=0 is 

    (13) 

 

with λi, i=1,…,n the eigenvalues of matrix (12). The first n diagonal leading minors are positive 
since λi>0, ∀ i=1,…,n. Furthermore, using Lemma 12, it is obtained 

 

∀ k∈  (0,ks). Finally, consider and . Then, by applying Sylvester's test to 
(13), φ(x,v) has a strict local minimum at x=0, v=0.  To conclude with, the existence of a new 
storage function for the feedback transformed system to be locally passive at x=0,v=0 has been 
shown.  
 
Remark 14.  In Theorem 13, the condition of local relative degree zero of the system is essential in 
order to prove the existence of a control which passifies the system. If this condition was removed, 
the feedback passivity of the system would not be assured. 

 

 
Corollary 15.  Consider a system of the form 

x(k+1)=f(x(k))+g(x(k))u(k),          (14a) 

y(k)=h(x(k))+J(x(k))u(k),      (14b) 

where , , f, g, h, J are smooth maps and , , 
, f(0)=0, h(0)=0. Let 

u=α(x)+β(x)v     (15) 
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be a static state feedback control law with α(x) and β(x) smooth functions such that α(0)=0 and β(x) 
is invertible for all . Consider V a storage function on the zero dynamics and assume that 
det(Hess(V(x)−V(f(x)))|x=0)≠0. If system ((14a) and (14b)) has locally passive zero dynamics and 
local relative degree zero at x=0, then the system is locally feedback passive by means of a regular 
feedback control law of form (15). 

 

5. Conclusions 

The characteristics of the relative degree and zero dynamics of discrete-time nonlinear systems in 
general form have been related to the feedback passivity property. These characteristics have been 
used to give sufficient conditions to render systems of this class passive by means of a static state 
feedback control law. The conditions given for the general case have been rewritten for nonlinear 
systems which are affine in the control input. The relative degree and zero dynamics properties of 
passive systems have also been given. 

All these results can be considered as the extension to the passivity general case of those given in 
Byrnes and Lin 1993 and Byrnes and Lin 1994, Lin (1993), Navarro-López and Fossas-Colet 
(2002) where the feedback losslessness (Byrnes and Lin 1993 and Byrnes and Lin 1994; Lin, 1993) 
and feedback passivity (Navarro-López & Fossas-Colet, 2002) problems are treated for affine-in-
input nonlinear systems requiring V(f(x)+g(x)u) to be quadratic in u. 

There is a great variety of dissipativity-related problems remaining unsolved in the discrete-time 
setting. Feedback dissipativity is an appealing problem to be solved in order to give desirable 
energy-like properties to systems whose output does not depend on the input. The analysis of the 
relative degree and zero dynamics of dissipative systems would be required for this purpose. 
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