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Abstract. The Response Time Variability Problem (RTVP) is a combinatorial NP-
hard problem which has a wide range of real-life applications. It has recently 
appeared in the literature and has therefore not been widely discussed to date. The 
RTVP has been solved in other works by mixed integer linear programming (for 
small instances) and heuristics, but metaheuristic procedures have not previously 
been used. In this paper, a solution to the RTVP by means of multi-start, GRASP 
and PSO procedures is proposed. We report on our computational experiments and 
draw conclusions. 
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Introduction 

The Response Time Variability Problem (RTVP) consists in sequencing a list of 
products, events, clients and jobs in such a way that the variability in the time they 
spend waiting for their next turn to obtain the resources they need is minimized. This 
problem has recently been defined in the literature and to date very few papers have 
been published on the subject [1], [2], [3]. 

Corominas et al. [2] have proved that the RTVP is a combinatorial NP-hard 
problem and, with the exception of a few special cases, they have in fact found an 
optimum solution to the problem only for small instances. Therefore, solving the 
problem by means of heuristic and metaheuristic procedures is entirely justified. In this 
paper, a solution to the RTVP is put forward by applying the following three 
procedures: multi-start, GRASP (Greedy Randomized Adaptive Search Procedure) and 
PSO (Particle Swarm Optimization). 

The multi-start method is based on generating initial random solutions and on 
improving each of them to find a local optimum, which is usually done through a local 
search procedure. 

GRASP, designed by Feo and Resende [5] in 1989, can be considered to be a 
variant of the multi-start method in which the initial solutions are obtained using 
directed randomness. They are generated by means of a greedy strategy in which 
random steps are added and the choice of the elements to be included in the solution is 
adaptive. 
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PSO is a metaheuristic procedure designed by Kennedy and Eberhart [6] in 1995. 
The original algorithm was designed for working with continuous functions of real 
variables and has obtained good results. Furthermore, it has recently been adapted for 
the purposes of working with combinatorial problems such as the travelling salesperson 
problem [7] or the flowshop problem [8]. In spite of these good results, there are not 
many PSO methods for solving combinatorial optimization problems. 

The remainder of this paper is set out as follows: Section 1 presents a formal 
definition of the RTVP; Section 2 briefly describes the methods used and how they 
were adapted to solve the RTVP; Section 3 explains how the values for the 
metaheuristic parameters were established; the computational results are shown in 
Section 4; and finally, the conclusions are put forward in Section 5. 

1. Response Time Variability Problem (RTVP) 

The Response Time Variability Problem occurs whenever products, clients or jobs 
need to be sequenced so as to minimize variability in the time between the instants at 
which they receive the necessary resources. 

The RTVP occurs in a wide range of real-life applications. For example, it is a 
common occurrence in the automobile industry in the sequencing of models [9] and in 
the Asynchronous Transfer Mode (ATM) when multimedia systems need to broadcast 
video or sound at a specific time [10]. 

These kinds of situations are often considered to be distance-constrained 
scheduling problems, in which the distance between any two given consecutive units of 
the same product is bounded. However, in the RTVP the aim is to minimize variability 
in the distances between any two consecutive units of the same product and to find a 
feasible solution that optimizes this objective. 

The RTVP is formulated as follows. Let n be the number of products, di the 
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For example, let 3=n , 2=Ad , 2=Bd  and 4=Cd ; thus, 8=D , 4=At , 4=Bt  
and 2=Ct . A feasible solution is the sequence (C, A, C, B, C, B, A, C) where 
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Corominas et al. [2] proved that the RTVP is NP-hard. The RTVP was optimally 
solved by means of mathematical programming, up to 40 units [3], and by means of 
heuristic procedures plus local optimization [2]. 

2. Multi-start, GRASP and PSO metaheuristic methods 

2.1. Multi-start method 

The multi-start method consists in generating random solutions, applying local 
optimization methods and preserving the best results. 

The pseudocode of the adaptation of the multi-start method is 
 
1. Let the value of the best solution found be ∞=Z . 
2. While (actual time < execution time), do: 
3.  Get a random initial solution X 
4.  Apply the local optimization to X and get X’ 
5.  If value (X’) < Z , then Z = value (X’) 
 
Random solutions are generated as follows. For each position from 1 to D in the 

sequence, we randomly obtain which product will be sequenced with a probability 
equal to the number of units of that type of product that remain to be sequenced divided 
by the total number of units that remain to be sequenced. 

The local optimization is applied as follows. A local search is performed iteratively 
in a neighbourhood that is generated by interchanging two consecutive units; the best 
solution in the neighbourhood is chosen; the optimization ends when no neighbouring 
solution remains that is better than the current solution. 

2.2. Greedy Randomized Adaptive Search Procedure (GRASP) method 

Like the multi-start method, GRASP consists in generating solutions, applying local 
optimizations and preserving the best results. However, the generation of solutions is 
performed by applying a heuristic with directed randomness, which is usually a random 
variation of a simple greedy heuristic. At each stage in the heuristic, the next product to 
be added to the solution is randomly selected from a list of candidates with a 
probability proportional to the value of an associated index. 

The pseudocode of the GRASP adaptation is almost the same as that of the multi-
start method: the only difference is the way in which the initial solutions are obtained, 
which is as follows. For each position from 1 to D in the sequence, the product to be 
sequenced is randomly selected from the candidate list with a probability proportional 
to the value of its Webster index. This index, defined in [2], is as follows: let 2

1=δ  

and let ikx be the number of units of product i that have already been sequenced in the 
sequence of length k, k = 0, 1, …; the value of the Webster index of product i to be 

sequenced in position 1+k  is 
δ+ik

i

x
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The local optimization used is the same as the optimization used in the multi-start 
method. 



The size of the candidate list was set to 5 candidates. 

2.3. Particle Swarm Optimization (PSO) method 

Kennedy and Eberhart designed the PSO metaheuristic by establishing an analogy to 
the social behaviour of flocks of birds when they search for food. Originally, this 
metaheuristic was designed to optimize continuous functions of real variables [6]. Due 
to its good performance, it has been adapted for the purposes of working with 
combinatorial problems [7], [8], [11]. 

In this kind of algorithm, the particles, which correspond to the birds, have a 
position (a feasible solution) and a velocity (the change in their position), and the set of 
particles form the swarm, which corresponds to the flock. 

At each step in the PSO algorithm, the behaviour of a particle is the result of the 
combination of the following three factors: 1) to continue on the path that it is 
following, 2) to follow the best solution found and 3) to go to the best position found 
by the swarm. The formalization of this behaviour is expressed in the following two 
equations: 

)()( 3211 tttttt XBSPcXBPcvcv −⋅⊗−⋅⊗⋅=+  (1) 
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where tv  is the velocity of the particle at time step t; tX  is the position of the particle 
at time step t; tBP  is the best position of the particle up to time step t; tBSP  is the best 
position of the swarm up to time step t; and c1, c2 and c3 are the coefficients that weight 
the importance of the three types of decision. 

The values of coefficients c1, c2 and c3 are usually fixed in advance. 
To apply the PSO algorithm to the RTVP, the elements and the operations of the 

equations (1) and (2) have to be defined. 

2.3.1. Position of the particle 

As mentioned above, a position represents a feasible solution. The position is 
represented by a D-length array that contains the sequence of D units. 

2.3.2. Velocity of the particle 

The expression (X2 – X1) represents the difference between two positions and it is the 
velocity needed to go from position X1 to X2. This velocity is an ordered list of 
transformations (called movements) that must be applied to the particle so that it 
changes from its current position to the other one. Two types of movements, each of 
which had two variations, were considered. 

The first type of movement, called M1, is a pair of values (α / j). For each position 
s in the sequence X1, a check is conducted to determine whether the unit in this position 
s is equal to the unit in position s of sequence X2. If they are different, α is the unit in 
position s of X2 and j is position s. Thus, this movement denotes that the unit in position 
j must be exchanged for the first unit that is equal to α and that is to the right of 
position s. This concept is used to solve the CONWIP problem [11]. 



The second type of movement, called M2, is a pair of positions (i, j). These values 
indicate that the units that are sequenced in positions i and j have been exchanged. 

Two examples of the movements that are needed to move to position X2 (A-B-C-
A-B-C-A-B-C) from position X1 (A-A-A-B-B-B-C-C-C) are shown below. 

 
M1: movements (B/2), (C/3) and (C/6) are needed. 
 A-A-A-B-B-B-C-C-C → (B/2) → A-B-A-A-B-B-C-C-C → (C/3) →  
 A-B-C-A-B-B-A-C-C → (C/6) → A-B-C-A-B-C-A-B-C 
M2: movements (2,4), (3,7) and (6,8) are needed. 
 A-A-A-B-B-B-C-C-C → (2,4) → A-B-A-A-B-B-C-C-C → (3,7) →  
 A-B-C-A-B-B-A-C-C → (6,8) → A-B-C-A-B-C-A-B-C 
 
There would seem to be no difference between M1 and M2, but when two 

velocities are added (see Section 2.3.4) then lists of movements that refute this may 
appear. 

The two variations for each movement are: 1) if only the type of product is used to 
compare two units (this variation is called T and it is used in examples above), and 2) if 
the unit number is used to compare two units and therefore a unit is only equal to itself 
(this variation is called F). For example, in the case of variation F, position A1-A2-A3-
B1-B2-B3-C1-C2-C3 (in which the number next to each letter is a unit identifier for 
each product) is different to position A2-A1-A3-B1-B3-B2-C1-C2-C3, but in variation 
T the two positions are equal (they appear as A-A-A-B-B-B-C-C-C). 

The difference between two positions using variation F will always be greater than 
or equal to the difference when variation T is applied. 

2.3.3. External multiplication of a coefficient by a velocity 

The coefficients c1, c2 and c3 yield values of between 0 and 1. When a coefficient is 
multiplied by a velocity, it indicates the probability of each movement that is to be 
applied. For example, if we multiply velocity [(B/2), (C/3), (C/6)] by coefficient 0.6, 
three random numbers between 0 and 1 are generated for comparison with coefficient 
0.6; if the values are 0.3, 0.8 and 0.4, then movements (B/2) and (C/6) are applied, 
whereas movement (C/3) is not. The resulting velocity of the multiplication is therefore 
[(B/2), (C/6)]. 

2.3.4. Sum of velocities 

The sum of two velocities is simply the concatenation of their own list of movements. 

2.3.5. Sum of a velocity plus a position 

The sum of a velocity plus a position gives the same result as applying each movement 
of the velocity to the position. 

2.3.6. Pseudocode of the algorithm 

1. Initiate the particles with random positions and empty velocities. 
2. While (actual time < execution time), do: 
3.        Update the best swarm position. 
4.        For each particle: 
5.  update its best position and apply the two PSO equations. 



 
The random positions are generated in the same way as the random solutions in the 

multi-start method. 
 
3. Fine-tuning the PSO parameters 
 
Adapting metaheuristics to a specific problem does not end with the definition of the 
space of solutions or the local search; moreover, it is required to set the parameters. 
The value of the parameters is vital because the results of the metaheuristic for each 
problem are very sensitive to them. To fine-tune is very expensive and it is usually 
done by intuitively testing several values. 

For the purposes of this paper, we fine-tuned the parameters using a recent 
technique called CALIBRA [12]. CALIBRA is an automatic configuration procedure 
based on statistical analysis techniques (Taguchi’s fractional factorial experimental 
designs) coupled with a local search procedure. A set of 60 representative instances 
was used to fine-tune the algorithms and a set of 740 units was used to test them. The 
four parameters to be fine-tuned were the number of particles in the swarm and 
coefficients c1, c2 and c3. The range of the values used to fine-tune the algorithms was 
[5,30] for the number of particles and [0,1] for the coefficients. CALIBRA needed 35 
hours to fine-tune each algorithm. 

4. Computational results 

As described in Section 2.3.2, depending on the type of movement (M1 or M2) and the 
variation (T or F), we have four PSO algorithms (called M1-F, M1-T, M2-F and M2-T), 
as well as the multi-start algorithm and the GRASP algorithm. 

The algorithms ran 740 instances, which were grouped into four classes (185 
instances in each class) depending on their size. The instances in the first class (called 
CAT1) were generated using a random value of D (number of units) between 25 and 
50, and a random value of n (number of products) between 3 and 15; for the second 
class (called CAT2), D was between 50 and 100, and n between 3 and 30; for the third 
class (called CAT3), D was between 100 and 200 and n between 3 and 65; and for the 
fourth class (called CAT4), D was between 200 and 500 and n between 3 and 150. 

The algorithms were coded in Java and the computational experiments were 
carried out using a 3.4 GHz Pentium IV with 512 Mb of RAM. 

Firstly, the six algorithms were run for 50 seconds for each instance. Table 1 
shows the averages of the RTV values to be minimized for each class of instances. 

 
Table 1. Averages of the RTV values to be minimized 

 PSO Multi-start GRASP 

 M1F M1T M2F M2T   

CAT1 68.79 66.83 83.14 80.93 11.33 13.90 

CAT2 445.55 509.89 604.27 517.05 48.10 91.64 

CAT3 3050.38 4335.87 4488.44 3888.79 320.63 541.52 

CAT4 28955.82 48917.80 37937.76 30029.34 79823.89 57041.74 

 



In Table 1 it can be seen that the best results for the three first classes are given by 
the multi-start method, followed by the GRASP method, whereas the PSO algorithm 
yields the worst results. However, in the case of class CAT4, in which the instances are 
largest, the order is the reverse: the four PSO algorithms yield better results than the 
GRASP method, and the multi-start method gives the worst results. The reason for this 
is that the multi-start method does not have time to locally optimize a single solution 
for 87.57% of the instances in the CAT4 class; this happens in the GRASP method for 
84.32% of the instances. 

The second computational experiment consisted in locally optimizing the solutions 
that were obtained with the PSO algorithms in the first computational experiment. The 
optimization used was the same as the multi-start optimization; it stops after 50 seconds 
if the optimization has not been completed. Table 2 shows the averages of the RTV 
values obtained for each class of instances. 

 
Table 2. Averages of the RTV values of the PSO local optimized solutions 

 M1F M1T M2F M2T

CAT1 21.61 24.43 23.61 25.65

CAT2 67.42 89.75 77.56 95.14

CAT3 229.32 406.63 302.06 427.09

CAT4 15842.12 29604.35 20560.1 15537.62

 
The results obtained using M1F for the instances in class CAT3 after local 

optimization are better than the results obtained using the multi-start method. 
Moreover, the optimization times for the first two classes are negligible and the 
average time for the third class is between 4.26 and 5.84 seconds (using M1F and M1T, 
respectively). The instances in the first three classes were all locally optimized. 
However, there was not enough time to optimize all the instances in class CAT4: only 
60 instances (32.43%) were locally optimized based on the solutions that were obtained 
using M1F. 

Finally, the six procedures were re-run for 200 seconds using the instances in class 
CAT4, which are the most difficult to solve. In the case of PSO algorithms, 100 
seconds were spent on obtaining a solution and a further 100 seconds, at the most, were 
spent on locally optimizing the previous solution. Table 3 shows the average of the 
RTV values obtained for class CAT4 (the values in parenthesis were obtained using the 
PSO algorithms before local optimization was applied). 

 
Table 3. Average of the RTV values of the CAT4 instances 

M1F M1T M2F M2T multi-start GRASP 

(24022.52) 
8782.07 

(44697.30)
21432.13

(36445.60)
14892.35

(29838.01)
11984.25 39719.71 30020.35 

 
The results show that all the PSO algorithms give better results than the multi-start 

and GRASP algorithms. In this last experiment, 97 instances (52.43%) were locally 
optimized after applying the M1F algorithm. 



5. Conclusions and future lines of research 

In this paper we have presented our solution to the RTVP (a problem that has not been 
widely researched to date), to which six algorithms were applied: one multi-start, one 
GRASP and four PSO. 

The results show that the best procedure is the multi-start for small instances 
(between 25 and 100 units and between 3 and 30 products). However, for bigger 
instances (between 100 and 500 units and between 3 and 150 products) the search 
should be more specific as the four PSO algorithms are much better than the multi-start 
and GRASP methods and the latter are better than the multi-start methods. Moreover, 
as was to be expected, there is a significant improvement in the solutions that were 
obtained using the PSO algorithm to which local optimization had been applied. 

Future research will consist in adapting new metaheuristic procedures, such as for 
example simulated annealing and tabu search. 
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