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Abstract 
 

Currently, most combinatorial optimisation problems have to be solved, if the 
optimum solution is sought, using general techniques to explore the space of feasible 
solutions and, more specifically, through exploratory enumerative procedures in 
trees and search graphs. We propose Branch and Win, a general formulation for 
understanding and synthesising the different tree search procedures that have been 
presented in the literature of operations research as well as in that of artificial 
intelligence. Several general ideas are also presented, whose application allows 
designing new hybrid search algorithms, in order to implement the procedure. 
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1. INTRODUCTION 
 
As it is known, it is very difficult to solve optimally most of the combinatorial 
optimisation problems due to their intrinsic complexity. At present, though specific 
procedures exist to solve some specific combinatorial optimisation problems, most of 
them have to be solved employing general techniques to explore the space of feasible 
solutions, and, more specifically, through exploratory enumerative procedures in trees 
and graphs of states (in the enumerative procedures, all solutions are generated and 
enumerated, explicitly or implicitly). 
 
We analyse the exploratory enumerative procedures in OR tree representations -which 
have been exposed both in the operations research and artificial intelligence (AI) 
literatures- and we propose a new meta-algorithm that we have called Branch and Win: 
a new general formulation that includes all of them. Branch and Win allows for a better 
understanding of tree search algorithms for combinatorial optimization problems, 
synthesizes the different tree search procedures that have been presented in the 
literature, assembles the different elements that are part of these search procedures and 
uses them dynamically in the tree and provides a means for developing new search 
strategies and procedures such as hybridizations of search algorithms with local search 
and metaheuristics. 
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The rest of the paper continues as follow. In Section 2 the resolution enumerative 
procedures and the existent general formulations are analysed. Branch and Win is 
formulated and described in Section 3. In Section 4 we claim the integrating character 
of Branch and Win. Several general ideas that allow designing new hybrid search 
strategies are enumerated in Section 5. Finally, some conclusions are discussed in 
Section 6. 
 
 
2. ENUMERATIVE SOLUTION PROCEDURES 
 
A great number of enumerative search procedures for solving combinatorial 
optimisation problems have appeared in the operations research literature as well as in 
the AI literature over the last few decades. Most of these search approaches have been 
described by different authors and sometimes the definitions presented are not specific 
enough to know whether they refer to a selection strategy or to a particular algorithm 
and, in this case, what other characteristics are included in the search algorithm. For 
example, the depth first search, which always explores a child node of the node most 
recently separated, exists. But an approach like the previous one has also been given the 
name of depth first search which, moreover, incorporates a procedure for grouping 
equivalent states. With the aim of unifying these techniques, general formulations have 
also been presented. 
 
But sometimes there are aspects that have not been sufficiently taken into account from 
a practical point of view. Among others: completeness of the corresponding partial 
solution, the state of the exploration graph (total number of nodes generated, amount of 
memory used, etc.), the environment conditions in which the problem is solved 
(maximum allowed computing time, maximum available memory, access time to the 
medium -RAM, hard disk, etc.- on which a node can be stored, etc.). 
 
2.1. Exploratory enumerative procedures 
 
We present a brief introduction to the relationships between diverse exploratory 
enumerative procedures for solving combinatorial optimisation problems. 
 
Most of the enumerative procedures have been increasingly employed both in 
operations research and in AI to solve real problems. Sometimes a procedure has been 
given different names being the same technique (for example, the depth first procedure 
has been called several different ways: depth first search, DFS, linear search, single 
branch search, LIFO search and vertical search). And some procedures present so many 
similarities that they could be considered redundant: in Barr and Feigenbaum (1981) 
and Kumar and Kanal (1983b), branch and bound procedures (B&B), dynamic 
programming techniques (DP) -in this work, DP is used to refer to finite-deterministic 
dynamic programming techniques- and the heuristic search procedure A* -introduced 
by Hart et al (1968)- are said to be very similar, although B&B and DP have been used 
in operations research and A* in AI (e.g., according to Barr and Feigenbaum (1981), A* 
is a best first search with an evaluation function formed by the sum of the minimal cost 
associated with reaching the node n from the root, plus a heuristic estimate of the 
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minimal cost of reaching an objective node from the node n). Furthermore the 
relationships between these classes of procedures have been rather controversial. 
 
For example, Nilsson (1980) defines the algorithm A as a procedure A* that cannot 
guarantee the optimality of the solution. While many other authors (Barr and 
Feigenbaum (1981), Korf (1990), Rich and Knight (1991)) consider that there only 
exists a procedure (A*) and it may or may not guarantee the optimality of the solution 
depending on the fulfillment or not of the admissibility property. In this case there also 
exist particular definitions of A*: Rich and Knight (1991) incorporate a procedure for 
grouping equivalent states and consider that the cost of a path is equal to its number of 
stages. Pearl (1984) considers A* as a particular Z* (a special best first search described 
in Pearl (1984)). As it is discussed by several authors (Pearl (1984) and Greenberg 
(1996) among others), if the selection strategy of the next node to be explored consists 
in minimising the depth of the node, the procedure A* is equivalent to that of the 
breadth first search; and, if it consists in minimising minus the depth of the node, the 
procedure A* is equivalent to that of the depth first search (Pearl (1984)). For Nilsson 
(1971), Barr and Feigenbaum (1981) and Pearl (1984) A* is the smallest cost first 
search procedure if there is not heuristic information. On the other hand, Rich and 
Knight (1991) discuss a larger number of possibilities. According to Greenberg (1996), 
branch and bound for integer programming is a particular case of A* in operations 
research, where the evaluation function takes the value of the objective function of the 
linear relaxation of the node (without commenting on the main characteristic of B&B: 
the pruning by a bounding test). 
 
Barr and Feigenbaum (1981) name ordered state space search to the best first search and 
specify that the breadth first, the uniform cost and the depth first are specific cases of 
this. On the other hand, Nilsson (1971) and Pearl (1984) specifically define the smallest 
cost first search (uniform cost search or cheapest first strategy), while most of the 
authors consider it a special case of the best first search. And Pearl (1984) differences 
between whether a feasible solution is only looked for (best first search strategy) and 
whether an optimal solution is looked for (algorithm that is named best first search* by 
Pearl). 
 
The relationships between B&B and DP have also been rather controversial. While 
some authors claim that DP is a more general technique than B&B, others consider that 
it is exactly the opposite. There are also those who claim that some DP techniques can 
be stated in a framework of B&B, although B&B approaches can also be presented as 
DP procedures with a bounding test -see, e.g., Marsten and Morin (1978), Kumar and 
Kanal (1983b) and Ibaraki (1988)-. 
 
It is also necessary to emphasise the existence of authors that seem to have the 
relationships between these classes of procedures clearer: “A class of algorithms similar 
to A* is used in operations research under the name of branch-and-bound algorithms”, 
Barr and Feigenbaum (1981), p. 64. 
 
The situation previously described shows that the scene of search procedures for solving 
combinatorial optimisation problems is rather unstructured, dispersed and insufficiently 
formalized. On the other hand, in the last years new search procedures have been 
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defined -branch & price (e.g., Savelsbergh (1997)), branch & cut (e.g., Hoffman and 
Padberg (1993)), branch & reduce (e.g., Ryoo and Sahinidis (1996)), branch & peg 
(Goldengorin et al (2004)), etc.- that can be integrated in well-known frameworks, as 
well as other search techniques as constraints propagation (see, e.g., Haralick and Elliott 
(1980) and Brailsford et al (1999)). This can speed up the development of new 
procedures, new names or new hybrid techniques, still complicating the current scene 
more. 
 
In Pastor (1999) and Pastor and Corominas (2000) a wide survey of enumerative search 
procedures for solving combinatorial optimisation problems is presented. In these 
works, the relationships, deficiencies and similarities between the enumerative 
procedures related in the operations research literature as well as in AI literature are 
studied and analysed; and the following conclusions are obtained: 

• There are important elements that have not been sufficiently taken into account 
from a practical point of view. For instance: total number of generated nodes, 
amount of memory used, maximum allowed computing time, maximum 
available memory. 

• Dispersion, confusion and even duplicity exist in the definitions of the 
procedures and in the terminology used. Partly this is due to the fact that these 
techniques have been used both in operations research and in AI. 

• The enumerative search procedures have got diverse common elements whose 
specification allows to obtain them. 

• As some authors present, some search procedures derive from others; but these 
derivations could be more general. 

• In the extreme case, an enumerative procedure would generate the whole state-
search, being very inefficient. To reduce the space of states three general 
reduction tactics exist: elimination of dominated states, pruning of nodes and 
detection of empty nodes. 

• The consistency techniques coming from AI can be embedded, as it is done in 
some procedures, in branch and bound frameworks -see, e.g., Bockmayr and 
Kasper (1998), who propose a common framework for constraint programming 
and integer programming called branch and infer. This connects the search 
procedures coming from both investigation areas. 

 
2.2. Generalized search procedures 
 
A general formulation whereby all of these procedures can be viewed in a unified 
manner seems advisable. This necessity has already been detected and diverse general 
search schemas have already been presented. Among all of these, we consider that some 
schemas are more general and unifying than others, and even in some formalization, as 
in Corrêa (1995), some search procedures are shown as specific cases of the proposed 
general schema. We have studied and analysed the following references: Corominas and 
Companys (1977), Kumar and Kanal (1983a and 1983b), Nau et al (1984), Ibaraki 
(1988), Tuy and Horst (1988) –who present a general B&B scheme for global 
optimisation-, Helman (1989) and Corrêa (1995). As a result, the following deficiencies 
(which affect, in a greater or smaller degree, all of them) can be enumerated (Pastor 
(1999)): 
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• On some occasions the terminology that is used is not very common in 
operations research (especially in references coming from AI). This has a 
negative impact on its understanding and practical applicability. 

• The used elements are usually presented with scarce precision. 
• Many search procedures are not considered, particularly the most recent. 
• The selection strategy of the next node to explore is usually static. 
• The following exploration elements are not generally used: Reformulation and 

pre-processing, in the original problem as well as in the partial problems. Use of 
local optimisation techniques and local search procedures, in the partial 
problems and when a new feasible solution is obtained. Calculation of new 
superior bounds (if we are minimising) in the partial problems. Use of diverse 
bounding, reformulation and reduction procedures. The environment conditions 
in which the problem is solved (maximum allowed computing time, maximum 
available memory, etc.) and the state of the exploration graph. 

 
It is necessary to emphasise that these general schemas have represented an important 
advance at that moment, for structuring and unifying diverse particular search 
procedures. 
 
 
3. BRANCH AND WIN: OR TREE SEARCH ALGORITHMS FOR SOLVING 
COMBINATORIAL OPTIMISATION PROBLEMS 
 
The conclusions shown in the previous Section, provide evidence of the necessity for 
designing a new general realistic procedure with the usual terminology in operations 
research in order to solve combinatorial optimisation problems. To meet this necessity 
we propose a new meta-algorithm that we have called Branch and Win. It is necessary 
to comment that the nearest antecedents of Branch and Win, which we have taken as 
starting point, are the general procedures presented in Companys (1975) and Corominas 
and Companys (1977). 
 
3.1. Definitions 
 
* Problem to be solved: 
 
We propose a general definition of a combinatorial optimisation problem, in which, 
after defining the value of the integer variables, a procedure exists to find an optimal 
solution to the remaining problem: 
 

[ ] ( ),OPT Z f X T=  

( ),X T S∈ , 
 
where: S is the feasible space inside the total space of solutions; X is a vector of integer 
bounded variables; T is a vector of continuous variables; and given X´ is possible to 
obtain T´, which provides the optimal solution of the problem for X´. So one of the 
more important combinatorial optimisation problems is also included: mixed integer 
linear programming. 
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The original problem to be solved can be reduced immediately to the following 
mathematical program: 
 

[ ] ( )MIN Z f X=  
X E F∈ ⊆ , 

 
where: F is the finite set of possible solutions (usually the Cartesian product of the 
domains of the variables); E is the finite set of feasible solutions; X is a solution; f: E → 
κ, with κ an ordered set (usually the integer or the continuous numbers). 
 
* Node: 
 
Let: ℘(F) the set of subsets of F; N the set of natural numbers; and Si a subset of 
solutions. We define a node Vi as follows: Vi ∈ ℘(F) x N, therefore, Vi = (Si, i). 
 
The natural number is necessary to identify the node, since the subsets of solutions 
belonging to two nodes may coincide. 
 
* Empty node and terminal node: 
 
Vi is an empty node ⇔ Si ∩ E = ∅. Vi is a terminal node ⇔ |Si| = 1. 
 
* Branching procedure: 
 
Let M0 be a primitive branching procedure. M0 makes the elements of ℘(F) with 
cardinality ≥ 2 correspond with two or more subsets of F. M0 separates the subsets of F 
without eliminating any element from ℘(F). And the following properties are true: (1) 
Y ∈ M0(S) ⇒ Y ≠ S; (2) ( ){ }0Y M S∀ ∈∪  Y = S; and (3) ∀ Y, Z ∈ M0(S) ⇒ Y ⊆  Z. 

 
Defined M0, let M be a branching procedure. M is a correspondence that associates a 
subset of (terminal or non-terminal) nodes to a non-terminal node: M consists in 
applying a M0 procedure to Si, and in assigning a natural number to the Sij generated 
from Si, so that a natural number is only assigned once. The branching procedure begins 
in the node V1 = (F, 1), the node root, and it continues in the other nodes providing an 
arborescence. The following properties are true: (1) M does not produce a loss of 
solutions, either feasible or not feasible (this result comes out of the second property of 
M0); and (2) the generated arborescence is finite: in a finite set, M carried out 
separations that generate subsets of non coincident solutions (this result immediately 
comes out of the definition of M0 and of its first property). 
 
Moreover, a terminal node is assumed to be recognisable and to be immediate to 
ascertain if it is empty or not. So, if Vi is a terminal node or has been detected to be 
empty, then this node does not have successors (term introduced in the following 
Section). 
 
* Successor or predecessor node and descendent or ancestor node: 
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Vj is a successor node of Vi and Vi is a predecessor node of Vj ⇔ Vj ∈ M(Vi). Vj is a 
descendent node of Vi ⇔ Vj ∈ M(Vi) ∪ M2(Vi) ∪ M3(Vi) ∪ ... . Vj is an ancestor node 
of Vi ⇔ Vj ∈ M-1(Vi) ∪ M-2(Vi) ∪ M-3(Vi) ∪ ... 
 
When M is applied and a successor node Vj is obtained, Vj is said to have been 
generated in the branching process. 
 
* Separated and completely separated node: 
 
Vi is separated ⇔ one or some of its successors have been generated. Vi is completely 
separated ⇔ all of its successors have been generated. 
 
* Bounding procedure: 
 
pe is a bounding procedure, if pe makes every node Vi correspond with Ce(Vi) ∈ κ, 
where Ce(Vi) ≤ f(X) ∀ X ∈ Si ∩ E and ∀ pe ∈ P (being P a finite set of procedures pe). 
Thus, Ce(Vi) is a lower bound of the value of the objective function of the feasible 
solutions contained in the node Vi, obtained through the bounding procedure pe. To 
work with several bounding procedures allows to have a succession of bounding 
procedures, which can be ordered in increasing order of calculation cost, which usually 
provides an increasing succession of the quality of the gap. 
 
pα ∈ P exists such that if Vi is a non-empty terminal node, Cα(Vi) = f(X), X ∈ Si (pα 
provides the value of the objective function for the only solution, which is feasible, in 
every non-empty terminal node). Let pe and pe’, pe’ is more powerful than pe (pe ≤ pe’) 
⇔ Ce(Vi) ≤ Ce’(Vi) ∀ Vi. 
 
Let Pi be the set of bounding procedures that have been applied in Vi; let C be the best 
bound associated to Vi: ( ) ( ){ }

e i
i e ip P

C V max C V
∀ ∈

= ; and let C (Vi) be a bound obtained 

when having information of the predecessor or of the successor nodes. The following 
properties are true: (1) Vj ∈ M(Vi) ⇒ C (Vj) = max{C(Vj), C(Vi)}; and (2) 

C ( ) ( )
( )

( ){ }{ }
j i

i i jV M V
V max C V , min C V

∀ ∈
=  (provided that Vi be completely separated). 

 
* Reduction procedure: 
 
A reduction procedure e, re ∈ R (with R being a finite set of procedures re), consists in 
replacing a node Vi = (Si, i) by a new node Vi’ = (Sie’, i), with Sie’ ⊂ Si and, if Vi is also 
a non-empty node, ∃ X*

Si ∈ Sie’ if only one optimal solution is looked for (where X*
Si is 

an optimal solution in Si) or ∃  X*
Si ∈ Si \ Sie’ if all optimal solutions are looked for. 

 
Let re and re’, re’ is more powerful than re (re ≤ re’) ⇔ Sie’’ ⊆ Sie’. 
 
Reduction can conclude in fixing variables or in decreasing its ranges of values, 
although an optimal solution of Si can also be detected. In this procedure the resulting 
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information can also be transmitted, from successor to predecessor nodes and vice 
versa: (1) Vj ∈ M(Vi) ⇒ Sj’ = Sj ∩ Si’; and (2) Si’ = ( ){ }j iV M V∀ ∈

∪  Sj’ (provided that Vi be 

completely separated). 
 
It is easy to check that constraint propagation approaches and consistency techniques 
(coming from AI) are reduction procedures. 
 
* Heuristic resolution procedure: 
 
Let H be a finite set of heuristic procedures. If he ∈ H finds a feasible solution X ∈ Si ∩ 
E, then Ue(Vi) = f(X) is an upper bound of the value of the objective function of an 
optimal solution contained in Si, obtained through the heuristic resolution procedure he. 
 
Let he and he’, he’ is more powerful than he (he ≤ he’) ⇔ Ue(Vi) ≥ Ue’(Vi) ∀ Vi (he’ 
always provides feasible solutions with a gap, relating to an optimal solution, equal to 
or less than that provided by he). 
 
Let Hi be the set of heuristic resolution procedures that have been applied to Vi; let 
U(Vi) be the value of the best obtained feasible solution associated to Vi: 
( ) ( ){ }

e i
i e ih H

U V min U V
∀ ∈

= ; and let U (Vi) be the value of the objective function of a 

solution obtained when having information of their successor nodes. So: 

U ( ) ( )
( )

( ){ }{ }
j i

i i jV M V
V min U V , min U V

∀ ∈
= . 

 
It is worthwhile emphasizing that neighbourhood exploration procedures/metaheuristics 
ee (which will be introduced later) can be defined as a part of a more elaborated 
procedure he. 
 
* Examination procedure: 
 
To examine a node Vi consists in applying to it bounding and/or reduction and/or 
heuristic resolution procedures, with the objective of improving the information that we 
have about the node and, sometimes, also about others. To have several types of 
examination procedures allows applying them in an alternative and iterative way; and 
even these can be ordered in increasing order of difficulty or calculation cost, in the 
hope that the least expensive procedures allow drawing conclusions briefly: they are 
applied in increasing order of complexity. 
 
* Evaluation procedure: 
 
The evaluation procedure is a correspondence that associates a value ϕ(Vi) ∈ R to each 
node Vi, where ϕ is the evaluation and selection function of the next node to examine. 
 
In spite of the huge importance of the strategy for selecting the next node to branch, in 
many papers this is not stated explicitly or is described with few details. On the other 
hand, the generalization of an evaluation and selection function of nodes is an extremely 
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important matter in the definition of a tree search meta-algorithm, Branch and Win in 
our case. This function, through the specification of the parameters that it incorporates, 
makes it possible to describe the selection strategies of the main procedures referred in 
the literature as a particular case of this function. 
 
Most commonly used selection strategies are merely a function of the considered node, 
and they take neither the state of the exploration graph nor the environment conditions 
in which the problem is solved into account. From a practical point of view, there are 
aspects that have not been sufficiently taken into account. In Pastor and Corominas 
(2000) a general formalization of the selection strategy of the next node to examine is 
proposed. 
 
The selection strategy is applied by means of a function of the considered node, the time 
spent on the computation, the state of the tree and the conditions of the environment in 
which the problem is solved. It has, therefore, a dynamic nature and it incorporates 
elements, which had not been traditionally considered but are of great importance (for 
instance: the position of the node in the tree, the amount of memory available). 
 
* Dominance relations: 
 
A node Vi dominates another node Vj, Vi Vj, if f(X*

Si) ≤ f(X*
Sj) if only one optimal 

solution is looked for or f(X*
Si) < f(X*

Sj) if all optimal solutions are looked for. 
Particularly, we can guarantee that this condition is fulfilled if ∀ XSj ∈ (Sj ∩ E) ∃ XSi ∈ 
(Si ∩ E) ⏐ f(XSi) ≤ f(XSj) if only one optimal solution is looked for or f(XSi) < f(XSj) if 
all optimal solutions are looked for. The objective of checking dominance relations 
among nodes consists in reducing the explicit enumeration. 
 
* Properties of the optimal solution: 
 
Sometimes, the characteristics of the problem to solve allow determining some 
properties of the optimal solutions. Two situations can be presented: (1) every optimal 
solution fulfills a property Π; and (2) an optimal solution that fulfills a property Π’ 
always exists. 
 
If it can be determined that a node does not contain feasible solutions with these 
properties, the node can be pruned. This allows reducing, sometimes in a large way, the 
size of the search tree to make it explicit. 
 
* Neighbourhood exploration procedures/metaheuristics: 
 
In a terminal non-empty node, a neighbourhood exploration procedure ee ∈ EN (with 
EN being a finite set of procedures ee) explores feasible solutions belonging to the 
neighbourhood of the current solution (which is, to start with, the solution contained in 
Vi), until some end condition is fulfilled. 
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The neighbourhood exploration procedures that are considered here can be both local 
optimisation techniques (k-exchanges, etc.) and metaheuristics (among others: 
simulated annealing, tabu search, genetic algorithms, GRASP). 
 
* States of a node: 
 
Once the different procedures that can be applied to a node have been defined, now the 
states that the nodes can have when applying them these procedures are described: 
 
1) Generated or not generated (obtained or not obtained, in the branching process). 
2) Pruned or not pruned: a node is pruned if one is completely sure that it does not 
include any solution of interest; a pruned node is not taken into account and it is enough 
that any of the following conditions is fulfilled: 

- to be an empty node; 
- to be a terminal non-empty node and to know the value of the solution f(X) if X 

∈ E; 
- C (Vi) ≥ Z  if only one optimal solution is looked for or C (Vi) > Z  if all 

optimal solutions are looked for, where Z  is the objective function value of the 
incumbent solution –i.e., the best solution obtained-; 

- C (Vi) = U (Vi); 
- to be dominated by another node Vj: Vj Vi; 
- not to contain solutions that fulfill the property Π’ if only one optimal solution is 

looked for, or the property Π if all optimal solutions are looked for; 
- to be completely separated and to have pruned all its successor nodes; 
- to have pruned their predecessor node; 
- not to fulfill a condition of permanency that converts Branch and Win in a 

heuristic procedure: not to be among the best nodes if the memory is finished or 
when a maximum number of nodes is generated, etc. 

3) Virtually examined by a reduction procedure re: we have Sie’ that cannot be reduced 
applying re. 
4) Virtually examined by a bounding procedure pe applied in Si: we know a bound of Si 
that cannot be improved by applying pe to Si. 
5) Virtually examined by a heuristic resolution procedure he applied in Si: we have 
obtained a solution X ∈ Si ∩ E that cannot be improved with he. 
6) Completely examined: node virtually examined by every reduction, bounding and 
heuristic resolution procedures. 
7) Closed or not closed: a node is closed if it is pruned or if all of its successor nodes, if 
it has successors, are completely examined. 
8) Evaluated or not evaluated: a node Vi is evaluated if the value of ϕ(Vi) is known. For 
some functions ϕ this state is permanent (for example, the depth), but for other it is an 
ephemeral state and it can only be used to carry out one selection (for example, when ϕ 
depends on the remaining allowed computing time). 
 
3.2. The Branch and Win meta-algorithm 
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The objective consists in minimising and only one optimal solution is looked for. We 
consider obvious the changes that are necessary to carry out if we maximise or if all 
optimal solutions are looked for. 
 
3.2.1. Definitions 
 
Let: X , the incumbent solution; Z  = f( X ), the objective function value of X ; n, a 
natural number associated with the node generated; V1 = (F, 1), the root node; L, the list 
of nodes generated, not pruned and not closed; and, V , V ’ and V ’’, nodes. 
 
3.2.2. Branch and Win procedure 
 
Below the Branch and Win meta-algorithm is described: 
 
Phase 1. BEGIN 

Obtain an initial solution X ; 
Z  = f( X ), or, if X  is unknown, Z  = +∞ 
n = 1; generate V1 = (F, 1); L = {V1} 

Phase 2. MAIN 
while not L = ∅ do 

SELECT_FROM_L (V ) 
case V  

case V  is a terminal node 
EXAMINE_TERMINAL (V ) 

case V  is a completely separated node 
SELECT_FROM_FAMILY (V ’) 
EXAMINE_GENERAL (V ’) 

else 
NEW_SUCCESSOR (Nd) 
if Nd = 1 then 

GENERATE (V ’’) 
EXAMINE_GENERAL (V ’’) 

else 
SELECT_FROM_FAMILY (V ’) 
EXAMINE_GENERAL (V ’) 

end if 
end case 

end while 
Phase 3. DISPLAY 

Show the results 
 
The most important element in the first phase of Branch and Win consists in obtaining 
an initial feasible solution that could be any in principle or, even, that cannot be 
provided. But the quality of the initial solution usually has a large influence on the 
necessary time to complete the search: it can allow to begin the pruning process right 
from the start. In order to obtain an initial feasible solution of certain quality, one or 
several heuristic resolution procedures can be used, and these can be completed with 
neighbourhood exploration procedures. 
 
3.2.3. Subroutines 
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Below the subroutines of Branch and Win are described: 
 
* SELECT_FROM_L (V ): 

do ∀ node Vi ∈ L 
Calculate ϕ(Vi) if its updated value is unknown. 

end do 
Select a node V  among those of better value ϕ(Vi). 

 
According to the nature of the elements that make up the dynamic evaluation and 
selection function ϕ(Vi) -the value of a lower or an upper bound, the depth, etc.-, to 
calculate it again will be necessary if its updated value is unknown. 
 
* EXAMINE_TERMINAL (V ): 

Select an examination procedure and apply it. 
if f(X) is available then 

if f(X) < Z  then 
X  = X, Z  = f(X) 

end if 
if the condition of neighbourhood exploration is fulfilled then 

EXPLORE_NEIGHBOURHOOD (V ) 
end if 
Close the node and, consequently, L = L \ {V } 

end if 
Deduce changes in the state of the node V  and others. 

 
An examination procedure can contain one or several bounding, reduction and heuristic 
resolution procedures; moreover, an examination procedure that applies these 
procedures in an iterative form could be designed (e.g., bounding-reduction-bounding-
reduction-...). In this subroutine, the examination procedure only includes bounding 
procedures. If the node is not closed, its state could change: if a bound that allows to 
prune it is achieved or if it does not fulfill the properties of the optimal solution. 
Furthermore, changes in the state of other nodes may occur (e.g., if the value of Z  is 
improved); if a node is closed, it is obviously eliminated from L. 
 
* EXPLORE_NEIGHBOURHOOD (V ) 

Select a neighbourhood exploration procedure and apply it. 
 
* SELECT_FROM_FAMILY (V ’): 

Select a not completely examined node, V ’, ∈ {V  ∪ [M(V ) ∈ L]}. 
 
* EXAMINE_GENERAL (V ’): 

if V ’ is a terminal node then 
EXAMINE_TERMINAL (V ’) 

else 
Select an examination procedure and apply it. 
Deduce changes in the state of the node V ’ and others. 

end if 
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In this subroutine, the examination procedure can contain several bounding, reduction 
and/or heuristic resolution procedures, and, moreover, in an iterative form or not. If the 
node is closed, all of its descendents are also pruned; moreover, this state can 
sometimes be propagated towards ancestor nodes. On the other hand, the same changes 
of states that with EXAMINE_TERMINAL ( ) can occur; but, furthermore, there can 
also be changes when the dominance relations among nodes are tested. Of course, if it is 
detected that the node is empty, it is pruned. 
 
* NEW_SUCCESSOR (Nd): 

If all node ∈ {V  ∪ [M(V ) ∈ L]} is completely examined then 
Nd = 1 

else 
Decide the value of Nd (1 to generate a new successor and 0 otherwise) 

end if 
 
* GENERATE (V ’’): 

Select the branching procedure. 
Decide the variable or the condition that it is used to branch. 
n = n + 1. 
Generate V ’’ = ( S ’’, n). 
L = L ∪ {V ’’}. 

 
Usually, the branching procedure provides partitions of F; but it can also provide 
separations that are not a partition of F (e.g., in the asymmetric travelling salesman 
problem, to prohibit the arc ij or the arc ji does not provide partitions of the set of 
solutions). Moreover, for the same problem is possible to define several branching 
procedures. In the branching process a terminal node is recognisable and is immediate 
to ascertain if it is empty or not: if it is an empty node, it is closed and not incorporated 
to L. 
 
 
4. BRANCH AND WIN: A GENERAL META-ALGORITHM 
 
Once Branch and Win has been formulated, it is not difficult to prove its general and 
summarising nature. As an example, below we describe, as particular cases of Branch 
and Win, some procedures of the operations research and AI literatures (most of the 
enumerative procedures not specified in this Section are not considered difficult to 
specify as particular cases of Branch and Win). 
 
1.- Search procedures based on finite-deterministic dynamic programming techniques. 
The main characteristic of these procedures is to use, as a differential feature, the 
dominance relations between nodes. 
 
2.- Branch and bound algorithms. Search procedures that use the branching (branch) and 
the bounding (bound) to explore the space of solutions; usually, first a initial feasible 
solution is calculated by means of heuristic procedures. 
 
3.- A*. Branch and bound procedure with particular evaluation and selection strategy of 
the next node to examine: best first search. 
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4.- Depth-first / Breadth-first / Best-first /... branch and bound. Branch and bound 
procedures with particular evaluation and selection strategies of the next node to 
examine: depth search, breadth search, best first search, ... 
 
5.- Branch and cut. Branch and bound procedures in which, as a differential feature, the 
linear programs (results of relaxing the condition of integrity of the variables) are solved 
by means of cutting plane algorithms; so an iterative bounding procedure is defined, in 
which the objective consists in obtaining tight bounds. As any procedure derived from 
Branch and Win, it can also include several refinements (among others: reduction 
procedures, heuristic resolution techniques, neighbourhood exploration metaheuristics). 
 
6.- Branch and price. Branch and bound procedures in which, as a distinctive feature, 
the linear programs (results of relaxing the condition of integrity of the variables) are 
solved by means of column generation. 
 
7.- Hybrid search procedures. Procedures that use several search techniques in an 
alternative and/or simultaneous form, as well as exact as heuristic techniques; so, once 
the “pure” procedures are specified as particular cases of Branch and Win, these 
“hybrid” techniques are automatically defined. It should be noted that dynamic 
programming procedures could be stated in a framework of branch and bound or vice 
versa; and neighbourhood exploration techniques could be added in branch and bound 
procedures. 
 
8.- Search procedures based on reduction techniques. The main characteristic of these 
procedures is to use, as a differential feature, reduction procedures in every node of the 
arborescence. 
 
9.- Constraints propagation procedures. Framework that embeds consistency techniques 
into an enumerative search algorithm. 
 
10.- Heuristic enumerative procedures. It is not difficult to specify some heuristic 
enumerative procedures as particular cases of Branch and Win: when we do without 
some of the conditions that define them and the search is carried out in a constrained 
area. 
 
 
5. IDEAS ON SEARCH BASED ON BRANCH AND WIN 
 
Once the general and unifying nature of Branch and Win has been shown, it is 
immediately possible to design new search procedures, when we combine the different 
techniques defined and the parameters of the general evaluation function of the next 
node to examine -for more details, see Pastor and Corominas (2000)-. Moreover, these 
can be either exact or heuristic procedures. 
 
Below some general ideas on search are listed; it can be interesting to test these ideas in 
those combinatorial optimisation problems that are not still solved efficiently. We 
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should emphasize that some of these ideas are already being used in enumerative search 
procedures: 
• To study the influence of investing time trying to find an initial solution of quality to 

initialize Branch and Win: try different heuristic resolution procedures and diverse 
neighbourhood exploration techniques that these heuristics can include. 

• To introduce the concept of dynamism in the different procedures that make up 
Branch and Win, and, especially, in the evaluation procedure -for more details, see 
Pastor and Corominas (2000)-. 

• To include elements that are not sufficiently taken into account, especially to solve 
industrial problems (allowed computing time, remaining computing time, amount of 
memory used, etc.). 

• To test to use in different orders the elements that are part of the examination 
procedures (bounding, reduction and heuristic resolution). 

• To work with several options in the bounding, reduction, heuristic resolution, 
neighbourhood exploration procedures and in the properties of the optimal 
solutions; the objective is to test their use in an increasing order of complexity. 

• To transmit properties from successor to predecessor nodes and vice versa, to 
improve the available information on the nodes. 

• To use reduction and heuristic resolution procedures in the intermediate nodes of the 
arborescence (in all the nodes or only in those that are more promising than the 
other ones). 

• To design heuristic resolution procedures that include neighbourhood exploration 
techniques. 

• To apply neighbourhood search procedures when the value of the incumbent 
solution is improved or whenever a new feasible solution is obtained. 

 
 
6. CONCLUSIONS 
 
In this work we design Branch and Win: an OR tree search meta-algorithm for solving 
combinatorial optimisation problems. Branch and Win allows to specify, as particular 
cases of it, the different tree search procedures that have been presented in the literature 
of operations research as well as in that of artificial intelligence. 
 
The conclusions are the following: 
• Currently, in the field of search procedures for solving combinatorial optimisation 

problems, the scene is rather unstructured and somewhat confusing: some authors 
define and use elements or procedures in one way and others in another way which, 
although similar, is not equivalent. Moreover, the general formulations that have 
been presented in the literature have a set of deficiencies that affect, in a greater or 
smaller degree, all of them. 

• With respect to the selection functions and to the exploration strategies that are 
proposed in the usual procedures, there are aspects that have not been sufficiently 
taken into account from a practical point of view. 

• Branch and Win has been formulated, with the following features: 
a) It is general enough to include, as particular cases, all these enumerative 

techniques. 
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b) It takes aspects, which are important from an industrial point of view, into 
account: maximum allowed computing time, amount of memory used, 
remaining computing time. 

c) It uses a clear and unifying terminology. 
d) It combines and specifies the diverse common elements that have all these 

procedures to obtain them. 
e) It allows to use bounding, reduction, heuristic resolution and neighbourhood 

exploration procedures, in all the partial problems generated. 
f) The concept of dynamism is introduced in the different procedures that make 

up the meta-algorithm: bounding, reduction, heuristic resolution,... 
g) It uses a general evaluation and selection function of the next node to 

examine, including many new elements which had not been traditionally 
considered but are of great importance: the state of the exploration graph and 
the environment conditions in which the problem is solved. 

h) It allows to design new search procedures, according to how the elements of 
Branch and Win are combined. 

 
Thus, the new meta-algorithm that we have called Branch and Win allows for a better 
understanding of tree search algorithms for combinatorial optimization problems and it 
synthesizes the different tree search procedures that have been presented both in 
operations research and in artificial intelligence literatures. This meta-algorithm 
assembles the different elements that are part of these search procedures and uses them 
dynamically in the tree. And furthermore, Branch and Win provides a means for 
developing new search strategies and procedures. 
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