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Abstract

This report presents the use of independent contact and non-graspable regions to

generate the grasp space for 2D and 3D discrete objects. The grasp space is constructed

via a sampling method, which provides samples of force-closure or non force-closure

grasps, used to compute regions of the graspable or non-graspable space, respectively.

The method provides a reliable procedure for an efficient generation of the whole grasp

space for n-finger grasps on discrete objects; two examples on 2D objects are provided

to illustrate its performance. The approach has several applications in manipulation

and regrasping of objects, as it provides a large number of force-closure and non force-

closure grasps in a short time.

Keywords: Grasp space, independent contact regions, non-graspable regions.

1 Introduction

Grasp planning searches for a desirable location of the fingers on the surface of an object,

for instance, to assure the equilibrium of the object, or to fully restrain the object to resist

the influence of external disturbances. To assure the immobility of the object the grasp

must satisfy the properties of form or force-closure, depending on whether the position of

the contacts or the forces applied by the fingers ensure the object immobility [1]. These

properties have been widely used to synthesize precision grasps (i.e. grasps formed by a set

of finger contact points on the object surface) for 2D [2] [3] and 3D objects [4] [5].

To provide robustness in front of finger positioning errors for an object grasp, the com-

putation of independent contact regions (ICRs) on the object boundary was introduced [6].

Each finger can be positioned in each ICR assuring in this way a force-closure (FC) grasp,
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independently of the exact position of each finger. The computation of ICRs has been solved

for 2D [7] and 3D objects [4] [8]. The ICRs have also been used to determine contact re-

gions on 3D objects based on initial examples, although the results depend on the chosen

example [9]. To generate a procedure applicable to objects with an arbitrary shape, the

computation of ICRs has been tackled for 2D [10] and 3D [11] discrete objects, i.e. objects

described with a mesh of surface points, and with frictional and frictionless contacts. Based

on the ICRs, this report introduces the concept of non-graspable regions (NGRs), defined

such that every finger can be positioned inside its corresponding NGR and a non-FC grasp

will always result with independence of the exact position of each finger.

Most of the works above-mentioned focus on the synthesis of one grasp configuration that

optimizes a particular criterion. However, in applications such as manipulation and regrasp

planning it is useful to know all the possible FC grasp configurations (or at least a large

number of them), i.e. know the structure of the whole grasp space. Previous works have

tackled the computation of all the n-finger FC grasps for 2D polygonal objects [2], and all

the 3-fingers FC grasps for 2D discretized objects [3]; to the best of the authors’ knowledge,

the generic computation of all the n-finger FC grasps for frictional and frictionless contacts

in 2D and 3D discrete objects has not been tackled before. This report presents a method

to generate the grasp space for discrete objects using NGRs and ICRs, i.e. all the FC and

non-FC grasps are computed for the object.

The rest of the report is organized as follows. Section 2 provides the required background

on FC grasps and grasp spaces. Section 3 describes the approach to generate the grasp space,

and Section 4 presents the algorithms to compute the independent contact regions and

non-graspable regions starting with a sample FC or non-FC grasp, respectively. Section 5

illustrates the implementation of the approach on two different 2D objects. Finally, Section 6

summarizes the work and discusses some future applications.

2 Framework

2.1 Assumptions

This report addresses the problem of generating the grasp space for a discrete object using

the concepts of independent contact regions and non-graspable regions. The work is based

on three assumptions. First, the contact between the object and the fingers is punctual, and

the friction between them is characterized by Coulomb’s law, with a friction coefficient µ

(µ = 0 accounts for the frictionless case). Second, the object surface is discretized in a

sufficiently large set Ω of points pi, described by one or two parameters u that provide the

position of the point on the surface of a 2D or 3D object, respectively; moreover, each point

has an associated unitary normal direction n̂i pointing toward the interior of the object.

Third, each point is connected with a set of neighboring points forming a mesh; the number

of neighbors may be arbitrarily selected, and has no influence on the proposed approach (i.e.

different types of meshes are valid).
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2.2 Grasp space and force-closure conditions

An n-finger grasp G is defined as the set of parameters ui that determine the position of

the fingers on the surface of the grasped object, i.e. G = {u1, . . . , up}, with p = n for

2D objects or p = 2n for 3D objects. The p-dimensional space defined by the p parameters

that represent the position of the possible contact points is called the grasp space (also

known as grasp configuration space or contact space) [8].

A unitary force f i applied on the object at the point pi generates a torque τ i = pi × f i;

the force and the torque are grouped together in a wrench vector given by ωi = (f i, τ i)
T
.

The wrenches produced by the forces applied at the contact points on the object are grouped

in a wrench set W . For frictionless grasps, W = {ω1, . . . ,ωn}, as the grasp forces can only

be applied in the direction normal to the object. For frictional grasps, the grasp forces lie

inside a friction cone that can be linearized with an m-side polyhedral convex cone. The

grasping force at the contact point is given by

f i =

m
∑

j=1

αijsij , αij ≥ 0 (1)

with sij representing the normalized vector of the j-th edge of the convex cone. The wrench

produced by the force f i is

ω̃i =

m
∑

j=1

αijωij , ωij =

(

sij

pi × sij

)

(2)

where ωij are called the primitive contact wrenches. Therefore, W = {ω11, . . . ,ω1m, . . . ,ωn1, . . . ,ωnm}

for frictional grasps.

A necessary and sufficient condition for the existence of a FC grasp is that the origin of

the wrench space lies strictly inside the convex hull of the wrench set, CH(W ) [12]. The FC

condition is applied in this work using the following lemma [11].

Lemma 1 : Let G be a grasp with a set W of contact wrenches, I be the set of strictly

interior points of CH(W ), and H be a supporting hyperplane of CH(W ) (i.e. a hyperplane

containing one of the facets of CH(W )). The origin O of the wrench space satisfies O ∈ I

if and only if any point P ∈ I and O lie in the same half-space for every H of CH(W ).

From Lemma 1, checking whether a given point P ∈ I and the origin O lie in the same

half-space defined by each supporting hyperplane H is enough to prove whether O lies inside

CH(W ), i.e. to prove the FC property for the grasp G. P is chosen as the centroid of the

primitive contact wrenches, which is always an interior point of CH(W ); therefore, the

FC test used in this report checks whether the centroid P and the origin O lie on the same

side for all the supporting hyperplanes of CH(W ).

3 Generation of the grasp space

The generation of the grasp space is based on the concepts of Independent Contact Regions

(ICRs) and of Non-Graspable Regions (NGRs). The ICRs and NGRs are regions such that

each finger can be positioned anywhere inside its corresponding region and a FC or non-FC

grasp will always be obtained, respectively. Basically, the algorithm takes a sample of the

grasp space, identifies whether it is force-closure or not, and builds the corresponding region
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around it, labeling in this way a significant number of FC grasps (or non-FC grasps) on

the object. This action can be repeated until a useful portion of the grasp space is already

labeled (for instance for grasp or regrasp planning purposes) or simply until the whole grasp

space is labeled. The algorithm is as follows:

Algorithm 1: Exploration of the grasp space

1. Generate a sample grasp G.

2. If G has not been previously labeled, test whether G is a FC grasp.

If G is FC

Compute the ICRs.

Label G and every possible combination of grasps generated by choosing one point

from each ICR as a FC grasp.

Else

Compute the NGRs.

Label G and every possible combination of grasps generated by choosing one point

from each NGR as a non-FC grasp.

Endif

3. If the grasp space is not fully labeled yet, go to Step 1. Otherwise, the algorithm

returns the grasp space.

The sampling method used to generate samples for Step 1 is based on a lattice structure

where each cell of the grasp space is identified by an unique numerical code. The samples

are randomly selected, and to assure the completeness of the method, the samples already

chosen are eliminated from the sampling list for the next step.

4 Computation of the independent contact and non-

graspable regions

4.1 Independent contact regions

This subsection summarizes the procedure previously presented in [11] to compute the in-

dependent contact regions (ICRs) for a FC grasp. Let Fk denote a facet of CH(W ) that

contains at least one primitive wrench for a particular grasp point pi. The proposed approach

builds hyperplanes H ′′

k parallel to each facet Fk and containing the origin O of the wrench

space. These hyperplanes define Si, the search zone containing the ICR for the grasp point

pi; Si is the intersection of the open half-spaces H ′′

k

+
that contain the point pi. The ICR is

determined by the set of neighbor points of pi such that at least one of its primitive wrenches

falls into the corresponding search zone Si. The steps in the algorithm are:
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Algorithm 2: Search of the independent contact regions

Initialize with a FC grasp G = {u1, . . . , up}, and compute its corresponding wrench set W

and the convex hull CH(W ).

For each contact point pi, i = 1, . . . , n, do

1. Build the hyperplanes H ′′

k parallel to every Fk, and containing the origin O.

2. Let Si =
⋂

k H ′′

k

+
with H ′′

k

+
the open half-spaces such that pi ∈ H ′′

k

+
(i.e. ωi ∨ωi1 ∨

. . . ∨ ωim ∈ Si).

3. Initialize Ii = {pi}. Label the points in Ii as open.

4. While there are open points pj ∈ Ii

For every neighbor point ps of pj

If ωs ∨ ωs1 ∨ . . . ∨ ωsm ∈ Si

Ii = Ii ∪ {ps}

Label ps as open.

Endif

Endfor

Label pj as closed.

Endwhile

5. Return the set of points Ii (i.e. the ICR for the contact point pi).

Note that the algorithm is computationally very simple. In Step 1, the hyperplanes

H ′′

k are computed for the corresponding facets Fk of CH(W ). Let Hk be the hyperplane

containing the facet Fk, described as ek · x = e0k. The hyperplane H ′′

k parallel to Hk and

containing the origin is ek · x = 0, i.e. the parameters ek of H ′′

k are the same as for Hk.

Step 2 only identifies for every hyperplane the open half-space H ′′

k

+
that contains the point

pi, and forms the search zones Si; note that because of the geometrical construction the

selection of any arbitrary point from each Si always generates a FC grasp. Step 4 is the most

complex step in the algorithm; every checked point requires its classification with respect

to the number of hyperplanes Hk that contain at least one primitive wrench for the contact

point pi.

The number of points in each Ii may be different, depending on factors such as the level

of detail in the representation of the object surface and the smoothness of the surface, i.e.

the rate of change in the normal vectors around the contact location. Finally, considering

the ICRs for each finger, several grasps can be formed when each finger is placed in a

different position inside its ICR; the geometrical procedure assures that all these grasps

satisfy O ∈ CH(W ).

Fig. 1 illustrates the search of the ICRs. In order to obtain 3D visualizations, a simple

case is presented: the search of ICRs for the 4-finger frictionless grasp of an ellipse discretized

with 64 points. The initial FC grasp is shown on the ellipse and in the wrench space (Fig. 1a

and b); continuous lines join the neighbor points. The computation of the ICR for the grasp

point p2 is illustrated in Fig. 1c; three hyperplanes H ′′

k determine the search zone S2, and
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Figure 1. Search of the independent contact regions for a discretized ellipse: a) Initial FC

grasp, b) FC grasp in the wrench space, c) Search of the ICR for the point p2, d) ICRs on

the ellipse.

a) b) c) d)

p1

p1

p2

p2

p3

p3

p4

p4

NG1 = NG2

NG3 = NG4O

ST

F1

F2

H
′′

1

H
′′

2

Figure 2. Search of the non-graspable regions for a discretized ellipse: a) Initial non-FC

grasp, b) Non-FC grasp in the wrench space, c) Search of the NGRs for the grasp, d) NGRs

on the ellipse.

the wrenches corresponding to the neighbor points of p2 that fall in the search zone S2

are depicted as stars. Fig 1d shows the ICRs for the 4 grasp points; 3920 different FC

grasps can be obtained from the possible combinations of positions for each finger inside its

corresponding ICR.

4.2 Non-graspable regions

The computation of the non-graspable regions (NGRs) starts with a non-FC grasp. First,

the hyperplanes H ′′

k , parallel to each facet Fk and containing the origin O of the wrench

space, are built. The approach determines the subset T of hyperplanes H ′′

k that leave all of

CH(W ) in the same open half-space (i.e. if a H ′′

k intersects CH(W ) then the hyperplane

does not belong to T ). The hyperplanes in T define a search zone ST that fully contains

CH(W ); ST is the intersection of the open half-spaces H ′′

k

+
. The NGR is determined by

the set of neighbor points of pi such that all of its primitive wrenches lie in the search zone

ST . The steps in the algorithm are:

Algorithm 3: Search of the non-graspable regions

Initialize with a non-FC grasp G = {u1, . . . , up}, and compute its corresponding wrench set

W and the convex hull CH(W ).

1. Build the hyperplanes H ′′

k parallel to every Fk, and containing the origin O.

2. Let ST =
⋂

H ′′

k

+
with H ′′

k

+
the open half-spaces such that CH(W ) ⊂ H ′′

k

+
(i.e.

ωi ∧ ωi1 ∧ . . . ∧ ωim ∈ H ′′

k

+
for every pi)

3. Initialize NGi = {pi}. Label the points in NGi as open.
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Figure 3. Search of the non-graspable sets for the previous example: a) Hyperplane H ′′

1 and

NGSs in the wrench space, b) Sets NGSH1 on the ellipse, c) Hyperplane H ′′

2 and NGSs in

the wrench space, d) Sets NGSH2 on the ellipse.

4. For every contact point pi

While there are open points pj ∈ NGi

For every neighbor point ps of pj

If ωs ∧ ωs1 ∧ . . . ∧ ωsm ∈ ST

NGi = NGi ∪ {ps}

Label ps as open.

Endif

Endfor

Label pj as closed

Endwhile

5. Return the sets of points NGi (i.e. the NGRs for each contact point pi).

Again, the algorithm is very simple. Note that as O /∈ ST , choosing every possible

combination of one point from each NGi always generates a CH(W ) that does not contain

the origin O of the wrench space, i.e. the corresponding grasp is non-FC. Fig. 2 illustrates

the search of the NGRs for the 4-finger frictionless grasp of a discretized ellipse. The non-FC

grasp is shown on the ellipse and in the wrench space (Fig. 2a and b). The computation of

the NGRs is illustrated in Fig. 2c; two hyperplanes H ′′

k determine the search zone ST , and

the wrenches corresponding to the neighbor points of every pi that fall in the search zone

ST are depicted. Fig 2d show the NGRs for the 4 grasp points; note that the NGRs coincide

for p1 and p2, and for p3 and p4; 22500 different non-FC grasps may be obtained from the

possible combinations of positions for every finger inside its corresponding NGR.

To maximize the number of non-FC grasps identified in each call to Algorithm 3, note

that every hyperplane H ′′

k that fulfills the condition on Step 2 (i.e. CH(W ) ⊂ H ′′

k

+
)

may generate its own set of NGRs, called NGSs. For each H ′′

k in T , the search region

is redefined as ST = H ′′

k

+
, and the corresponding NGSs are computed using Steps 3 to

4 in Algorithm 3. For instance, in the previous example (Fig. 2), two hyperplanes H ′′

k

are considered to compute the NGRs. Fig. 3a and c show the two hyperplanes and the

corresponding NGSs in the wrench space, and Fig. 3b and d show the NGSs on the ellipse.

The hyperplanes H ′′

1 and H ′′

2 define the non-graspable regions NGSH1 and NGSH2 that

provide 44100 and 2313441 different non-FC grasps, respectively. The equivalence of the

NGRs in Fig. 2d with the NGSs in Fig. 3 is given by NGi = NGSi,H1 ∩ NGSi,H2.
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a) b)

Figure 4. Example 1: a) Ellipse, b) Grasp space.

101 samples 102 samples 103 samples 104 samples 105 samples

Figure 5. Evolution in the generation of the grasp space for the first example. Up: FC grasp

space. Down: non-FC grasp space.

5 Examples

To illustrate the application of the proposed approach, the algorithms were implemented in

Matlab on a Pentium IV 3.2 GHz computer. The following examples show the generation of

the grasp space for 3-finger frictional grasps on two 2D objects. This examples were selected

for ease of visualization, as the corresponding grasp space is three-dimensional.

5.1 Example 1

The first example uses an ellipse discretized with 64 points along its boundary, as shown

in Fig. 4a; the grasp space contains 643 = 262144 grasps, with 12.1% of FC grasps and

87.9% of non-FC grasps, as shown in Fig. 4b with dark and light colors, respectively. The

evolution in the generation of the grasp space using Algorithm 1 is presented in Fig. 5. The

grasp space has some symmetries, as any grasp G = {u1, . . . , up} accounts for 6 different

grasps (the total number of possible permutations of the fingers on the ellipse while keeping

the same contact points); therefore, an ICR or NGR region corresponds to six axis-aligned

boxes in the grasp space.

Fig. 6 presents the percentage evolution in the coverage of the total grasp space; the

results are the average of 20 different executions of the algorithm. With a low number of

samples, the algorithm rapidly identifies a large portion of the grasp space, e.g. 82% of the
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Figure 6. Percentage evolution of the grasp space generation for the first example.
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Figure 7. Parameters in the grasp space generation: a) Number of evaluations of ICRs and

NGRs, b) Sampling time.

whole space has been already explored with just 100 samples; with 104 samples (3.8% of

the total number of grasps), 98% of the grasp space has been generated. Fig. 7a presents

the number of calls to Algorithms 1 and 2, i.e. the number of evaluations of ICR and NGR

regions; Fig. 7b presents the time required for the generation of the space.

5.2 Example 2

In the second example, the object is defined by a closed parametric curve presented in [13],

discretized with 128 points on its boundary, as shown in Fig. 8a. Fig. 8b shows the total

grasp space for this figure; it contains 1283 = 2097152 grasps, with 12.2% and 87.8% of

the space corresponding to FC and non-FC grasps, respectively. Fig. 9 shows the evolution

in the generation of the grasp space for different number of samples. Fig. 10 shows the

percentage evolution in the coverage of the total grasp space (the results correspond to the

average of 20 trials). The behavior of the algorithm to generate the grasp space is the same
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a) b)

Figure 8. Example 2: a) Discrete object, b) Grasp space.

101 samples 102 samples 103 samples 104 samples 105 samples

Figure 9. Evolution in the generation of the grasp space for the second example. Up: FC

grasp space. Down: non-FC grasp space.

as for the previous example: for a low number of samples, a large portion of the grasp space

is covered, e.g. for 10000 samples (0.48% of the total grasp space) 93.7% of the space has

been generated, in ∼ 1000 seconds.

6 Conclusions

This report has presented a method to generate the grasp space for 2D and 3D discrete

objects, valid for any number of fingers. The grasp space contains a large number of grasps;

therefore, a brute-force exploration of the space would have a high computational cost. A

more efficient exploration method is proposed, based on the concepts of independent contact

regions (ICRs) and non-graspable regions (NGRs). The ICRs have been used previously in

several works, but the concept of NGRs is new and introduced in this report; the NGRs are

defined as regions on the object boundary such that when each finger is positioned inside

its corresponding NGR, a non-FC grasp is always obtained, with independence of the exact

position of each finger.

The proposed approach uses a sampling method to obtain a grasp sample. If the sample is

a FC grasp, the ICRs are computed; if it is a non-FC grasp, the NGRs are computed. Every

ICR or NGR detects a number of additional FC or non-FC grasps, and therefore with a low

number of samples a large portion of the grasp space is covered. The algorithms presented
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Figure 10. Percentage evolution of the grasp space generation for the second example.

in the report have been implemented, and for ease of visualization they are illustrated with

the 3-finger frictional grasp of two 2D objects, which generates a three-dimensional grasp

space. The procedures are fully valid for 3D objects with high-dimensional grasp spaces;

however, the implementation of the method for 3D objects requires an efficient way to save

the data, as the grasp space has a high dimensionality (e.g. the grasp space is 8-dimensional

for a 4-finger frictional grasp on a 3D object). The effect of different sampling methods (e.g.

a classical grid search [14] or a deterministic sampling method [15]) will be addressed in the

future.

The generation of the grasp space has several applications in manipulation of objects, as

the method provides in a short time a large number of FC and non-FC grasps. Moreover,

the approach may be used in the regrasp of an object, i.e. to move the fingers on the object

to change from one FC grasp to another one; this particular application does not require

the total exploration of the grasp space. These works are currently under development.
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