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Abstract. In this paper we give a mechanism to compute the families of clas-
sical hamiltonians of two degrees of freedom with an invariant plane and normal
variational equations of Hill-Schrödinger type selected in a suitable way. In par-
ticular we deeply study the case of these equations with polynomial or trigono-
metrical potentials, analyzing their integrability in the Picard-Vessiot sense
using Kovacic’s algorithm and introducing an algebraic method (algebrization)
that transforms equations with transcendental coefficients in equations with
rational coefficients without changing the Galoisian structure of the equation.
We compute all Galois groups of Hill-Schrödinger type equations with poly-
nomial and trigonometric (Mathieu equation) potentials, obtaining Galoisian
obstructions to integrability of hamiltonian systems by means of meromorphic
or rational first integrals via Morales-Ramis theory.

1. Introduction. In a joint work of Simó with J. Morales-Ruiz the integrability
of families of two degrees of freedom potentials with an invariant plane Γ = {x2 =
y2 = 0} and normal variational equations of Lamé type along generic curves in Γ
was studied (see [13]). In such computations they used systematically differential
equations that satisfied the coefficients of the Lamé equation. We present here a
generalization of the Morales-Simó method to list the families of hamiltonians with
invariant plane Γ and the normal variational equations (the NVEs) selected in a
suitable way. As motivation of this general method, we give some particular cases
such as the Mathieu equations, the Hill-Schrödinger equations with polynomial
potential of odd degree, the quantum harmonic oscillator, and other examples. A
similar approach to this inverse problem has been studied by Baider, Churchill and
Rod [3].

The use of techniques of Differential Galois theory, such as Kovacic’s algorithm
(see Appendix A), to determine the non-integrability of hamiltonian systems, ap-
peared independently for first time in [10, 12] and [5], followed by [2], [6] and [13].
A common limitation presented in these works is that they only analyzed cases
of fuchsian monodromy groups, avoiding cases of irregular singularities of linear
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differential equations. The case of the NVEs with irregular singularities can be
approached from the Morales-Ramis [14, 15] framework.

Along this paper we will consider the NVEs with irregular singularities. To
study those families of linear differential equations we use Kovacic’s algorithm for
equations with rational coefficients. In particular we give a complete description of
Galois groups of Hill-Schrödinger type equations with polynomial potential (Theo-
rem 2.5).

We develop a new method to transform a linear differential equations with tran-
scendental coefficients in its algebraic form (differential equation with rational co-
efficient). This method is called algebrization and is based in the concept of hamil-
tonian change of variables (See Section 2.1). This change of variables comes from
a solution of a classical hamiltonian of one degree of freedom. We characterize
equations that can be algebrized in such way. We prove the following result.

Algebrization algorithm. The differential equation ÿ = r(t)y is algebrizable
through a hamiltonian change of variable x = x(t) if and only if there exists f, α

such that α′

α
, f

α
∈ C(x), where f(x(t)) = r(t), α(x) = 2(H − V (x)) = ẋ2.

Furthermore, the algebraic form of the equation ÿ = r(t)y is

y′′ +
1

2

α′

α
y′ − f

α
y = 0.

Once we get the complete study of linearized equations, we apply one of the
Morales-Ramis theorems and we obtain the following results on the non-integrability
of those hamiltonians for generic values of the parameters.

Non-integrability results. Let H be a hamiltonian system of two degrees of
freedom given by H = T + V . If the potential V is written such as follows:

1. V = λ4

(λ2+2λ3x1)2
+ λ0 − λ1x

2
2 − λ2x1x

2
2 − λ3x

2
1x

2
2 + β(x1, x2)x

3
2, λ3 6= 0,

2. V = λ0 +Q(x1)x
2
2 + β(x1, x2)x

3
2, being Q(x1) a non-constant polynomial,

3. V = µ0 + µ1x1 +
ω2x2

1

2 − λ0x
2
2 − λ1x1x

2
2 + β(x1, x2)x

3
2, ω 6= 0,

4. V = µ0 + µ1

(λ1+2λ2x1)2
+ λ1ω2x1

8λ2
+

ω2x2
1

8 −λ0x
2
2−λ1x1x

2
2−λ2x

2
1x

2
2 +β(x1, x2)x

3
2,

ω · λ2 6= 0,

being ω, λi, µi complex numbers and β(x1, x2) an analytic function defined in some
neighborhood of {x2 = 0}, then the hamiltonian system XH does not admit an
additional rational first integral.

Corollary. Every integrable (by rational functions) hamiltonian system with
polynomial potential, constant on the invariant plane Γ = {x2 = y2 = 0}, can be
written in the following form

V = Q1(x1, x2)x
3
2 + λ1x

2
2 + λ0, λ0, λ1 ∈ C.

We note that we can fall in the case of homogeneous polynomial potentials when
β(x1, x2) is a polynomial and some values of the parameters are satisfied. Such
cases had been deeply studied in [9, 17].

1.1. Picard-Vessiot theory. The Picard-Vessiot theory is the Galois theory of
linear differential equations. In the classical Galois theory, the main object is a
group of permutations of the roots, while in the Picard-Vessiot theory it is a linear
algebraic group. For polynomial equations we want a solution in terms of radicals.
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From classical Galois theory it is well known that this is possible if and only if the
Galois group is a solvable group.

An analogous situation holds for linear homogeneous differential equations (see
[19]). The following definition is true in general dimension, but for simplicity we
are restricting ourselves to matrices 2 × 2.

Definition 1.1. An algebraic group of matrices 2× 2 is a subgroup G ⊂ GL(2,C),
defined by algebraic equations in its matrix elements. That is, there exists a set of
polynomials

{Pi(x11, x12, x21, x22)}i∈I ,

such that (
x11 x12

x21 x22

)
∈ G ⇔ ∀i ∈ I, Pi(x11, x12, x21, x22) = 0.

In this case we say that G is an algebraic manifold endowed with a group struc-
ture. From now on we will only consider linear differential equations of second
order, that is,

y′′ + ay′ + by = 0, a, b ∈ C(x).

Suppose that {y1, y2} is a fundamental system of solutions of the differential equa-
tion. This means that y1 and y2 are linearly independent over C and every solution
is a linear combination of y1 and y2. Let L = C(x)〈y1, y2〉 = C(x)(y1, y2, y

′
1, y

′
2)

(the smallest differential field containing to C(x) and {y1, y2}).
Definition 1.2 (Differential Galois Group). The group of all differential automor-
phisms of L over C(x) is called the Galois group of L over C(x) and is denoted by
Gal(L/C(x)) or also by GalL

C(x). This means that for σ : L→ L, σ(a′) = σ′(a) and

∀a ∈ C(x), σ(a) = a.

If σ ∈ Gal(L/C(x)) then {σy1, σy2} is another fundamental system of solutions
of the linear differential equation. Hence there exists a matrix

A =

(
a b
c d

)
∈ GL(2,C),

such that

σ

(
y1
y2

)
=

(
σy1
σy2

)
= A

(
y1
y2

)
.

This defines a faithful representation Gal(L/C(x)) → GL(2,C) and it is possible to
consider Gal(L/C(x)) as a subgroup of GL(2,C). It depends on the choice of the
fundamental system {y1, y2}, but only up to conjugacy.

One of the fundamental results of the Picard-Vessiot theory is the following
theorem.

Theorem 1.3. The Galois group G = Gal(L/C(x)) is an algebraic subgroup of
GL(2,C).

Now we are interested in the reduced linear differential equation (the RLDE)

ξ′′ = rξ, r ∈ C(x). (1)

We recall that equation (1) can be obtained from the general second order linear
differential equation

y′′ + ay′ + by = 0, a, b ∈ C(x),
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through the change of variable

y = e−
1
2

∫
aξ, r =

a2

4
+
a′

2
− b.

On the other hand, through the change of variable v = ξ′/ξ we get the associated
Riccatti equation to equation (1)

v′ = r − v2, v =
ξ′

ξ
. (2)

For the differential equation (1), G = Gal(G/C(x)) is an algebraic subgroup of
SL(2,C).

Recall that an algebraic group G has a unique connected normal algebraic sub-
group G0 of finite index. This means that the identity component G0 is the largest
connected algebraic subgroup of G containing the identity.

Definition 1.4. Let F be a differential extension of C(x), and let be η solution of
the differential equation

y′′ + ay′ + by = 0, a, b ∈ F

1. η is algebraic over F if η satisfies a polynomial equation with coefficients in
F , that is, η is an algebraic function of one variable.

2. η is primitive over F if η′ ∈ F , that is, η =
∫
f for some f ∈ F .

3. η is exponential over F if η′/η ∈ F , that is, η = e
∫

f for some f ∈ F .

Definition 1.5. A solution η of the previous differential equation is said to be
Liouvillian over F if there is a tower of differential fields

F = F0 ⊂ F1 ⊂ ... ⊂ Fm = L,

with η ∈ L and for each i = 1, ...,m, Fi = Fi−1(ηi) with ηi either algebraic,
primitive, or exponential over Fi−1. In this case we say that the differential equation
is integrable.

Thus, a Liouvillian solution is built up using algebraic functions, integrals and ex-
ponentials. In the case F = C(x) we get, for instance logarithmic and trigonometric
functions, but not special functions such as Airy functions.

We recall that a group G is called solvable if and only if there exists a chain of
normal subgroups

e = G0 ⊳ G1 ⊳ . . . ⊳ Gn = G

such that the quotient Gi/Gj is abelian for all n ≥ i ≥ j ≥ 0.

Theorem 1.6. The equation (1) is integrable (has Liouvillian solutions) if and only
if for G = Gal(L/C(x)), the identity component G0 is solvable.

Using Theorem 1.6, Kovacic in 1986 introduced an algorithm to solve the differ-
ential equation (1) and showed that (1) is integrable if and only if one solution of
the equation (2) is one of the following types of functions: rational function (case 1),
non-rational root of some polynomial of degree two (case 2) root of some polynomial
(irreducible over C(x)) of degree 4, 6, or 12 (case 3) (see Appendix A). Based in
Kovacic’s algorithm we have the following key result.

The Galois group of the RLDE (1) with r = Qk(x) (a polynomial of degree k > 0)
is a non-abelian connected group.

For the full, details and proof see Section 2.2.
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1.2. Morales-Ramis theory. Morales-Ramis theory relates the integrability of
hamiltonian systems with the integrability of linear differential equations (see [14,
15] and see also [11]). In such approach the linearization (variational equations)
of hamiltonian systems along some known particular solution is studied. If the
hamiltonian system is integrable, then we expect that the linearized equation has
good properties in the sense of Picard-Vessiot theory. To be more precise, for
integrable hamiltonian systems, the Galois group of the linearized equation must
be virtually abelian. This gives us the best non-integrability criterion known so
far for hamiltonian systems. This approach has been extended to higher order
variational equations in [16].

1.2.1. Integrability of hamiltonian systems. A symplectic manifold (real or com-
plex), M2n is a 2n-dimensional manifold, provided with a non-degenerate closed
2-form ω2. This closed 2-form gives us a natural isomorphism between vector bun-
dles, ♭ : TM → T ∗M . Given a function H on M , there is an unique vector field XH

such that,
♭(XH) = dH

this is the hamiltonian vector field of H . Furthermore, it has a structure of Poisson
algebra over the ring of differentiable functions of M2n by defining:

{H,F} := XHF.

We say that H and F are in involution if and only if {H,F} = 0. From our
definition, it is obvious that F is a first integral of XH if and only if H and F are
in involution. In particular H is always a first integral of XH . Moreover, if H and
F are in involution, then their flows commute.

The equations of the flow of XH , in a system of canonical coordinates, p1, . . . , pn,
q1, . . . , qn (that is, such that ω2 =

∑n
i=1 pi ∧ qi), can be written in the form

q̇ =
∂H

∂p
(= {H, q}) , ṗ = −∂H

∂q
(= {H, p}) ,

and they are known as Hamilton equations.

Theorem 1.7 (Liouville-Arnold). Let XH be a hamiltonian defined on a real sym-
plectic manifold M2n. Assume that there are n functionally independent first inte-
grals F1, . . . , Fn in involution. Let Ma be a non-singular (that is, dF1, . . . , dFn are
independent over each point of Ma) level manifold,

Ma = {p : F1(p) = a1, . . . , Fn(p) = an}.
1. If Ma is compact and connected, then it is a torus Ma ≃ Rn/Zn.
2. In a neighborhood of the torus Ma there are functions I1, . . . In, φ1, . . . , φn

such that

ω2 =

n∑

i=1

dIi ∧ dφi,

and {H, Ij} = 0 for j = 1, . . . , n.

From now on, we will consider C2n as a complex symplectic manifold. Liouville-
Arnold theorem gives us a notion of integrability for hamiltonian systems. A hamil-
tonian H in C2n is called integrable in the Liouville’s sense if and only if there exists
n independent first integrals of XH in involution. We will say that H is integrable
by rational functions if and only we can find a complete set of first integrals within
the family of rational functions.
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1.2.2. Variational equations. We want to relate integrability of hamiltonian systems
with Picard-Vessiot theory. We deal with non-linear hamiltonian systems. But,
given a hamiltonian H in C2n and Γ an integral curve of XH , we can consider the
first variational equation (VE), such as

LXH
ξ = 0,

in which the linear equation is induced over the tangent bundle (ξ represents a
vector field supported on Γ).

Let Γ be parameterized by γ : t 7→ (x(t), y(t)) in such way that

dxi

dt
=
∂H

∂yi

,
dyi

dt
= −∂H

∂xi

.

Then the VE along Γ is the linear system,

(
ξ̇i
η̇i,

)
=

(
∂2H

∂yi∂xj
(γ(t)) ∂2H

∂yi∂yj
(γ(t))

− ∂2H
∂xi∂xj

(γ(t)) − ∂2H
∂xi∂yj

(γ(t))

)(
ξi
ηi

)
.

From the definition of Lie derivative, it follows that

ξi(t) =
∂H

∂yi

(γ(t)), ηi(t) = −∂H
∂xi

(γ(t)),

is a solution of the VE. We can use a generalization of D’Alambert’s method to
reduce our VE (see [14, 15] and see also [11]), obtaining the so-called normal vari-
ational equation (the NVE). We can see that the NVE is a linear system of rank
2(n − 1). In the case of hamiltonian systems of 2-degrees of freedom, their NVE
can be seen as second order linear homogeneous differential equation.

1.2.3. Non-integrability tools. Morales-Ramis theory is conformed by several results
relating the existence of first integrals of H with the Galois group of the variational
equations (see for example [14], [15] and see also [11]).

Most applications of Picard-Vessiot theory to integrability analysis are studied
considering meromorphic functions, but for every equation considered throughout
this paper, the point at infinity, of our particular solution, plays a transcendental
role: the Galois group is mainly generated by Stokes phenomenon in the irregular
singularity at infinity and by the exponential torus. So that we will only work with
particular solutions in the context of meromorphic functions with certain properties
of regularity near to the infinity point, that is, rational functions of the positions
and momenta. Along this paper we will use the following result:

Theorem 1.8 ([14]). Let H be a hamiltonian in C2n, and γ a particular solution
such that the NVE has irregular singularities at points of γ at infinity. Then, if H
is completely integrable by rational functions, then the identity component of Galois
Group of the NVE is abelian.

Remark 1. Here, the field of coefficients of the NVE is the field of meromorphic
functions on γ.

2. Some results on linear differential equations. In this section we present
two new results related with second order linear differential equations.
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2.1. Algebrization of linear differential equations. For some differential equa-
tions it is useful, if it is possible, to replace the original differential equation over a
compact Riemann surface by a new differential equation over the Riemann sphere
P1 (that is, with rational coefficients). To do this, we use a change of the indepen-
dent variable. The equation over P1 is called the algebraic form or algebrization of
the original equation.

This algebraic form dates back to the 19th century (Liouville, Darboux), but the
problem of obtaining the algebraic form (if it exists) of a given differential equation
is in general not an easy task. Here we develop a new algorithm using the concept
of hamiltonian change of variables. This change of variables allow us to compute
the algebraic form of a large number of differential equations of different types. We
can see that Kovacic’s algorithm can be applied over the algebraic form to solve the
original equation.

The geometric mechanism behind the algebrization is a ramified covering of com-
pact Riemann surfaces. We will use the following theorem of [14].

Theorem 2.1 (Morales-Ramis [14], see also [11]). Let X be a Riemann surface,
denote M(X) its field of meromorphic functions, and consider a linear differential
equation

d

dx
ξ = A(x)ξ, A ∈Mat(m,C(x)),

and a finite ramified covering of the projective line x : X → P1 (t is a local parameter
of X). Let

d

dt
ξ = x∗(A)(t)ξ, x∗(A) ∈Mat(m,M(X))

be the pullback of the equation by x (that is, the equation obtained by the change
of variables x = x(t)). Then the identity components of the Galois group of both
equations are the same.

Proposition 1 (Change of the independent variable). Let us consider the following
equation, with coefficients in C(x):

y′′ + a(x)y′ + b(x)y = 0, y′ =
dy

dx
(3)

and C(x) →֒ L the corresponding Picard-Vessiot extension. Let (K, δ) be a differen-
tial field with C as field of constants. Let θ ∈ K be a non-constant element. Then,
by the change of variable x = θ, the equation (3) is transformed in

ÿ +

(
a(θ)θ̇ − θ̈

θ̇

)
ẏ + b(θ)(θ̇)2y = 0, ż = δz. (4)

Let K0 ⊂ K be the smallest differential field containing ξ and C. Then the equa-
tion (4) is a differential equation with coefficients in K0. Let K0 →֒ L0 be the
corresponding Picard-Vessiot extension. Assume that

C(x) → K0, x 7→ θ

is an algebraic extension, then

Gal(L0/K0)
0 = Gal(L/C(x))0.
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Proof. By the chain rule we have

d

dx
=

1

θ̇
δ,

and
d2

dx2
=

1

(θ̇)2
δ2 − θ̈

(θ̇)3
δ,

now, changing y′, y′′ in (3) and making monic this equation we have (4)

ÿ +

(
a(θ)θ̇ − θ̈

θ̇

)
ẏ + b(θ)(θ̇)2y = 0.

In the same way we can obtain (3) through (4).

By assumption, K0 is an algebraic extension of C(x). Therefore we can identify
K0 with the ring of meromorphic functions over a compact Riemann surface X .
Furthermore, we can see that θ is a finite ramified covering of the Riemann sphere,

X
θ−→ P1,

then by Theorem 2.1, we conclude the proof.

Recently Manuel Bronstein and Anne Fredet in [7] have implemented an algo-

rithm to solve differential equation over C(t, e
∫

f(t)) without algebrizing the equa-
tion. As an immediate consequence of Proposition 1 we have the following corollary.

Corollary 1 (Linear differential equation over C(t, e
∫

f )). Let f ∈ C(t) be a rational
function. Then, the differential equation

ÿ −
(
f +

ḟ

f
− fe

∫
fa
(
e
∫

f
))

ẏ +
(
f
(
e
∫

f
))2

b
(
e2
∫

f
)
y = 0, (5)

is algebrizable by the change x = e
∫

f and its algebraic form is given by

y′′ + a(x)y′ + b(x)y = 0.

Remark 2. In this corollary, we have the following cases1.

1. f = nh′

h
, for a rational function h, n ∈ Z+, we have the trivial case, both

equations are over the Riemann sphere and they have the same differential
field, so that does not need to be algebrized.

2. f = 1
n

h′

h
, for a rational function h, n ∈ Z+, (5) is defined over an algebraic

extension of C(t) and so that this equation is not necessarily over the Riemann
sphere.

3. f 6= q h′

h
, for any rational function h, q ∈ Q, (5) is defined over a transcendental

extension of C(t) and so that this equation is not over the Riemann sphere.

In the first and the second case, we can apply Proposition 1, taking K0 =
C(t, e

∫
f ), so that the identity component of the algebrized equation is conserved.

The preservation of the Galois group for the third case, requires further analysis,
and will not be discussed here. We just remark that the Galois group corresponding
to the original equation is a subgroup of the Galois group of the algebrized equation.

1Throughout this paper the reader should keep in mind the following notations:

Z
+ = {n ∈ Z : n ≥ 1}, Z+ = {n ∈ Z : n ≥ 0}.
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Definition 2.2 (Regular and irregular singularity). The point x = x0 is called
regular singular point, or regular singularity, of the equation (3) if and only if
x = x0 is not an ordinary point and

(x− x0)a(x), (x− x0)
2b(x),

are both analytic in x = x0. If x = x0 is not a regular singularity, then it is an
irregular singularity.

Remark 3 (Change to infinity). To study asymptotic behaviors (that is, the point
x = ∞) in (3) we can take x(t) = 1

t
and analyze the behavior in t = 0 of (4). That

is, to study the behavior in (3) in x = ∞ we should study the behavior in t = 0 of
the equation

ÿ +

(
2

t
−
(

1

t2

)
a

(
1

t

))
ẏ +

1

t4
b

(
1

t

)
y = 0. (6)

In this way, by Definition 2.2, we say that x = ∞ is a regular singularity of the
equation (3) if and only if t = 0 is a regular singularity of the equation (6).

To algebrize second order linear differential equations it is easier when the term in
ẏ is absent and the change of variable is hamiltonian, that is, the RLDE ÿ = r(t)y.

Definition 2.3 (hamiltonian change of variable). A change of variable x = x(t) is
called hamiltonian if and only if (x(t), ẋ(t)) is a solution curve of the autonomous
hamiltonian system

H = H(x, y) =
y2

2
+ V (x),

for some V ∈ C(x).

Assume that we algebrize equation (4) through a hamiltonian change of variables,

x = ξ(t). Then, K0 = C(ξ, ξ̇, . . .), but, we have the algebraic relation,

(ξ̇)2 = 2h− 2V (ξ), h = H(ξ, ξ̇) ∈ C,

so that K0 = C(ξ, ξ̇) is an algebraic extension of C(x). We can apply Proposition
1, and then the identity component of the Galois group is conserved.

Proposition 2 (Algebrization algorithm). The differential equation

ÿ = r(t)y

is algebrizable through a hamiltonian change of variable x = x(t) if and only if there
exist f, α such that

α′

α
,

f

α
∈ C(x), where f(x(t)) = r(t), α(x) = 2(H − V (x)) = ẋ2.

Furthermore, the algebraic form of the equation ÿ = r(t)y is

y′′ +
1

2

α′

α
y′ − f

α
y = 0. (7)

Proof. Since x = x(t) is a hamiltonian change of variable for the differential equation
ÿ = r(t)y so that ẋ = y, ẏ = ẍ = −V ′(x) and there exists f, α such that ÿ = f(x(t))y
and ẋ2 = 2(H − V (x)) = α(x). By Proposition 1 we have −f(x) = b(x)ẋ2 and
a(x)ẋ − ẍ/ẋ = 0, therefore a(x) = ẍ/ẋ2 and b(x) = −f(x)/α(x). In this way
ÿ = r(t)y is algebrizable if and only if a(x), b(x) ∈ C(x). As 2(H − V (x)) = α(x),

we have α′(x) = −2V ′(x) = 2ẍ, and therefore a(x) = 1
2

α′(x)
α(x) . In this way, we obtain

the equation (7).
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As a consequence of Proposition 2 we have the following result.

Corollary 2. Let us consider r(t) = g(x1, · · · , xn), where xi = eλit, λi ∈ C. The
differential equation ÿ = r(t)y is algebrizable if and only if

λi

λj

∈ Q, 1 ≤ i 6= j ≤ n, g ∈ C(x).

Furthermore, we have λi = ciλ, where λ ∈ C and ci ∈ Q and one change of variable
is

x = e
λt
q , where ci =

pi

qi
, gcd(pi, qi) = 1 and q = mcm(q1, · · · , qn).

Remark 4 (Using the algebrization algorithm). To algebrize the RLDE ÿ = r(t)y
we should keep in mind the following steps.

Step 1: Find a hamiltonian change of variable x = x(t).
Step 2: Find f and α such that r(t) = f(x(t)) and (ẋ(t))2 = α(x(t)).
Step 3: Write f(x) and α(x).
Step 4: Verify whether or not f(x)/α(x) ∈ C(x) and α′(x)/α(x) ∈ C(x).
Step 5: If the answer of Step 4 is “yes” (that is, RLDE is algebrizable), write

the algebraic form of the original equation as follows

y′′ +
1

2

α′

α
y′ − f

α
y = 0.

When we have algebrized the RLDE, we study its integrability and its Galois group.

Remark 5 (Monic Polynomials). Let us consider the RLDE

ÿ =

(
n∑

k=0

ckt
k

)
y, ck ∈ C, k = 0, · · · , n.

By the algebrization algorithm we can take x = µt, µ ∈ C, so that

ẋ = µ, α(x) = µ2, α′(x) = 0 and f(x) =

n∑

k=0

ck

(
x

µ

)k

, ck, µ ∈ C.

Now, by (7) the new differential equation is

y′′ =

(
n∑

k=0

(
ck
µk+2

)
xk

)
y, ck, µ ∈ C.

In general, for µ = n+2
√
cn we can obtain the equation

y′′ =

(
xn +

n−1∑

k=0

dkx
k

)
y, dk =

(
ck
µk+2

)
, k = 0, · · · , n− 1.

Furthermore, we can observe, by Definition 2.2 and (6), that the point at ∞ is
an irregular singularity for the differential equation with non-constant polynomial
coefficients because using (6) we can see that zero is not an ordinary point and also
it is not a regular singularity for the differential equation.

Remark 6 (Extended Mathieu). The Mathieu differential equation, with phase
dependance on parameters (see 3.2.3), is

ÿ = (a+ b sin t+ c cos t)y. (8)
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Applying Corollary 2 and the steps of the algorithm we have x = eit, ẋ = ix,
therefore

f(x) =
(b+ c)x2 + 2ax+ c− b

2x
, α(x) = −x2, α′(x) = −2x,

so that the algebraic form of (8) is

y′′ +
1

x
y′ +

(b + c)x2 + 2ax+ c− b

2x3
y = 0. (9)

Making the change x = 1/z in (9) we obtain

ζ̈ +

(
1

z

)
ζ̇ +

(
(c− b)z2 + 2az + (b+ c)

2z3

)
ζ = 0. (10)

We can observe, by Definition 2.2 and (6), that z = 0 is an irregular singularity for
(10) and therefore x = ∞ is an irregular singularity for (9) and (8).

Now, we compute the Galois group and the integrability in (9). So that, the
RLDE is given by

ξ′′ = −
(

(b+ c)x2 + (2a+ 1)x+ c− b

2x3

)
ξ. (11)

Applying Kovacic’s algorithm, see appendix A, we can see that for b 6= −c this
equation falls in Case 2: (c3,∞3), E0 = {3}, E∞ = {1} and therefore D = ∅
because m = −1 /∈ Z+. In this way we have that (11) is not integrable, the Galois
Group is the connected group SL(2,C), and finally, by Theorem 2.1 the identity
component of the Galois group for (8) is exactly SL(2,C), which is a non-abelian
group. In the same way, for b = −c we have the equations

ÿ = (a− be−it)y, y′′ +
1

x
y′ +

2ax− 2b

2x3
y = 0,

in which ∞ continues being an irregular singularity. Now, the RLDE is given by

ξ′′ = −
(

(2a+ 1)x− 2b

2x3

)
ξ,

and applying Kovacic’s algorithm we can see that this equation falls in Case 2:
(c3,∞2), E0 = {3}, E∞ = {0, 2, 4}, for instance D = ∅ because 1/2(e∞− e0) /∈ Z+.
This means that the Galois group continues being SL(2,C). Using this result, taking
ǫ instead of i, we can say that in the case of harmonic oscillator with exponential
waste

ÿ = (a+ be−ǫt)y, ǫ > 0,

the point at ∞ is an irregular singularity and the identity component of the Galois
group is SL(2,C).

2.2. Galois groups of Hill-Schrödinger equations with polynomial poten-
tial. Here and in the rest of the paper, we consider polynomials in C[x]. Kovacic
in [8] remarked that the Galois group of the RLDE with polynomial coefficient of
odd degree is exactly SL(2,C). For instance, we present here the complete result
for the RLDE with non-constant polynomial coefficient (Theorem 2.5).

Lemma 2.4 (Completing Squares). Every monic polynomial of even degree can be
written in one only way completing squares, that is,

Q2n(x) = x2n +

2n−1∑

k=0

qkx
k =

(
xn +

n−1∑

k=0

akx
k

)2

+

n−1∑

k=0

bkx
k. (12)
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Proof. Firstly, we can see that
(
xn +

n−1∑

k=0

akx
k

)2

= x2n + 2

n−1∑

k=0

akx
n+k +

n−1∑

k=0

n−1∑

j=0

akajx
k+j ,

so that by indeterminate coefficients we have

an−1 =
q2n−1

2
, an−2 =

q2n−2 − a2
n−1

2
, an−3 =

q2n−3 − 2an−1an−2

2
, · · · ,

a0 =
qn − 2a1an−1 − 2a2an−2 − · · ·

2
, b0 = q0 − a2

0, b1 = q1 − 2a0a1, · · · ,

bn−1 = qn−1 − 2a0an−1 − 2a1an−2 − · · · .
In this way, we conclude the proof.

Theorem 2.5 (Galois groups in polynomial case). Let us consider the equation,

ξ̈ = Q(x)ξ,

with Q(x) ∈ C[x] a polynomial of degree k > 0. Then, its Galois group G falls in
one of the following cases:

1. G = SL(2,C) (non-abelian, non-solvable, connected group).
2. G = C∗ ⋉ C (non-abelian, solvable, connected group).

Furthermore, the second case is given if and only if the following conditions hold:

1. Q(x) is a polynomial of degree k = 2n.
2. ±bn−1 − n is a positive even number 2m, m ∈ Z+.
3. There exist a monic polynomial Pm of degree m, satisfying

P ′′
m+2

(
xn +

n−1∑

k=0

akx
k

)
P ′

m+

(
nxn−1 +

n−2∑

k=0

(k + 1)ak+1x
k −

n−1∑

k=0

bkx
k

)
Pm = 0, or

P ′′
m − 2

(
xn +

n−1∑

k=0

akx
k

)
P ′

m −
(
nxn−1 +

n−2∑

k=0

(k + 1)ak+1x
k +

n−1∑

k=0

bkx
k

)
Pm = 0.

In such cases, Liouvillian solutions are given by

ξ1 = Pme
xn+1

n+1
+
∑n−1

k=0

akxk+1

k+1 , ξ2 = ξ1
∫

e
−2

(
xn+1

n+1
+
∑n−1

k=0

akxk+1

k+1

)

P 2
m

dx, or,

ξ1 = Pme
−xn+1

n+1
−
∑n−1

k=0

akxk+1

k+1 , ξ2 = ξ1
∫

e
2

(
xn+1

n+1
+
∑n−1

k=0

akxk+1

k+1

)

P 2
m

dx.

Proof. Let us consider the RLDE

ξ̈ = Q(x)ξ, Q(x) =
k∑

i=0

cix
i, ci ∈ C, ck 6= 0, k > 0.

This equation without poles only can fall in Case 1, Condition (c0) of Kovacic’s
algorithm (see appendix A). Now if k = 2n+1, then Q(x) does not satisfies Step 1,
and this imply that the RLDE has not Liouvillian solutions and its Galois Group
is G = SL(2,C) (non-abelian, non-solvable, connected group). On the other hand,
if we consider k = 2n, then the RLDE falls in Case 1, specifically in (c0) (because
it has not poles) and (∞3) (because ◦r∞ = −2n), that is, Conditions {c0,∞3} of
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Kovacic’s algorithm (see appendix A). By Remark 5, through the change of variable
x 7→ n+2

√
ckx, the RLDE with polynomial coefficients is transformed in

ξ′′ = Q2n(x)ξ, Q2n(x) = x2n +

2n−1∑

k=0

qkx
k.

By Lemma 2.4 we have that

Q2n(x) =

(
xn +

n−1∑

k=0

akx
k

)2

+

n−1∑

k=0

bkx
k.

Setting Q2n(x) = r, by Step 1 we have [
√
r]c = 0, α±

c = 0, ◦ (r∞) = −2n,

[√
r
]
∞

= xn +

n−1∑

k=0

akx
k and α±

∞ =
1

2
(±bn−1 − n) .

By Step 2 of Kovacic’s algorithm (see appendix A), D = {m ∈ Z+ : m = α±
∞},

therefore D = ∅ which means that the Galois group of the RLDE is SL(2,C) (the
RLDE has not Liouvillian solutions) or #D = 1 because 2m = bn−1 − n > 0 or
2m = bn−1 + n < 0, in this way for m ∈ D we have ω+ or ω− ∈ C(x) given by

ω = ω± = ±
[√
r
]
∞

= ±
(
xn +

n−1∑

k=0

akx
k

)
.

Now, by Step 3, we search a monic polynomial Pm of degree m satisfying

P ′′
m+2

(
xn +

n−1∑

k=0

akx
k

)
P ′

m+

(
nxn−1 +

n−2∑

k=0

(k + 1)ak+1x
k −

n−1∑

k=0

bkx
k

)
Pm = 0, or,

P ′′
m − 2

(
xn +

n−1∑

k=0

akx
k

)
P ′

m −
(
nxn−1 +

n−2∑

k=0

(k + 1)ak+1x
k +

n−1∑

k=0

bkx
k

)
Pm = 0.

If Pm does not exist, then the Galois group of the RLDE is SL(2,C) (the RLDE
has not Liouvillian solutions). On the other hand, if there exists such Pm, then
Kovacic’s algorithm can provide us only one solution. This solution is given by

ξ1 = Pme
xn+1

n+1
+
∑n−1

k=0

akxk+1

k+1 , or, ξ1 = Pme
− xn+1

n+1
−
∑n−1

k=0

akxk+1

k+1

and we can see that ξ1 is not an algebraic function. This means, by Remark 11, case
[I5] that the Galois group of the RLDE is the non-abelian, solvable and connected
group G = C∗ ⋉ C. The second solution is obtained using D’Alambert reduction
and is given by

ξ2 = Pme
xn+1

n+1
+
∑n−1

k=0

akxk+1

k+1

∫
e
−2

(
xn+1

n+1
+
∑n−1

k=0

akxk+1

k+1

)

P 2
m

dx, or respectively,

ξ2 = Pme
−xn+1

n+1
−
∑n−1

k=0

akxk+1

k+1

∫
e
2

(
xn+1

n+1
+
∑n−1

k=0

akxk+1

k+1

)

P 2
m

dx.

in this way we have proven the theorem.
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Remark 7 (Quadratic case). Let consider the case where r is a polynomial of
degree two:

ÿ =
(
At2 +Bt+ C

)
y.

There are no poles and the order at ∞, ◦r∞, is −2, so we need to follow Case 1 in
{c0,∞3} of Kovacic’s algorithm. Now, by Remark 5 and by Lemma 2.4 we have

y′′ =
(
(x+ a)2 + b

)
y.

We find that

[
√
r]∞ = x+ a,

α±
∞ =

1

2
(±b− 1) ,

m = α+
∞ or α−

∞.

If b is not an odd integer, then m is not an integer. Therefore Case 1 does not hold,
which means that the RLDE has no Liouvillian solutions. If b is an odd integer,
then we can complete Steps 2 and 3 and actually (only) we can find a solution given
by

y = Pme
x2

2
+ax, or, y = Pme

− x2

2
−ax.

In particular, the quantum harmonic oscillator

y′′ = (x2 − λ)y

is integrable when λ is an odd integer and the only one solution obtained by means
of Kovacic’s algorithm is given by

y = Hme
x2

2 , or, y = Ĥme
−x2

2

where Hm and Ĥm denotes the classical Hermite’s polynomials.

For another approach to this problem see Vidunas [20] and Zoladek in [21].

3. Determining families of hamiltonians with specific NVE. Let us consider
a two degrees of freedom classical hamiltonian,

H =
y2
1 + y2

2

2
+ V (x1, x2).

V is the potential function, and it is assumed to be analytical in some open subset
of C2. The evolution of the system is determined by Hamilton equations:

ẋ1 = y1, ẋ2 = y2, ẏ1 = − ∂V

∂x1
, ẏ2 = − ∂V

∂x2
.

Let us assume that the plane Γ = {x2 = 0, y2 = 0} is an invariant manifold of
the hamiltonian. We keep in mind that the family of integral curves lying on Γ is
parameterized by the energy h = H |Γ, but we do not need to use it explicitly. We
are interested in studying the linear approximation of the system near Γ. Since Γ
is an invariant manifold, we have

∂V

∂x2

∣∣∣∣
Γ

= 0,

so that the NVE for a particular solution

t 7→ γ(t) = (x1(t), y1 = ẋ1(t), x2 = 0, y2 = 0),
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is written,

ξ̇ = η, η̇ = −
[
∂2V

∂x2
2

(x1(t), 0)

]
ξ.

Let us define,

φ(x1) = V (x1, 0), α(x1) = −∂
2V

∂x2
2

(x1, 0),

and then we write the second order Taylor series in x2 for V , obtaining the following
expression for H

H =
y2
1 + y2

2

2
+ φ(x1) − α(x1)

x2
2

2
+ β(x1, x2)x

3
2, (13)

which is the general form of a classical analytic hamiltonian, with invariant plane
Γ, providing that a Taylor expansion of the potential around {x2 = 0} exist. The
NVE associated to any integral curve lying on Γ is,

ξ̈ = α(x1(t))ξ. (14)

3.1. General method. We are interested in computing hamiltonians of the family
(13), such that its NVE (14) belongs to a specific family of Linear Differential
Equations. Then we can apply our results about the integrability of this LDE, and
Morales-Ramis theorem to obtain information about the non-integrability of such
hamiltonians.

From now on, we will write a(t) = α(x1(t)), for a generic curve γ lying on Γ,
parameterized by t. Then, the NVE is written

ξ̈ = a(t)ξ. (15)

Problem. Consider a differential polynomial Q(η, η̇, η̈, . . .) ∈ C[η, η̇, η̈, . . .], being
η a differential indeterminate (Q is polynomial in η and a finite number of the
succesive derivatives of η). Compute all hamiltonians in the family (13) verifying:
for all any particular solution in Γ, the coefficient a(t) of the corresponding NVE is
a differential zero of Q, in the sense that Q(a, ȧ, ä, . . .) = 0.

In this section we give a method to compute the above family of hamiltonians by
solving certain differential equations. This method was based in the computations
done by J. Morales and C. Simó in [13].

We should notice that, for a generic integral curve γ(t) = (x1(t), y1 = ẋ1(t))
lying on Γ, (15) depends only of the values of functions α, and φ. It depends on
α(x1), since a(t) = α(x1(t)). We observe that the curve γ(t) is a solution of the
restricted hamiltonian,

h =
y2
1

2
+ φ(x1) (16)

whose associated hamiltonian vector field is,

Xh = y1
∂

∂x1
− dφ

dx1

∂

∂y1
, (17)

thus x1(t) is a solution of the differential equation, ẍ1 = − dφ
dx1

, and then, the relation

of x1(t) is given by φ.

Since γ(t) is an integral curve of Xh, for any function f(x1, y1) defined in Γ we
have

d

dt
γ∗(f) = γ∗(Xhf),
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where γ∗ denote the usual pullback of functions. Then, using a(t) = γ∗(α), we have
for each k ≥ 0,

dka

dtk
= γ∗(Xk

hα), (18)

so that,

Q(a, ȧ, ä, . . .) = Q(γ∗(α), γ∗(Xhα), γ∗(X2
hα), . . .).

There is an integral curve of the hamiltonian passing through each point of Γ, so
that we have proven the following.

Proposition 3. Let H be a hamiltonian of the family (13), and Q(a, ȧ, ä, . . .) a
differential polynomial with constants coefficients. Then, for each integral curve
lying on Γ, the coefficient a(t) of the NVE (15) verifies Q(a, ȧ, ä, . . . , ) = 0, if and
only if the function

Q̂(x1, y1) = Q(α,Xhα,X
2
hα, . . .),

vanishes on Γ.

Remark 8. In fact, the NVE of a integral curve depends on the parameterization.
Our criterion does not depend on any choice of parameterization of the integral
curves. This is simple, the NVE corresponding to different parameterizations of the
same integral curve are related by a translation of time t. We just observe that
a polynomial Q(a, ȧ, ä, . . .) with constant coefficients is invariant of the group by
translations of time. So that, if the coefficient a(t) of the NVE (15) for a certain
parameterization of an integral curve γ(t) satisfied {Q = 0}, then it is also satisfied
for any other right parameterization of the curve.

Next, we will see that Q̂(x1, y1) is a polynomial in y1 and its coefficients are
differential polynomials in α, φ. If we write down the expressions for successive Lie
derivatives of α, we obtain

Xhα = y1
dα

dx1
, (19)

X2
hα = y2

1

d2α

dx2
1

− dφ

dx1

dα

dxi

(20)

X3
hα = y3

1

d3α

dx3
1

− y1

(
d

dx1

(
dφ

dx1

dα

dx1

)
+ 2

dφ

dx1

d2α

dx2
1

)
(21)

X4
hα =y4

1

d4α

dx4
1

− y2
1

(
d

dx1

(
d

dx1

(
dφ

dx1

dα

dx1

)
+ 2

dφ

dx1

d2α

dx2
1

)
+ 3

d3α

dx3
1

dφ

dx1

)

+

(
d

dx1

(
dφ

dx1

dα

dx1

)
+ 2

dφ

dx1

d2α

dx2
1

)
dφ

dx1
. (22)

In general form we have,

Xn+1
h α = y1

∂Xn
hα

dx1
− dφ

dx1

∂Xn
h

∂y1
, (23)

it inductively follows that they all are polynomials in y1, in which their coefficients
are differential polynomials in α and φ. If we write it down explicitly,

Xn
hα =

∑

n≥k≥0

En,k(α, φ)yk
1 (24)
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we can see that the coefficients En,k(α, φ) ∈ C

[
α, φ, drα

dxr
1

, dsφ
dxs

1

]
, satisfy the following

recurrence law,

En+1,k(α, φ) =
d

dx1
En,k−1(α, φ) − (k + 1)En,k+1(α, φ)

dφ

dx1
(25)

with initial conditions,

E1,1(α, φ) =
dα

dx1
, E1,k(α, φ) = 0 ∀k 6= 1. (26)

Remark 9. The recurrence law (25) and the initial conditions (26), determine the
coefficients En,k(α, φ). We can compute the value of some of them easily:

• En,n(α, φ) = dnα
dxn

1

for all n ≥ 1.

• En,k(α, φ) = 0 if n− k is odd, or k < 0, or k > n.

3.2. Some examples. Here we compute families of hamiltonians (13) containing
specific NVEs. Although, in order to do these computations, we need to solve poly-
nomial differential equations, we will see that we can deal with this in a branch of
cases. Particularly, when Q is a linear differential operator, we will obtain equations
that involve products of few linear differential operators.

Example 1. The harmonic oscillator equation is given by

ξ̈ = c0ξ, (27)

with c0 constant. So that, a hamiltonian of type (13) give us such NVE whether
ȧ = 0. Looking at (19), it follows that dα

dx1
= 0, for instance α is a constant. We

conclude that the general form of a hamiltonian (13) with NVEs of type (27) is

H =
y2
1 + y2

2

2
+ φ(x1) + λ0x

2
2 + β(x1, x2)x

3
2,

being λ0 a constant, and φ, β arbitrary analytical functions.

Example 2. In [1], M. Audin notice that the hamiltonian,

y2
1 + y2

2

2
+ x1x

2
2

is an example of a simple non-integrable classical hamiltonian, since its NVE along
any integral curve in Γ is an Airy equation. Here we compute the family of classical
hamiltonians containing NVEs of type Airy for integral curves lying on Γ. The
general form of the Airy equation is

ξ̈ = (c0 + c1t)ξ (28)

with c0, c1 6= 0 two constants. It follows that a hamiltonian contains NVE of this
type whether ä = 0 and ȧ 6= 0. By Proposition 3 and (20), the equation ä = 0 give
us the following system:

d2α

dx2
1

= 0,
dφ

dx1

dα

dx1
= 0. (29)

It splits in two independent systems,

dα

dx1
= 0,

{
d2α
dx2

1

= 0
dφ
dx1

= 0
(30)
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Solutions of the first one fall into the previous case of harmonic oscillator. Then,
taking the general solution of the second system, we conclude that the general form
of a classical hamiltonian of type (13) with Airy NVE is:

H =
y2
1 + y2

2

2
+ λ0 + λ1x

2
2 + λ2x1x

2
2 + β(x1, x2)x

3
2, (31)

with λ2 6= 0.

3.2.1. The NVE of type quantum harmonic oscillator. Let us consider now equa-

tions with d3a
dt3

= 0, and d2a
dt2

6= 0, the NVE is given by

ξ̈ = (c0 + c1t+ c2t
2)ξ (32)

with c2 6= 0. Those equation can be reduced to a quantum harmonic oscillator
equation by an affine change of t, and its integrability has been studied using Ko-
vacic’s algorithm. Using Proposition 3 and (21), we obtain the following system of
differential equations for α and φ:

d3α

dx3
1

= 0,
dα

dx1

d2φ

dx2
1

+ 3
d2α

dx2
1

dφ

dx1
= 0.

The general solution of the first equation is

α =
λ1

2
+
λ2

2
x1 +

λ3

2
x2

1,

and substituting it into the second equation we obtain a linear differential equation
for φ,

d2φ

dx2
1

+ 3
2λ3

λ2 + 2λ3x1

dφ

dx1
= 0,

this equation is integrated by two quadratures, and its general solution is

φ =
λ4

(λ2 + 2λ3x1)2
+ λ0.

We conclude that the general formula for hamiltonians of type (13) with NVE (32)
for any integral curve lying on Γ is

H =
y2
1 + y2

2

2
+

λ4

(λ2 + 2λ3x1)2
+ λ0 − λ1x

2
2 − λ2x1x

2
2 − λ3x

2
1x

2
2 + β(x1, x2)x

3
2, (33)

with λ3 6= 0.

Remark 10. The first example in this paper in which we find non-linear dynamics
over the invariant plane Γ is given by (33). Notice that this dynamic is continuously
deformed to linear dynamics when λ4 tends to zero. In general case, for a fixed
energy h, we have the general integral of the equation:

8λ2
3h

2(t− t0)
2 = h(λ2 + 2λ3x1)

2 − λ4.
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3.2.2. The NVE with polynomial coefficient. Let us consider for n > 0 the following
differential polynomial,

Qm(a, ȧ, . . .) =
dma

dtm
.

It is obvious that a(t) is a polynomial of degree n if and only if Qn(a, ȧ, . . .) 6= 0
and Qn+1(a, ȧ, . . .) = 0.

Looking at Proposition 3, we see that a hamiltonian (13) has NVE along a generic
integral curve lying on Γ,

ξ̈ = Pn(t)ξ, (34)

with Pn(t) polynomial of degree n, if and only if Xn
hα 6= 0 and Xn+1

h α vanishes on

Γ. Let us remind expression (24), Xn+1
h α vanishes on Γ if and only if (α, φ) is a

solution of the differential system,

Rn+1 = {En+1,0(α, φ) = 0, . . . , En+1,n+1(α, φ) = 0}.

A particular solution of Rn+1 not verifying Rn, is given by φ = λ0, α(x1) =
Qn(x1), a polynomial of degree n. Therefore, the following hamiltonians,

H =
y2
1 + y2

2

2
+ λ0 +Qn(x1)x

2
2 + β(x1, x2)x

3
2, (35)

have NVE, along a generic integral curve lying on Γ, of the form (34).

If n is an even number, there are more solutions of the differential system Rn+1

not verifying Rn, being a particular case the potentials with generic quantum har-
monic oscillators, computed above. We will prove, using the recurrence law (25),
that for odd n, the above family is the only solution of Rn+1 not verifying Rn.

Lemma 3.1. Let (α, φ) be a solution of R2m. Then, if dφ
dx1

6= 0, then (α, φ) is a
solution of R2m−1.

Proof. By Remark 9 we have that E2m−1,2k(α, φ) = 0 for all m− 1 ≥ k ≥ 0. Now,
let us prove that E2m−1,2k+1(α, φ) for all m− 2 ≥ k ≥ 0.

In the first step of the recurrence law defining R2m,

0 = E2m,0(α, φ) =
dE2m−1,1

dx1
(α, φ) − dφ

dx1
E2m−1,1(α, φ).

We use dφ
dx1

6= 0, and Remark 9, E2m−1,−1(α, φ) = 0 to obtain,

E2m−1,1(α, φ) = 0.

If we assume E2m−1,2k+1(φ, α) = 0, substituting it in the recurrence law

E2m,2k+1(α, φ) =
dE2m−1,2k

dx1
(α, φ) − 2(k + 1)

dφ

dx1
E2m−1,2(k+1)(α, φ),

we obtain that

E2m−1,2(k+1)(α, φ) = 0,

and we conclude by finite induction.

Corollary 3. Let H be a classical hamiltonian of type (13), then the following
statements are equivalent,

1. The NVE for a generic integral curve given by (15) lying on Γ, has a polyno-
mial coefficient a(t) of degree 2m− 1.
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2. The hamiltonian H can be written as

H =
y2
1 + y2

2

2
+ λ0 − P2m−1(x1)x

2
2 + β(x1, x2)x

3
2, (36)

for λ0 constant, and P2m−1(x1) a polynomial of degree 2m− 1.

Proof. It is clear that condition 1. is satisfied if and only if (α, φ) is a solution of

R2m and it is not a solution of R2m−1. By the previous lemma, it implies dφ
dx1

= 0,

and then the system R2m is reduced to d2mα
dx2m

1

and then, φ is a constant and α is a

polynomial of degree at most 2m− 1.

3.2.3. The NVE of type Mathieu extended. This is the standard Mathieu equation,

ξ̈ = (c0 + c1 cos(ωt))ξ, ω 6= 0. (37)

We can not apply our method to compute the family of hamiltonians correspond-
ing to this equation, because {c0 + c1 cos(ωt)} is not the general solution of any
differential polynomial with constant coefficients. Now, considering

Q(a) =
d3a

dt3
+ ω2 da

dt
, (38)

we can see that the general solution of {Q(a) = 0} is

a(t) = c0 + c1 cos(ωt) + c2 sin(ωt).

Just notice that,

c1 cos(ωt) + c2 sin(ωt) =
√
c21 + c22 cos

(
ωt+ arctan

c2
c1

)
,

thus the NVE (15), when a is a solution of (38), is reducible to Mathieu equation
(37) by a translation of time.

Using Proposition 3, we find the system of differential equations that determine
the family of hamiltonians,

d3α

dx3
1

= 0,
dα

dx1

d2φ

dx2
1

+ 3
d2α

dx1

dφ

dx1
− ω2 dα

dx1
= 0.

The general solution of the first equation is

α = λ0 + λ1x1 + λ2x
2
1.

substituting it in the second equation, and writing y = dφ
dx1

, we obtain a non-
homogeneous linear differential equation for y,

dy

dx1
+

6λ2y

λ1 + 2λ2x1
= ω2. (39)

We must distinguish two cases depending on the parameter. If λ2 = 0, then we just
integrate the equation by trivial quadratures, obtaining

φ = µ0 + µ1x1 +
ω2x2

1

2
and then,

H =
y2
1 + y2

2

2
+ µ0 + µ1x1 +

ω2x2
1

2
− λ0x

2
2 − λ1x1x

2
2 + β(x1, x2)x

3
2, (40)

If λ2 6= 0, then we can reduce the equation to a separable equation using

u =
6λ2y

λ1 + 2λ2x1
,
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obtaining

3du

3ω2 − 4u
=

6λ2dx

λ1 + 2λ2x1
, u =

3ω2

4
+

3µ1

4(λ1 + 2λ2x1)4
,

and then

y =
1

8λ2

(
ω2λ1 + 2ω2λ2x1 +

µ1

(λ1 + 2λ2x1)3

)
,

and finally we integrate it to obtain φ,

φ =

∫
ydx1 = µ0 −

µ1

32λ2
2

1

(λ1 + 2λ2x1)2
+
ω2λ1x1

8λ2
+
ω2x2

1

8
.

Scaling the parameters adequately we write down the general formula for the hamil-
tonian,

H =
y2
1 + y2

2

2
+ µ0 +

µ1

(λ1 + 2λ2x1)2
+
λ1ω

2x1

8λ2
+
ω2x2

1

8

− λ0x
2
2 − λ1x1x

2
2 − λ2x

2
1x

2
2 + β(x1, x2)x

3
2. (41)

3.3. Application of non-integrability criteria.

3.3.1. The NVE with a(t) polynomial. According to Theorem 2.5, the Galois group
corresponding to equations,

ξ̈ = P (t)ξ

where P (t) is a non-constant polynomial, is a connected non-abelian group. So
that we can apply Theorem 1.8 to the NVE of a generic integral curve in Γ of
hamiltonians in the family (35). We get the following result:

Proposition 4. hamiltonians

H =
y2
1 + y2

2

2
+ x2

2Q(x1) + β(x1, x2)x
3
2

where Q(x1) is a non-constant polynomial, and β(x1, x2) analytic function around
Γ, do no admit any additional rational first integral.

Corollary 4. Every integrable (by rational functions) polynomial potential constant
on the invariant plane Γ = {x2 = y2 = 0} is written in the following form,

V = Q(x1, x2)x
3
2 + λ1x

2
2 + λ0, λ0, λ1 ∈ C,

with Q(x1, x2) polynomial.

Proof. As we have seen, a polynomial potential V with invariant plane Γ is written

V = P0(x1) + P2(x1)x
2
2 +Q(x1, x2)x

3
2,

if V is constant in Γ, then P0(x1) = λ0 ∈ C and then V falls in the above family, of
non-integrable potentials, unless P2(x1) = λ1 ∈ C.
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3.3.2. The NVE reducible to quantum harmonic oscillator. We have seen that hamil-
tonians (33), have generic NVE along curves in Γ of type (32). Once again, we apply
Theorem 2.5.

Proposition 5. hamiltonians of the family (33) do not admit any additional ra-
tional first integral.

We can also discuss the Picard-Vessiot integrability of (32). First, we shall notice
that by just a scaling of t,

t =
τ

4
√
c2

− c1
2c2

we reduce it to a quantum harmonic oscillator equation,

d2ξ

dτ2
= (τ2 − E)ξ, E =

c21 − 4c0c1

4
√
c32

. (42)

In Remark 7 we analyzed this equation. It is Picard-Vessiot integrable if and only
if E is an odd positive number. Then, let us compute the parameter E associated
to the NVE of integral curves of hamiltonians (33).

Let us keep in mind that the family of those curves is parameterized by

h =
y2
1

2
+

λ4

(λ2 + 2λ3x1)2
.

In order to fix the parameterization of those curves, let us assume that time t = 0
corresponds to x1 = 0. The NVE corresponding to a curve, depending on energy
h, is written:

ξ̈ = (c0(h) + c1(h)t+ c2(h)t
2)ξ.

We compute these coefficients ci(h) using,

y1 =

√
2h(λ2 + 2λ3x1)2 − 2λ4

λ2 + 2λ3x1

t→0−−−→
√

2hλ2
2 − 2λ4

λ2
,

and then, by applying the hamiltonian field,

c0(h) =
λ1

2
, c1(h) =

√
hλ2

2 − λ4

2
, c2(h) = λ3h,

and then, it is reducible to (42) with parameter,

E =
1

8
√
λ3

3

(
λ2

2 − 4λ1λ3√
h

− λ4√
h3

)
.

If λ2 = 4λ1λ3 and λ4 = 0, then the parameter E vanishes for every integral curve
in Γ. For any other case, E is a non-constant analytical function of h.

We have proven that those NVE are generically not Picard-Vessiot integrable for
any hamiltonian of the (33) family.

3.3.3. The NVE of type Mathieu. In order to apply Theorem 1.8, we just need to
make some remarks on the field of coefficients. Let γ be a generic integral curve of
(40), or (41). Those curves are, in general, Riemann spheres. The field of coefficients
Mγ , is generated by x1, y1, so that it is C(x1, ẋ1). We also have,

a = λ0 + λ1x1 + λ2x
2
1, ȧ = ẋ1(λ1 + 2λ2x1),

so that, for λ2 = 0, we have

Mγ = C(α, α̇) = C(sin t, cos t) = C(eit).
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and, for λ2 6= 0,

C(eit) →֒ Mγ

is an algebraic extension.

So that in our algebrization algorithm we take C(eit) as the field of coefficients
of Mathieu equation. For λ2 = 0, we can apply directly Theorem 1.8. For λ2 6= 0,
we can apply Theorem 2.1 and Theorem 1.8.

Non-trivial equations of type Mathieu, with field of coefficients C(eit), analyzed in
Remark 6, have Galois group SL(2,C). Thus for computed families of hamiltonians
with NVE of type Mathieu, we get:

Proposition 6. hamiltonians of the families (40) and (41) if λ1 6= 0 and (λ1, λ2) 6=
(0, 0) respectively, do not admit any additional rational first integral.

Final comments and open questions. The algebrization method of linear differ-
ential equations presented here can be seen as an easy algorithm. Is possible to give
a classification of algebrizable higher order linear differential equations generalizing
our algorithm? We do not know yet.

The problem of determining families of classical hamiltonians with an invariant
plane and NVE of Hill-Schrödinger type with polynomial coefficient of even degree
greater than two is still open.

The problem of analyzing the monodromy of the NVE of integral curves of a
two degrees of freedom hamiltonian (both, classical and general) has been studied
by Baider, Churchill and Rod at the beginning of the 90’s (see [3]). Their method
is quite different, they have imposed the monodromy group to verify some special
properties that were translated as algebraic conditions in the hamiltonian functions.
Their theory were restricted to the case of fuchsian groups, which in terms of Ga-
lois theory means regular singularities, while we work in the general case. The
comparison of both methods should be done.

Acknowledgements. We want to thank Juan Morales-Ruiz for proposing the ini-
tial problem and also for his valuable help, advice and suggestions. We also thank to
Sergi Simón for his valuable suggestions in the first stage of developing our method.
We are also indebted with Jacques-Arthur Weil for his suggestions on Kovacic’s
algorithm. Finally, we would like to thank Carles Simó and the anonymous referees
for their valuable comments and suggestions.

Appendix.

Appendix A. Kovacic’s Algorithm. This algorithm is devoted to solve the
RLDE ξ′′ = rξ and is based on the algebraic subgroups of SL(2,C). For more
details see [8]. Improvements for this algorithm are given in [18], where it is not
necessary to reduce the equation. Here, we follow the original version given by
Kovacic in [8] .

Theorem A.1. Let G be an algebraic subgroup of SL(2,C). Then one of the
following four cases can occur.

1. G is triangularizable.
2. G is conjugate to a subgroup of infinite dihedral group (also called meta-abelian

group) and case 1 does not hold.
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3. Up to conjugation G is one of the following finite groups: Tetrahedral group,
Octahedral group or Icosahedral group, and cases 1 and 2 do not hold.

4. G = SL(2,C).

Each case in Kovacic’s algorithm is related with each one of the algebraic sub-
groups of SL(2,C) and the associated Riccatti equation

θ′ = r − θ2 =
(√
r − θ

) (√
r + θ

)
, θ =

ξ′

ξ
.

According to Theorem A.1, there are four cases in Kovacic’s algorithm. Only
for cases 1, 2 and 3 we can solve the differential equation the RLDE, but for the
case 4 we have not Liouvillian solutions for the RLDE. It is possible that Kovacic’s
algorithm can provide us only one solution (ξ1), so that we can obtain the second
solution (ξ2) through

ξ2 = ξ1

∫
dx

ξ21
. (43)

Notations. For the RLDE given by

d2ξ

dx2
= rξ, r =

s

t
, s, t ∈ C[x],

we use the following notations.

1. Denote by Γ′ be the set of (finite) poles of r, Γ′ = {c ∈ C : t(c) = 0}.
2. Denote by Γ = Γ′ ∪ {∞}.
3. By the order of r at c ∈ Γ′, ◦(rc), we mean the multiplicity of c as a pole of r.
4. By the order of r at ∞, ◦ (r∞) , we mean the order of ∞ as a zero of r. That

is ◦ (r∞) = deg(t) − deg(s).

A.1. The four cases. Case 1. In this case [
√
r]c and [

√
r]∞ means the Laurent

series of
√
r at c and the Laurent series of

√
r at ∞ respectively. Furthermore, we

define ε(p) as follows: if p ∈ Γ, then ε (p) ∈ {+,−}. Finally, the complex numbers
α+

c , α
−
c , α

+
∞, α

−
∞ will be defined in the first step. If the differential equation has not

poles it only can fall in this case.

Step 1. Search for each c ∈ Γ′ and for ∞ the corresponding situation as follows:

(c0): If ◦ (rc) = 0, then
[√
r
]
c

= 0, α±
c = 0.

(c1): If ◦ (rc) = 1, then
[√
r
]
c

= 0, α±
c = 1.

(c2): If ◦ (rc) = 2, and

r = · · · + b(x− c)−2 + · · · , then

[√
r
]
c

= 0, α±
c =

1 ±
√

1 + 4b

2
.

(c3): If ◦ (rc) = 2v ≥ 4, and

r = (a (x− c)−v + ...+ d (x− c)−2)2 + b(x− c)−(v+1) + · · · , then

[√
r
]
c

= a (x− c)
−v

+ ...+ d (x− c)
−2
, α±

c =
1

2

(
± b

a
+ v

)
.
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(∞1): If ◦ (r∞) > 2, then
[√
r
]
∞

= 0, α+
∞ = 0, α−

∞ = 1.

(∞2): If ◦ (r∞) = 2, and r = · · · + bx2 + · · · , then

[√
r
]
∞

= 0, α±
∞ =

1 ±
√

1 + 4b

2
.

(∞3): If ◦ (r∞) = −2v ≤ 0, and

r = (axv + ...+ d)
2

+ bxv−1 + · · · , then

[√
r
]
∞

= axv + ...+ d, and α±
∞ =

1

2

(
± b

a
− v

)
.

Step 2. Find D 6= ∅ defined by

D =

{
m ∈ Z+ : m = αε(∞)

∞ −
∑

c∈Γ′

αε(c)
c , ∀ (ε (p))p∈Γ

}
.

If D = ∅, then we should start with the case 2. Now, if #D > 0, then for each
m ∈ D we search ω ∈ C(x) such that

ω = ε (∞)
[√
r
]
∞

+
∑

c∈Γ′

(
ε (c)

[√
r
]
c
+ αε(c)

c (x− c)−1
)
.

Step 3. For each m ∈ D, search for a monic polynomial Pm of degree m with

P ′′
m + 2ωP ′

m + (ω′ + ω2 − r)Pm = 0.

If success is achieved then ξ1 = Pme
∫

ω is a solution of the differential equation
the RLDE. Else, Case 1 cannot hold.

Case 2. Search for each c ∈ Γ′ and for ∞ the corresponding situation as follows:

Step 1. Search for each c ∈ Γ′ and ∞ the sets Ec 6= ∅ and E∞ 6= ∅. For each
c ∈ Γ′ and for ∞ we define Ec ⊂ Z and E∞ ⊂ Z as follows:

(c1): If ◦ (rc) = 1, then Ec = {4}
(c2): If ◦ (rc) = 2, and r = · · · + b(x− c)−2 + · · · , then

Ec =
{
2 + k

√
1 + 4b : k = 0,±2

}
.

(c3): If ◦ (rc) = v > 2, then Ec = {v}
(∞1): If ◦ (r∞) > 2, then E∞ = {0, 2, 4}
(∞2): If ◦ (r∞) = 2, and r = · · · + bx2 + · · · , then

E∞ =
{
2 + k

√
1 + 4b : k = 0,±2

}
.

(∞3): If ◦ (r∞) = v < 2, then E∞ = {v}
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Step 2. Find D 6= ∅ defined by

D =

{
m ∈ Z+ : m =

1

2

(
e∞ −

∑

c∈Γ′

ec

)
, ∀ep ∈ Ep, p ∈ Γ

}
.

If D = ∅, then we should start the case 3. Now, if #D > 0, then for each m ∈ D
we search a rational function θ defined by

θ =
1

2

∑

c∈Γ′

ec

x− c
.

Step 3. For each m ∈ D, search a monic polynomial Pm of degree m, such that

P ′′′
m + 3θP ′′

m + (3θ′ + 3θ2 − 4r)P ′
m +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
Pm = 0.

If Pm does not exist, then Case 2 cannot hold. If such a polynomial is found, set
φ = θ + P ′/P and let ω be a solution of

ω2 + φω +
1

2

(
φ′ + φ2 − 2r

)
= 0.

Then ξ1 = e
∫

ω is a solution of the differential equation the RLDE.

Case 3. Search for each c ∈ Γ′ and for ∞ the corresponding situation as follows:

Step 1. Search for each c ∈ Γ′ and ∞ the sets Ec 6= ∅ and E∞ 6= ∅. For each
c ∈ Γ′ and for ∞ we define Ec ⊂ Z and E∞ ⊂ Z as follows:

(c1): If ◦ (rc) = 1, then Ec = {12}
(c2): If ◦ (rc) = 2, and r = · · · + b(x− c)−2 + · · · , then

Ec =
{
6 + k

√
1 + 4b : k = 0,±1,±2,±3,±4,±5,±6

}
.

(∞): If ◦ (r∞) = v ≥ 2, and r = · · · + bx2 + · · · , then

E∞ =

{
6 +

12k

n

√
1 + 4b : k = 0,±1,±2,±3,±4,±5,±6

}
, n ∈ {4, 6, 12}.

Step 2. Find D 6= ∅ defined by

D =

{
m ∈ Z+ : m =

n

12

(
e∞ −

∑

c∈Γ′

ec

)
, ∀ep ∈ Ep, p ∈ Γ

}
.

In this case we start with n = 4 to obtain the solution, afterwards n = 6 and finally
n = 12. If D = ∅, then the differential equation has not Liouvillian solution because
it falls in the case 4. Now, if #D > 0, then for each m ∈ D with its respective n,
search a rational function

θ =
n

12

∑

c∈Γ′

ec

x− c

and a polynomial S defined as

S =
∏

c∈Γ′

(x− c).
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Step 3. Search for each m ∈ D, with its respective n, a monic polynomial
Pm = P of degree m, such that its coefficients can be determined recursively by

P−1 = 0, Pn = −P,

Pi−1 = −SP ′
i − ((n− i)S′ − Sθ)Pi − (n− i) (i+ 1)S2rPi+1,

where i ∈ {0, 1 . . . , n− 1, n}. If P does not exist, then the differential equation has
not Liouvillian solution because it falls in Case 4. Now, if P exists search ω such
that

n∑

i=0

SiP

(n− i)!
ωi = 0,

then a solution of the differential equation the RLDE is given by

ξ = e
∫

ω,

where ω is solution of the previous polynomial of degree n.

A.2. Some remarks on Kovacic’s algorithm. Along this section we assume
that the RLDE falls only in one of the four cases.

Remark 11 (Case 1). If the RLDE falls in case 1, then its Galois group is given
by one of the following groups:

I1: e when the algorithm provides two rational solutions or only one rational
solution and the second solution obtained by (43) has not logarithmic term.

e =

{(
1 0
0 1

)}
,

this group is connected and abelian.
I2: Gk when the algorithm provides only one algebraic solution ξ such that
ξk ∈ C(x) and ξk−1 /∈ C(x).

Gk =

{(
λ d
0 λ−1

)
: λ is a k-root of the unity, d ∈ C

}
,

this group is disconnected and its identity component is abelian.
I3: C∗ when the algorithm provides two non-algebraic solutions.

C∗ =

{(
c 0
0 c−1

)
: c ∈ C∗

}
,

this group is connected and abelian.
I4: C+ when the algorithm provides one rational solution and the second solu-

tion is not algebraic.

C+ =

{(
1 d
0 1

)
: d ∈ C

}
, ξ ∈ C(x),

this group is connected and abelian.
I5: C∗ ⋉ C+ when the algorithm only provides one solution ξ such that ξ and

its square are not rational functions.

C∗ ⋉ C+ =

{(
c d
0 c−1

)
: c ∈ C∗, d ∈ C

}
, ξ /∈ C(x), ξ2 /∈ C(x).

This group is connected and non-abelian.
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I6: SL(2,C) if the algorithm does not provide any solution. This group is con-
nected and non-abelian.

Remark 12 (Case 2). If the RLDE falls in case 2, then Kovacic’s Algorithm can
provide us one or two solutions. This depends on r as follows:

II1: if r is given by

r =
2φ′ + 2φ− φ2

4
,

then there exist only one solution,
II2: if r is given by

r 6= 2φ′ + 2φ− φ2

4
,

then there exists two solutions.
II3: The identity component of the Galois group for this case is abelian.

Remark 13 (Case 3). If the RLDE falls in case 3, then its Galois group is given
by one of the following groups:

III1: Tetrahedral group when ω is obtained with n = 4. This group of order
24 is generated by

(
e

kπi
3 0

0 e−
kπi
3

)
,

1

3

(
2e

kπi
3 − 1

)(
1 1
2 −1

)
, k ∈ Z.

III2: Octahedral group when ω is obtained with n = 6. This group of order
48 is generated by

(
e

kπi
4 0

0 e−
kπi
4

)
,

1

2
e

kπi
4

(
e

kπi
2 + 1

)(
1 1
1 −1

)
, k ∈ Z.

III3: Icosahedral group when ω is obtained with n = 12. This group of order
120 is generated by

(
e

kπi
5 0

0 e−
kπi
5

)
,

(
φ ψ
ψ −φ

)
, k ∈ Z,

being φ and ψ defined as

φ =
1

5

(
e

3kπi
5 − e

2kπi
5 + 4e

kπi
5 − 2

)
, ψ =

1

5

(
e

3kπi
5 + 3e

2kπi
5 − 2e

kπi
5 + 1

)

III4: The identity component of the Galois group for this case is abelian.
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