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ABSTRACT. In this paper I want to show some advantages of the Geometric Iteration to a

possible study of a predator-prey system. The Geometric Iteration presents characteristics such

as continuity, derivability and integrability which could allow to analyze when a predator can still

reach it is prey even when the prey has a initial advantage.
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1. PRELIMINARIES

I can start assuming a predator-prey system whose motivation was the model
established in [4]. We can suppose that two animals make the same number of
jumps or strides per minute, but one of them makes bigger jumps than the other.
Also, both animals are encouraged or discouraged. The lenght of the initial jump
of the predator is b and its factor of encouragement is q, while the lenght of the
initial jump of the prey is a and its factor of encouragement is p, but both of them
have periods of run m and l respectively. We will imagine a planet in which the
predators and the preys move by jumps of incremental or decremental longitude
using the Geometric Iteration, which will be defined below. We could consider
a, b ∈ R+ = R+ ∪ {0}, m, l ∈ Z+ = Z+ ∪ {0}, p, q ∈ R, but only we will discuss
some special cases. In some cases, we assume that the prey has k steps ahead of
the predator as initial advantage; in other cases, it is said that both animals are
persistent all times no matter if our prey has an initial advantage. We will work at
the second case and we will give the following definition to determine one kind of
displacement, velocity or aceleration of the creatures.

Definition 1.1. Given a ∈ R+, p ∈ R, |a|+|p| 6= 0, define the first geometric of p
on a by G(p,1)(a) = ap. Recursively, for n ≥ 2, define the nth geometric of p on a
by

(1) G(p,n)(a) = apn

G(p,n−1)(a)

The next lemma give us another way to obtain recursively the nth geometric of
p on a.

Lemma 1.2. ∀n ≥ 2, a ∈ R+, p ∈ R.
1
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(2) G(p,n)(a) = ap
(
G(p,n−1)(a)

)p

Proof. It is follow by induction on n. �

Definition 1.3. Given G(p,n)(a) as in 1.1, let m ∈ Z+ define the m−geometric
iteration of p, n on a by

(3) Gm
(p,n) = G(p,n) ◦ Gm−1

(p,n)

where G0
(p,n) = G(p,n).

2. PROPERTIES OF THE GEOMETRIC ITERATION

In this section we establish some analytic and algebraic properties for Geometric
Iteration

Lemma 2.1. Let be a ∈ R+, p ∈ R, l ∈ Z+ be fixed, |a|+|p| 6= 0. Then ∀n ∈ N,
we have Gl

(1,n) (a) = anl+1

(4) Gl
(p,n) (a) = a

(
p 1−pn

1−p

)l+1

, p 6= 1.

Proof. Using 1.1 and induction on n. �

Theorem 2.2. If Gl
(p,n) (a) is as in 2.1, |p| < 1, then

(5) Gl
(p,n)(a) → a( p

1−p )l+1

whenever n → ∞.

Proof. By 2.1, we can write Gl
(p,n)(a) = a

(
p(1−pn)

1−p

)l+1

, now we can see clearly that

limn→∞ Gl
(p,n)(a) = a( p

1−p )l+1

. �

Definition 2.3. Gl
p(a) := a( p

1−p )l+1

is called the convergence of the l−geometric
iteration of p on a.

Theorem 2.4. Gl
(p,n) and Gl

p are automorphisms defined onto R+ with the prod-
uct.

Proof. Let be H1 := Gl
(p,n), H2 := Gl

p, clearly H1(ab) = H1(a)H1(b), H2(ab) =
H2(a)H2(b), H1(R+) = R+, H2(R+) = R+, H1(a) = H1(b) ⇔ a = b, H2(a) =
H2(b) ⇔ a = b, finally H−1

1 (a) = H1(a−1) and H−1
2 (a) = H2(a−1). �

Theorem 2.5. Let be Gl
(p,n) and Gl

p as in 2.2, K1 = {Gl
(p,n) : p ∈ R, l ∈ Z+},

K2 = {Gl
p : p ∈ R, l ∈ Z+}, then (K1, ◦) and (K2, ◦) have the structure of an

abelian group, where ◦ is the composition of functions.

Proof. Take e1 = Gl
(1,n) ∈ K1, e2 = Gl

( 1
2 ,n) ∈ K2, 2.1 and 2.3. �

Now we will see the main theorem, which involve analytical and topological
structures. I omit the proof because it is very long, but is completely made in [1].
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Theorem 2.6. Let l ∈ Z+, p ∈ R, ∀n, Gl
(p,n) : A → B, where A, B ⊂ R+ are com-

pact sets, Gl
(p,n),

dGl
(p,n)(x)

dx ,
∫ x

0 Gl
(p,n)(t)dt, are sequences of homeomorphisms onto

compact subsets. If |p| < 1 then, Gl
(p,n)(x),

dGl
(p,n)(x)

dx ,
∫ x

0
Gl

(p,n)dt converge weakly,

strongly and uniformly to Gl
p(x),

(
p

1−p

)l Gl
p(x)

x
, (1−p)l

pl+(1−p)l xGl
p(x) respectively. Fur-

thermore Gl
p(x),

(
p

1−p

)l Gl
p(x)

x
, (1−p)l

pl+(1−p)l xGp(x) are homeomorphisms onto compact
subsets. These homeomorphisms are uniformly and completely continuous.

This theorem show that Gl
(p,n) could be defined in zero, but is not continuous

in zero.

Corollary 2.7. If −1 < p < 1 then the following statements hold
(i) liml→∞ Gl

p (x) = 1, −1 < p < 1
2 ,

(ii) liml→∞ Gl
p (x) = x, p = 1

2 and
(iii) liml→∞ Gl

p (x) = ∞, p > 1
2 .

3. ONE APLICATION OF THE GEOMETRIC ITERATION

Thanks to Theorem 2.6 is possible to apply the geometric iteration in a model
predator-prey where the catchup between predator and prey is studied instead of
the populational behavior of the species. Suppose that we have two animals that
take the same number of jumps per minute and their displacement is given by the
Geometric Iteration. If the prey jump has lenght a, it is factor of encouregment is
given by p, and those of the predator have lenght b, it is factor of encouregment
is gived by q, but both of them have periods of run l and m respectively. Let
us assume that the prey starts k steps ahead of the predator. After n steps the
distance between the two is

(6) Gl
(p,n+k)(a) − Gm

(q,n)(b).

Let us suppose that both animals run all the time, now the distance between the
two is

(7) Gl
p(a) − Gm

q (b).

In both cases, we have to study the necessary conditions for the prey to run away
from the predator. Derivation and integration are necessaries to determine their
speeds and other applications.

Note that if a = 3,b = 2, p = 1
4
, q = 1

5
, l = m = 0, on the graphs, we observe

that the prey has run away from it is predator, because for all n ∈ N, Gl
p(a)−Gm

q (b)
> 0, . It means that the prey and predator starts from zero without advantage. No
matter if the predator and prey run all the time, the predator will never catchup
our prey, because the predator was unattentive when the hunt started.

4. REMARK

We can observe that if p = α
β , whenever α ∈ Z and β ∈ Z∗, then G(p,n)(f(x))

converges uniformly to (f(x))
α

β−α , but if α = β − 1 then G(p,n)(f(x)) converges
uniformly to (f(x))α. The functions G(p,n)(f(x)) stick onto (f(x))

p
1−p , peculiarly
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G( 1
2 ,n)(f(x)) stick on f(x). The fixed points of G(p,n)(f(x)) are obtained when

(f(x))
p

1−p = x. We can see that if f(x) = x, then G(p,n)(f(x)) has as fixed points

to 0 and 1. For G(f(x),n) (a) = a
f(x) 1−(f(x))n

1−f(x) , whenever |f(x)| < 1 we can see that

Gf(x) (a) = a
f(x)

1−f(x) . In the previous theorems we defined mappings on R+, but
there is no problem if are they defined on C and take a = reiθ. We can apply
the Geometric iteration in other fields, for example financial problems and market
behavior. There are some open questions such as:

The differential equation dG
dt = apt

G, with initial condition G1 = ap has an
unique solution. What is the solution?

The family of curves G = ((1 − p) apt + c)
1

1−p , sastisfies dG
dt

= apGp. In what

points G = ((1 − p) apt + c)
1

1−p is solution to dG
dt

= apt

G?.
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