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The role of survival functions in competing risks1

N. Porta, G. Gómez and M.L. Calle

Abstract: Competing risks data usually arises in studies in which the failure of an individual may be
classified into one of k (k > 1) mutually exclusive causes of failure. When competing risks are present,
there are two main differences with classical survival analysis: (i) survival functions are not mainly used
to describe cause-specific failures and, (ii) classical estimation techniques may provide biased results.
The main goal of this paper is to review, clarify and present the formulation of a competing risks
model and the basic nonparametric estimation methods. We show why the use of survival functions
in the competing risks framework may mislead the user, and we illustrate the presented methodologies
by developing two examples from real data. The methods presented here can be implemented with
several statistical packages, including R, SPSS and SAS: we give some highlights on how to perform
a competing risks analysis with these software packages.

Keywords: Cause-specific hazard; cumulative incidence function, survival-like function.

1 Introduction

Standard survival analysis endpoints measure the time that takes an individual to fail due to a particular
event, measured from an origin of time. This time of interest is usually characterized by means of
the hazard function, representing the rate of occurrence of the event at a given time t, but mostly
via the survival function, representing the probability of surviving up to time t, that is, the probability
that the event has not yet occurred before time t. In the presence of non-informative right censoring,
and given a random sample of observed individuals, both functions are empirically estimable through
consistent quantities such as the Nelson-Aalen estimator for the hazard function, or the Kaplan-Meier
estimator for the survival function.

While in the classical setting there is a single cause for the event occurring, there are situations where
several causes of failure are possible, but only the occurrence of the first of them can be observed.
This situation is known as competing risks. As an example, consider an individual which is at risk of
dying from cardiovascular disease (CV), which is the clinical endpoint of the study. The individual
is also at risk of dying due to causes distinct from CV. In this setup dying from any other cause is
a competing risk for dying due to CV. Often the competing risk event is ignored, treated as right-
censored observation, and classical survival methods are used for inference. However, some standard
methods, such as Kaplan-Meier, would provide biased estimators for the different probabilities of
interest unless the competing risks event is independent of the main event of interest. Furthermore,
as discussed in Tsiatis (1975), the independence between distinct causes of failure cannot be checked
on the basis of the competing risks observed data.

Specific methods are hence needed. The distinguishing feature of a competing risks setting is that
for each individual, besides a lifetime T , there is a cause of failure C. In this situation a joint model
for T and C is needed, and their joint distribution can be completely specified through the cause-
specific hazard, that is, the instantaneous risk of failing at a given time from a given cause, among
all individuals at risk at that time. Given a random sample of competing risks data, cause-specific
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MTM2005-0886 of the Spanish Department for Science and Technology. Núria Porta is a recipient of a doctoral
research fellowship from the Catalan Ministry of Innovation, Universities and Enterprise.
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hazards are directly estimable. For each cause, if other failures are treated as censored observations,
the Nelson-Aalen method provides a consistent estimate of the cause-specific hazards (Prentice et al.,
1978). The joint distribution can also be specified by means of the cumulative incidence functions,
representing the probability of failing from a given cause before a specific time. In this case, all causes
of failure are involved to estimate the cumulative incidence function of a given cause, and thus other
failures cannot be treated as censored observations. The multiple decrements method proposed by
Aalen (1978) provides an appropriate way to estimate the cumulative incidence functions, since the
Kaplan-Meier method is not valid under competing risks (Pepe and Mori, 1993).

Two examples of competing risks data are used to illustrate the methodologies developed in this
paper. The first example comes from industrial engineering reliability analysis, about life testing of
a small electrical appliance during its development. For each unit, data consists of the number of
cycles it takes the unit to failure or to removal from test, together with its failure code (Nelson, 1982).
For this small appliance, the characterization and frequency of the most common causes would allow
changes in design to develop a more reliable appliance. The second example correspond to a cohort
of patients diagnosed with follicular cell lymphoma (Pintilie, 2006). The goal of the study was to
assess the long-term outcome to the treatment given after diagnosis. The outcome included non-
response to treatment, first relapse and disease-related death. Patients diagnosed between 1967 and
1996 were recorded in the study. This cohort experiences not disease-related deaths as a consequence
of becoming older during the long follow-up. These deaths are considered as a competing risk to
disease-related failures.

Both cause-specific hazards and cumulative incidence functions describe the time to the first failure
T , and the cause of it, C. They must be interpreted taking into account the presence of other causes.
For instance, the cause specific hazard for the jth cause is not the risk of failing by cause j at t: it
is the risk of failing first by cause j than by other causes. Therefore, these two functions cannot
be interpreted as marginal functions, as if other causes of failure were absent. As a matter of fact,
marginal probabilities are not estimable from observed competing risks data (Cox, 1959; Tsiatis, 1975).
These are subtle issues that have confused many users when interpreting these functions, and efforts
to clarify them are numerous in the literature, polemics included (Prentice et al., 1978; Pepe and Mori,
1993; Gooley et al., 1999; Llorca and Delgado-Rodŕıguez, 2004; Pintilie, 2007a; Wolbers and Koller,
2007; Latouche et al., 2007; Pintilie, 2007b; Putter et al., 2007). To further obscure the problem, a
question naturally arises: why, in the competing risks setting, cumulative incidence functions are used
to characterize the time of interest, instead of some kind of cause-specific survival function just as in
classical survival analysis? In this paper we define three different survival-like functions and discuss
their interpretation as well as the relations among them.

In this paper we review, clarify and present the formulation of a competing risks model and the basic
nonparametric estimation methods. We show why the use of survival functions in the competing risks
framework may mislead the user, and we illustrate the presented methodologies by developing two
examples from real data. The methods presented here can be implemented with several statistical
packages, including R, SPSS and SAS: we give some highlights on how to perform a competing risks
analysis with these software packages. The paper is organized as follows: in Section 2 we develop
the formulations of the competing risks model, pointing out the differences with classical survival
analysis, with special interest in the interpretation of the functions involved and their characteristic
features. A simulated illustration is presented to clarify the role of the functions of interest. In Section
3, the problem of estimating cause-specific hazards, cumulative incidence and survival-like functions
is tackled, and results of the two real data examples are presented. Finally, Section 4 provides step-
by-step guidelines on how to obtain such estimates using the statistical packages R, SPSS and SAS.

2



2 Competing risks formulation

In the following subsection, the competing risks model is specified through the characterization of
the joint distribution of (T, C). In section 2.2, we will focus on distinct specifications of the survival
function in the competing risks framework. A simulated illustration is developed in section 2.3 to
clarify the role of the functions of interest.

2.1 Model specification

Define, for each individual, the pair (T,C), T being the failure time, and C the failure cause. T
is assumed to be a continuous and positive random variable, and C takes values in the finite set
{1, . . . , k}. It is considered that the individual fails from one and only one cause. For instance, in the
appliance data set, C takes values in {1, 2}, corresponding to mode 1 and mode 2 failures. In the
follicular cell lymphoma data set also two causes of failure are possible, 1 for disease-related failures
and 2 for deaths not disease-related. The joint distribution of (T, C) is completely specified through
either the cause-specific hazards, λj(t), or through the cumulative incidence functions, Fj(t) (Lawless,
2003).

The cause-specific hazard function for the jth cause is defined as

λj(t) = lim
∆t→0

Pr
(
T < t + ∆t, C = j|T ≥ t

)

∆t
j = 1, . . . , k (2.1)

and represents the rate of occurrence of the jth failure. On the other hand, the cumulative incidence
function from type j failure, also referred to as subdistribution function, is defined by

Fj(t) = Pr(T ≤ t, C = j) j = 1, . . . , k,

and corresponds to the probability of a subject failing from cause j in the presence of all the competing
risks.

The total hazard λ(t) and the overall survival function S(t) for T are defined, respectively, in terms
of the specific hazards as follows:

λ(t) = lim
∆t→0

Pr(T < t + ∆t|T ≥ t)
∆t

=
k∑

j=1

λj(t),

S(t) = Pr(T > t) = e−
∫ t
0 λ(u)du = e−

∑k
j=1

∫ t
0 λj(u)du.

The distribution function for T is obtained from the cumulative incidence functions through F (t) =
P (T ≤ t) =

∑k
j=1 Fj(t). In addition, the subdensity functions fj(t) from cause j and the marginal

distribution of C are respectively given by:

fj(t) =
d

dt
Fj(t) = λj(t)S(t), and

πj(t) = Pr(C = j) = lim
t→∞Fj(t) j = 1, . . . , k.

The cumulative incidence function for cause j, Fj(t), can be obtained as well from the cause specific
hazard λj(t) and the overall survival function S(t) from the relationship:

Fj(t) =
∫ t

0
λj(u)S(u)du j = 1, . . . , k. (2.2)
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The survival function can be factorized into the k following functions S∗j (t) = e−
∫ t
0 λj(u)du:

S(t) = e−
∑k

j=1

∫ t
0 λj(u)du =

k∏

j=1

e−
∫ t
0 λj(u)du =

k∏

j=1

S∗j (t). (2.3)

Caution is needed when interpreting functions S∗j (t). Despite having the mathematical properties of
continuous survivor functions, they are not the survivor functions of any observable random variable
(Lawless, 2003). Moreover, S∗j (t) 6= 1 − Fj(t). In the next section, we will discuss the problem
of interpreting these probabilities, among other survival-like functions which are easily defined and
intuitively appealing.

2.2 Cause-specific survival-like functions

In the competing risks framework, compared to classical survival analysis where the survival function is
often used to describe T , it seems odd to use the cumulative incidence function Fj(t) instead of some
type of cause-specific survival function for cause j. The first candidates would be the above-defined
S∗j (t) functions. We have noted, though, that these functions do not have the usual meaning of a
survival function in the classical approach. In addition, it can be seen that they do not correspond to
the joint probability of failing from cause j after t, P [T > t,C = j].

These considerations lead us to define two more functions that may play the role of cause-specific
survivals. On one hand, we define

Sj(t) = 1− Fj(t),

as the complement of the cumulative incidence function. On the other hand, and by analogy with the
definition of Fj(t), we define

S̃j(t) = P [T > t, C = j].

These three functions S∗j (t), Sj(t) and S̃j(t) are, for each j, survival-like functions, that is, functions
which satisfy some of the mathematical properties of a survival function. In the following, we will
deepen on their interpretation, we will see why they are not proper survival functions, and which is
the relationship among them. To this aim it is worthwhile to keep in mind that a function S(t) is a
survival function if it is defined in [0,∞), it is non-negative and non-increasing, it is right-continuous,
it satisfies S(0) = 1, and limt→∞ S(t) = 0. In addition, S(t) is a survival function of a random
variable T if S(t) = P [T > t].

We will first focus in the interpretation of function Sj(t) = 1− Fj(t). It represents the probability of
not failing from cause j before t. It is not a proper survivor function because

lim
t→∞Sj(t) = 1− lim

t→∞Fj(t) = 1− P [C = j],

which is strictly positive if there are at least two causes of failure. Moreover,

Sj(t) = 1− Fj(t) = 1− F (t) +
∑

` 6=j

F`(t) = S(t) +
∑

` 6=j

P [T ≤ t, C = `],

that is, it is the sum of the probability of having not failed for any cause by t plus the probability of
having failed before t from other causes than j. Function Sj(t) is the relevant piece to build the risk
set for Fine and Gray’s (1999) regression model for the cumulative incidence function.
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The second survival-like function of interest, S̃j(t) = P [T > t, C = j], represents the probability of
failing from cause j after t, and it is defined by analogy with the cumulative incidence function Fj . It
is not a proper survivor function because

S̃j(0) = P [C = j]

which is strictly below 1 if there are at least two causes of failure. The relationship with Fj(t) is given
by

S̃j(t) = P [T > t, C = j] = P [T > j|C = j]P [C = j] = (1− P [T ≤ t|C = j])P [C = j]
= P [C = j]− P [T ≤ t, C = j] = P [C = j]− Fj(t).

Hence, it behaves like a complementary probability for Fj(t), complementary on the probability of fail-
ing from cause j, P [C = j]. Note as well that the overall survival function S(t) could be decomposed
in terms of S̃j(t) as follows:

S(t) = 1− F (t) = 1−
k∑

j=1

Fj(t) = 1−
k∑

j=1

P [C = j] +
k∑

j=1

P [T > t,C = j] =
k∑

j=1

S̃j(t).

The expression of S(t) as a sum of S̃j(t) is indeed different from the alternative decomposition

S(t) =
∏k

j=1 S∗j (t) (see (2.3)), and shows that S̃j(t) and S∗j (t) are different. These functions are
estimable consistently based on observed competing risks data, but in the literature they have been
less used than their counterparts Fj(t) (for example, as in Peterson, 1976).

The critical point about interpreting survival-like functions, though, correspond to functions S∗j (t).
These functions, encountered in the factorization of the survival function S(t) (2.3), correspond to
the survival functions that would be obtained from the cause-specific hazard functions λj(t), when
failure times from other causes are treated as censoring observations. In doing so, the assumption of
independence between failure time and censoring time is possibly violated. Thus, only when distinct
causes of failure are assumed to be independent, 1− S∗j (t) is fully interpretable as the probability of
failing from cause j if the other causes of failure were removed (Gooley et al., 1999). Hence, only
under independence, S∗j (t) and Sj(t) are equal.

To clarify this interpretation, assume that in the appliance data, several testing procedures are per-
formed in order to assess the reliability of different designs for the small electrical appliances. At
a selected stage of the developing process, two causes of failure are possible, mode 1 and mode 2,
so S∗j (t), j = 1, 2 can be estimated. Now assume that, given these estimates, a change in design
would result in mode 1 being eliminated, and that it would not affect failures due to mode 2. Under
this scenario, new appliances manufactured under the new design will fail only due to mode 2 with a
probability of 1 − S∗2(t). This probability is here fully interpretable as a marginal probability, though
the underlying assumption was that mode 1 and mode 2 failures were independent. Otherwise, a
change in design to remove mode 1 would have modified the probability of failing due to mode 2. In
competing risks arising from medical studies, the inherit risk of failing from a specific cause of a given
individual cannot be easily removed. Such an interpretation of S∗j (t) necessarily implies that being at
risk of cause 1 is independent of being at risk of cause 2. Many situations arise, though, where such
an assumption is untenable.

S∗j (t) can be estimated from observed data using the Kaplan-Meier methodology. The availability of
software to obtain this estimate has lead to the incorrect use of 1− S∗j (t) to estimate the cumulative
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probability of failure from type j, Fj(t) = 1 − Sj(t). With this procedure, a biased estimate of
Fj(t) is obtained (Pepe and Mori, 1993). This is clear intuitively since S∗j (t) only depends on the

cause-specific hazard λj(t), whereas Fj(t) depends on all cause-specific causes λ̂`(t), ` ∈ {1, . . . , k}
through the survival function S(t) (see 2.2). Specifically, an estimate of 1−S∗j (t) would overestimate
Fj(t) (Putter et al., 2007). This is reasonable, because if an individual failing from other causes is
treated as a censored observation, it is assumed that the individual will fail from the cause of interest
j at any point in the future, which in some situations may be unfeasible: if an individual dies due to
cancer, he/she would not certainly die (again) due to a heart attack. By censoring individuals, we
expect a higher incidence of failures.

In effect, there always exist s > 0 such as Fj(s) < 1 − S∗j (s). Indeed, it always exists ` 6= j and

s > 0 such as Λ`(s) =
∫ s
0 λ`(u)du > 0. That is, there exists at least one other cause of failure

with at least one failure. Otherwise, there would not be competing risks in our data. Therefore,
Λ(s) =

∑k
m=0 Λm(s) > Λj(s). Being g(u) = e−u non-increasing and Λj(u) non-negative,

S∗j (s) = e−Λj(s) > e−Λ(s) = S(s),

and thus,

Fj(s) =
∫ s

0
S(u)λj(u)du <

∫ s

0
S∗j (u)λj(u) = 1− S∗j (s).

2.3 Illustrating a competing risks model

An alternative model for the competing risks situation is the latent failure times approach. A failure
time for each cause is defined, T1, T2, . . . , Tk, and each represents the hypothetical failure time if other
causes of failure were not present. Therefore, an underlying joint multivariate distribution F (t1, . . . , tk)
rules the model. However, when all risks are present, only T = min(T1, . . . , Tk) together with C = j
with T = Tj can be observed. Then, the joint distribution is not identifiable based uniquely on the
observed data -the identifiability problem defined as such by Tsiatis (1975)-. Indeed, two distinct joint
distributions F1(t1, . . . , tk) and F2(t1, . . . , tk) may result into the same marginal for (T, C). Only
under strong assumptions such as independence the multivariate distribution is identifiable, but the
independence assumption cannot be tested with the competing risks observed data. The latent failure
approach, then, has little practical use. See Kalbfleisch and Prentice (2002), Lawless (2003) and
Andersen et al. (2002), for example, for detailed discussion and further references on this issue.

To better comprehend the difficulties arising from a competing risks analysis, we present an illustration
based on simulated competing risks data and we graphically represent the functions describing the joint
distribution (T,C): the cause-specific hazards and the cumulative incidence functions. In addition,
the marginal distributions of the latent times from which competing risks data is simulated are also
plotted, in order to highlight the differences between the estimable and not estimable functions under
a competing risks analysis. Finally, survival-like functions presented in the previous section are plotted
to highlight their properties.

To obtain a competing risks model we first specify a bivariate time distribution model, which have
been chosen following Klein and Moeschberger (1988) and Zheng and Klein (1995). Assume T1 and
T2 are taken as Weibull distributions with shape parameters 2 and 4 respectively, and identical scale
equal to 1. Denote by H1(t) and H2(t) their corresponding marginal survival functions, and define
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Figure 1: (a) Marginal hazard functions for T1 and T2 (not observed). (b) Marginal distribution
functions for T1 and T2 (not observed). (c) Cause-specific hazards for cause 1 and cause 2
(observed). (d) Cause-specific cumulative incidence functions for cause 1 and cause 2 (observed).

the joint survival function H(t1, t2) via a Clayton copula (Clayton, 1978) as follows:

H(t1, t2) = P (T1 > t, T2 > t) =

[(
1

H1(t1)

)θ−1

+
(

1
H2(t2)

)θ−1

− 1

]− 1
θ−1

θ ≥ 1, (2.4)

where θ ≥ 1 represents the positive association between T1 and T2. For the purpose of this illustration,
θ is taken equal to 3, which corresponds to a value of 0.5 for Kendall’s τ . Figure 1 (a) and (b) show
the marginal hazard and distribution functions of T1 and T2, respectively.

In a competing risks framework, only the minimum between T1 and T2 would be observed, T =
min(T1, T2) together with a label identifying the random variable that achieves the minimum, C = j
if T = Tj . To simulate competing risks data, it suffices to generate bivariate time data coming from
model (2.4) and obtain (T, C) from these data. The relationship between the bivariate distribution
and the competing risks model -for cause j = 1, for instance- is given by the following expressions:

S(t) = P [T > t] = P [min(T1, T2) > t] = P [T1 > t, T2 > t] = H(t, t),
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Figure 2: Survival-like functions for each cause of failure.

F1(t) = P [T ≤ t, C = 1] = P [T1 ≤ t,T1 < T2] =
∫ t

0
dt1

∫ ∞

t1

∂2H(t1, t2)
∂t1∂t2

dt2

λ1(t) =
f1(t)
S(t)

Cause-specific hazards and cumulative incidence functions for each of the two causes are depicted in
Figure 1 (c) and (d), respectively, showing a difference between the competing risk model and the
marginal distributions T1 and T2. It must be reminded here that in the presence of real competing
risks data, marginal distributions cannot be identified, and thus never recovered, from observed data.

Figure 2 shows the behavior of the three survival-like functions Sj(t), S̃j(t) and S∗j (t) defined in the
previous section in the scenario simulated above. Some of their properties are clearly seen in the figure.
For example, function S̃j(t), plotted with a dotted line, starts at 0 with value 0.4 for cause 1 and 0.6
for cause 2, representing the probabilities P [C = 1] and P [C = 2] respectively. Indeed, these are the
proportion of each cause simulated from our data. On the other hand, Sj(t) = 1 − Fj(t) -dashed
line- is systematically over S∗j (t) -solid line-. Therefore, the Kaplan-Meier methodology providing an
estimate for 1− S∗j (t) would systematically overestimate Fj(t).
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3 Estimation

In this section we first propose non-parametric estimators for all the functions introduced in section
2. Next we illustrate the methods for the appliance data set and the follicular cell lymphoma study,
emphasizing the differences between cause-specific survival-like functions S∗j (t), Sj , and S̃j(t).

3.1 Nonparametric estimation

Consider a random sample of n individuals, (T1, C1), . . . , (Tn, Cn), where Ti is the time of failure and
Ci is the cause of failure for subject i. For each individual, there exists a non-negative right censoring
time Vi, independent of (Ti, Ci). Let δi = I(Ti ≤ Vi) be the censoring indicator, and denote by
C̃i = δiCi the cause of failure for failing individuals or 0 for censored individuals. The observed data
for the ith individual are given by

{Yi = min(Ti, Vi), δi, C̃i}.

Let 0 < y1 < · · · < yN be the ordered distinct observed time points. We denote by dij the number
of subjects failing from cause j at time yi. The number of subjects failing at time yi from any cause
is obtained by the sum of subjects failing for each cause at yi, di =

∑k
j=1 dij . Finally, we define ni

as the number of individuals at risk at yi, that is, alive and uncensored just prior to this time. We
note that ni =

∑n
`=1 I`(yi), where I`(yi) = I(y` ≥ yi) is an indicator function which takes value 1 if

y` ≥ yi, 0 otherwise.

An estimate of the cause-specific hazard for cause j (2.1) at time yi is given by λ̂j(yi) = dij

ni
, and it

is 0 at any other time. Hence, the Nelson-Aalen estimator for the cumulative cause-specific hazard
function, Λj(t) =

∫ t
0 λj(u)du, is given by

Λ̂j(t) =
∑

i:yi≤t

dij

ni
j = 1, . . . , k. (3.1)

The overall survival function for T can be estimated either by the Kaplan-Meier estimate:

Ŝ(t) =
∏

i:yi<t

(
1− di

ni

)δi

,

or as a function of the Nelson-Aalen estimate, that is, S̃(t) = exp
[−∑k

j=1 Λ̂j(t)
]
.

A natural non-parametric estimate of the cumulative incidence function Fj(t) =
∫ t
0 λj(u)S(u)du (2.2)

is given by

F̂j(t) =
∫ t

0
λ̂j(u)Ŝ(u)du =

∑

i:yi≤t

dij

ni
Ŝ(y−i ) j = 1, . . . , k, (3.2)

where, given that Ŝ(t) is a step function jumping at yi, Ŝ(y−i ) is the value of Ŝ at the left limit of
yi. The probability of not failing from cause j before t, that is, Sj(t) = 1−Fj(t), is straightforwardly
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estimated by Ŝj(t) = 1− F̂j(t), with F̂j given in (3.2). The probability of failing from cause j after
time t, S̃j(t), is consistently estimated by

̂̃Sj(t) =
1
n

n∑

i=1

I(Yi > t, Ci = j) j = 1, . . . , k (3.3)

(Peterson, 1976). Finally, functions S∗j (t) are estimated using the Kaplan-Meier methodology re-
stricted to specific failures for each cause treating failures from other causes as right-censored obser-
vations,

Ŝ∗j (t) =
∏

i:yi<t

(
1− dji

ni

)δij

.

In the following two sections, previous estimation procedures are illustrated by applying them to the
appliance and the follicular cell lymphoma data sets.

3.2 Example: The appliance data

The appliance data set is described in Nelson (1982). The original experiment consisted of several
life tests applied on 407 units to determine the number of cycles a unit would work until failure or
removal from test, and its failure code. Units were tested at various stages in their development
program, and divided by date of manufacture into five groups. Our illustration is restricted to 106
units corresponding to groups 2 and 3 for which a manual test was performed. For these groups, only
six causes of failure exhibit. For the purpose of our example we distinguish the most frequent cause
11 labeled as Mode 2 from the other 5 causes grouped together as Mode 1.

Table 1 presents the nonparametric estimates proposed in section 3.1 for the appliance data set. The
first column contains a subset of observed time-cycles at which a failure of either type has occurred,
yj . The first failure occurred in the 45th time-cycle, and the last event in the time-cycle 1198. The
second and third column show, respectively, the number nj of individuals at risk of failing right before
time yj , and the number dj of individuals failing at yj . The fourth column represents the estimation of
the overall survival, that is, the survival function of the time T to the first event happening. The next
three columns summarize the number of individuals failing d1j , the estimated cause-specific hazards

λ̂1(yj), and the cumulative incidence function F̂1(yj) at time yj for Mode 1. The last three columns
summarizes the same quantities for Mode 2. Figure 3 graphically represents the estimated cumulative
hazard functions and the estimated cumulative incidence functions for each cause. It can be observed
that the behavior of both failure modes is similar up to 400 time-cycles approximately. From this
point on, mode 2 failures are more frequent.

Results for the estimation of survival-like functions Sj(t), S∗j (t) and S̃j(t) are shown in Table 2. For
each mode of failure, the table contains the number of failures at a given time and estimates for
the three survival-like functions. They are also plotted in Figure 4. Characteristic features of these
survival-like functions, as described in section 2.2, are distinguished in this example. For example,
S̃j(0) equals to the proportion of failures due to cause j. In our data set, 12 units fail due to mode 1,
thus 12/106 = 0.1132, which is exactly the value of S̃1(0) (see the first row of Table 2). There are
34 mode 2 failures, therefore, S̃2(0) = 34/106 = 0.3208. Notice, in addition, that Sj(t) is slightly
greater than S∗j (t) for all t, confirming the existent bias in the Kaplan-Meier estimation in the presence
of competing risks.
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Figure 3: Appliance data set: (a) Cause-specific cumulative hazard functions. (b) Cumulative
incidence functions.

Mode 1 Mode2

yj d1j Ŝ1(yj)
ˆ̃S1(yj) Ŝ∗1 (yj) d2j Ŝ2(yj)

ˆ̃S2(yj) Ŝ∗2 (yj)
0 0 1.0000 0.1132 1.0000 0 1.0000 0.3208 1.0000
45 1 0.9906 0.1038 0.9906 0 1.0000 0.3208 1.0000
73 0 0.9906 0.1038 0.9906 1 0.9811 0.3019 0.9810
190 1 0.9619 0.0755 0.9608 0 0.9524 0.2736 0.9518
241 1 0.9516 0.0660 0.9500 0 0.9524 0.2736 0.9518
281 1 0.9413 0.0566 0.9391 0 0.9422 0.2642 0.9410
410 1 0.9205 0.0377 0.9167 2 0.9108 0.2358 0.9073
485 0 0.9100 0.0283 0.9051 1 0.9003 0.2264 0.8957
571 0 0.8992 0.0189 0.8927 1 0.8679 0.1981 0.8597
635 0 0.8992 0.0189 0.8927 1 0.7618 0.1226 0.7408
658 1 0.8848 0.0094 0.8733 1 0.7475 0.1132 0.7247
838 0 0.8848 0.0094 0.8733 1 0.6489 0.0566 0.6118
1198 1 0.8023 0.0000 0.6987 1 0.4451 0.0000 0.3782
1300 0 0.8023 0.0000 0.6987 0 0.4451 0.0000 0.3782

Table 2: Estimates of survival-like functions Sj(t), S̃j(t) and S∗j (t) in the appliance data.
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Figure 4: Survival-like functions in the appliance data.

3.3 Example: The follicular cell lymphoma study

The follicular cell lymphoma data set is found as an example in Pintilie (2006), and it is available at
http://www.uhnresearch.ca/hypoxia/People_Pintilie.htm. The database was created at the
Princess Margaret Hospital in Toronto, and contains data from 541 patients having follicular cell type lymphoma
registered at the hospital between 1967 and 1996, with early stage disease (I or II), and treated with radiation
alone (RT) or with radiation and chemotherapy (CMT). The goal of this study was to report the long-term
outcome in this group of patients, including the following disease-related events: non-response to treatment,
relapse and death. Time to the first failure is computed in years from the date of diagnosis. In addition, deaths
not disease-related are frequent in this cohort, and must be considered as a competing event to disease-related
failures.

Table 3 contains the non parametric estimates for the overall survival function, representing the probability of
surviving without failures at each time point, as well as the cause-specific estimates for the hazard and the
cumulative incidence functions. From Figure 5 it seems clear that disease failures are more frequent than non
disease-related deaths, mostly for early times, but after 20 years of following, the risk of dying increases and
deaths are more frequent.

Figure 6 represents the survival-like functions Sj , S̃j and S∗j and punctual estimates can be found in Table
4. S∗j -estimated by the Kaplan-Meier methodology- and Sj = 1 − Fj -correctly estimated by the multiple
decrements method- are remarkably different in this example, showing how the Kaplan-Meier method would
overestimate the risk of failing due to the disease.
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Figure 5: Follicular cell lymphoma data set: (a) Cause-specific cumulative hazard functions. (b)
Cumulative incidence functions.

Disease Failure Death without disease failure

yj d1j Ŝ1(yj)
ˆ̃S1(yj) Ŝ∗1 (yj) d2j Ŝ2(yj)

ˆ̃S2(yj) Ŝ∗2 (yj)
0.000 0 1.0000 0.5028 1.0000 0 1.0000 0.1405 1.0000
0.559 1 0.9057 0.4085 0.9057 0 1.0000 0.1405 1.0000
0.988 1 0.8595 0.3623 0.8593 0 0.9908 0.1312 0.9895
1.418 1 0.8132 0.3161 0.8125 0 0.9871 0.1275 0.9850
1.963 1 0.7669 0.2699 0.7652 0 0.9796 0.1201 0.9756
2.697 0 0.7132 0.2163 0.7100 1 0.9722 0.1128 0.9654
3.452 1 0.6704 0.1738 0.6654 0 0.9667 0.1072 0.9574
4.857 1 0.6246 0.1294 0.6167 0 0.9476 0.0887 0.9279
5.908 0 0.6001 0.1072 0.5902 1 0.9414 0.0832 0.9175
7.083 0 0.5694 0.0813 0.5563 1 0.9260 0.0702 0.8906
9.607 0 0.5202 0.0462 0.4997 1 0.9054 0.0555 0.8518
11.732 0 0.4861 0.0240 0.4590 1 0.8822 0.0407 0.8025
21.265 0 0.4382 0.0018 0.3935 1 0.8114 0.0111 0.6343
31.102 0 0.4282 0.0000 0.3778 0 0.6548 0.0000 0.2197

Table 4: Estimates of survival-like functions Sj(t), S̃j(t) and S∗j (t) in the follicular cell lymphoma
data.
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Figure 6: Survival-like functions in the follicular cell lymphoma data set.

4 Software

4.1 Competing risks analysis with R

In the following, we describe the code in the free software R2 used to implement the methodology explained in
this paper. Two additional packages are needed: survival and cmprsk. The former is included by default
with the software, but needs to be loaded to access its functions by the command:

library(survival).

The cmprsk needs first to be downloaded from R’s web site, and loaded similarly. Assume we have a data
frame containing at least two columns time and cens, being, respectively, the vector with observed times for
each individual, and the vector of failing causes. The cens vector equals 0 when individuals are censored at
their observed time, or takes value j among the distinct possible causes of failure. For this illustration, assume
there are only two causes of failure, and therefore, cens takes values in {0, 1, 2}.

Number of individuals at risk and failing at any time t

Two simple functions can be implemented to obtain, at any given time t, the number of individuals at risk of
failing for any cause and the number of individuals failing from each cause:

1R Development Core Team (2008). R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
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risk<-function(t=0,vT){ fail<-function(t=0,vT,vC,c=1){
val<-sum((vT>=t),na.rm=T) val<-sum((vT==t)*(vC==c),na.rm=T)
return(val) return(val)
} }.

The risk function provides, at any time t, the number of individuals at risk, based on the information given
by the vector of times vT. The fail function provides the specific number of failures at time t from cause c,
based on the information given by the vector of times vT and the vector of causes vC.

Now we apply functions risk and fail to each element of vectors time and cens, in order to obtain vectors
of the same length containing the number of individuals at risk (ni), and the number of individuals failing from
each cause (d1 and d2):

ts<-c(0,unique(sort(time)))
ni<-numeric(length(ts))
d1<-numeric(length(ts))
d2<-numeric(length(ts))

for(i in 1:(length(t))){
ni[i]<-risk(ts[i],time)
d1[i]<-fail(ts[i],time,cens,1)
d2[i]<-fail(ts[i],time,cens,2)

}

Cause-specific hazards and cumulative incidence functions

Estimates for the cause-specific hazards at any observed time are easily obtained by:

lam1<-d1/ni
lam2<-d2/ni.

The Kaplan-Meier estimate of the survival function for time, without taking into account distinct causes of
failure, is obtained by the survfit function. We need to define a censoring indicator for any of the two events:
delta=1 when cause=1 or 2, 0 otherwise.

delta<-as.integer(cens!=0)
sur<-survfit(Surv(time,delta))
S<-c(1,sur$surv)

The cumulative incidence functions can be obtained using the cuminc function from the cmprsk package
(Gray, 2004):

cif<-cuminc(time,cens,cencode=0)

From this object cif we can extract the cumulative incidence function from each cause, cif1 and cif2.

Survival-like functions

Estimates for S∗j (t) are then obtained by

S1.est<-1-cif1
S2.est<-1-cif2.

A possible implementation of expression (3.3) to estimate S̃j(t) is:
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S1.td<-numeric(length(ts))
S2.td<-numeric(length(ts))
for (i in:length(ts)){

S1.td[i]<-mean((time>ts[i])*(cens==1))
S2.td[i]<-mean((time>ts[i])*(cens==2))

}.

Finally, Sj(t) are obtained by taking as failures only those of type j, and treating other causes as censored
observations. The Kaplan-Meier estimate is obtained from such data:

delta1<-as.integer(cens==1)
delta2<-as.integer(cens==2)
S1<-survfit(Surv(time,delta1))$surv
S2<-survfit(Surv(time,delta2))$surv.

4.2 Competing risks analysis with SPSS

Methods to deal with competing risks analysis are not implemented in the mainstream statistical software SPSS3

but can be obtained in a few simple steps. In this section, we describe in some detail those steps, and pieces
of SPSS syntax are given. Assume, as in the previous section, that the time to failure of interest is denoted by
time, and the variable cause contains the causes of failure as well as the censoring indicator coded by 0.

Cause-specific hazards and cumulative incidence functions

Firstly, we estimate the overall survival function S(t) by the Kaplan-Meier method from the time variable time
and the censoring indicator defined by cause 6= 0, that is, events are failures due to any cause. In the SPSS
windows, the steps to follow are:

1. Analyze I Survival I Kaplan-Meier...

2. Select time for the ’Time’ box in the opened window, and cause for the ’Status’ box. Press the ’Define
Event...’ button.

3. The event of interest is defined by the codes of any kind of failure. Select the second checkbox ’Range
of values’ and introduce the code for the first failure and the code for the last failure. For example, if
there were three causes of failure in your data set, specify ”from 1 to 3”. Press the ’Continue’ button.

4. Press the ’Save’ button, and specify the survival function to be saved. Press the ’Continue’ bottom.

5. Now you can press the ’OK’ button to obtain the estimates or you can press the ’Paste’ button. Code
will be generated and pasted into a syntax file, which is useful to keep trace of the work done or when a
specific procedure must be run several times.

The syntax generated in the past steps is:

KM
time /STATUS=cause(1 THRU 2)
/PRINT TABLE MEAN
/SAVE SURVIVAL .

Estimates for S(t) function will be added as a new column in our data set. Estimates are only computed
for those cases corresponding to a failure time. Therefore, cases corresponding to censored observations are
assigned a missing value. We rename this new variable in our data set so as not to get confused in the next
steps. The variable can be directly renamed in the Variables Window, but it can be saved in the syntax script:

2SPSS Inc. SPSS 15.0 for Windows (2006) v.15.0.2, Chicago IL. URL http://www.spss.com
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rename variables (SUR_1=Surv).

There are two procedures providing estimates for the cause-specific hazards. On one hand, we can estimate the
survival-like functions S∗j (t) by a Kaplan-Meier analysis for each cause of failure, and then obtain estimates for

the cumulative cause-specific hazards by Λ̂j(t) = − log S∗j (t). Hence, follow the steps above for each cause of
failure separately. To do so, inside the ’Define Event...’ button, select the first option ’Single value’ and define
the code for the cause of interest. For example, in the follicular cell lymphoma data, disease-related relapse is
coded by 1. To determine the hazard specific to relapse, we will define the event by the value 1 in the variable
cause. In addition to the survival function, also the cumulative hazard function is saved. Since the survival
functions obtained this way estimate S∗j (t), we will rename these variables accordingly. For example, if only
two causes of failure are possible:

KM
time /STATUS=cause(1)
/PRINT TABLE MEAN
/SAVE HAZARD SURVIVAL.

KM
time /STATUS=cause(2)
/PRINT MEAN
/SAVE HAZARD SURVIVAL.

RENAME VARIABLES (SUR_1 SUR_2=S_star_1 S_star_2).

The second procedure to obtain estimates for the cumulative cause-specific hazards refers to the method of
Nelson-Aalen. There is no specific procedure to apply the method in SPSS. Therefore, we may save the neces-
sary information and compute the hazard manually, as we did in R, or we can obtain them indirectly by fitting
a Cox model without covariates, by saving the hazard function in the ’Save’ menu. In doing so, Cox-Snell
residuals are computed, which corresponds to the Nelson-Aalen estimate for the cumulative hazard function
when no covariates are present. The two procedures provide similar estimates for the cumulative cause-specific
hazards.

We will need some data manipulation to obtain the point cause-specific estimates. We have been working on
the original data set, with one register for each individual. Now we need a data set containing just distinct
failure times. To obtain it, delete variables not involved in the analysis and keep time, cause, Surv,
S star 1, S star 2, HAZ 1 and HAZ 2, and create with this variables a new data set. There may be
duplicate registers due to ties if data are aggregated. There exists an option in the ’Data’ menu to identify
those duplicates:

1. Data I Identify duplicate Cases...

2. In the first box, ’Define matching cases’, include time, cause and Surv.

For each set of duplicate registers, SPSS chooses the last one -by default, it can be changed but there’s no
need in this analysis-. A new variable FirstLast is created to indicate the selected records. Now we apply
the following filter to our data:

FILTER OFF. USE ALL.
SELECT IF(FirstLast=1 & cause ˜= 0). EXECUTE.

This filter can be applied directly through the Windows Menu by:

1. Data I Select Cases ...

2. Select the second radio button ’If condition is satisfied...’. Press the ’If...’ button.

3. Write the condition FirstLast=1 & cause ∼= 0 within the expression menu. Press ’Continue’.
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4. In the ’Non-selected cases are...’ box, select the third radio button ’Deleted’. Press the ’Accept’ button.

Cause-specific hazards are obtained from the cumulative cause-specific hazards estimated previously by λ̂j(yi) =
Λ̂j(yi) − Λ̂j(yi−1). We can use the DIFF function, which produces new variables based on the differences
between elements of existing variables. For example, for cause 1 failures:

SORT CASES BY
cause (A) time (A) .

CREATE h01=DIFF(HAZ_1,1).

DO IF ($CASENUM=1).
COMPUTE h1 = HAZ_1. *the first failure time

ELSE.
COMPUTE h1 = h01.

END IF. EXECUTE.

Finally, cumulative incidence functions are estimated using expression 3.2, first obtaining, for each specific
failure time yi, the product λj(yi)S(yi) then adding up to the previous terms:

COMPUTE sh1 = Surv * h1 . EXECUTE .
COMPUTE sh2 = Surv * h2 . EXECUTE.
CREATE cif1 cif2 = CSUM(sh1 sh2).

Function CSUM produces a new variable based on the cumulative sums of an existing variable.

Survival-like functions

We have previously find out how to estimate S∗j (t) = exp{− ∫ t

0
λj(u)du}, by performing several Kaplan-Meier

analysis or each cause of failure. Sj(t) = 1− Fj(t) is easily obtained in SPSS by the transformation:

COMPUTE Sur_1 = 1-cif1 . EXECUTE.
COMPUTE Sur_2 = 1-cif2 . EXECUTE.

Finally, to estimate the S̃j(t) functions we need to reopen the original data set. We will estimate this function
at every observed time in our data. At this point, we need to know how many failures due to each cause there
are in our data. For example, in the follicular cell lymphoma data set, there are 272 disease-related relapses
and 76 non disease-related deaths. Now we simply compute the cumulative number of events for each cause,
which can be obtained by performing Kaplan-Meier analysis for every cause, and inside the ’Save...’ button,
select ’Cumulative events’:

KM
time /STATUS=cause(1)
/PRINT NONE
/SAVE CUMEVENT .

KM
time /STATUS=cause(2)
/PRINT NONE
/SAVE CUMEVENT .

We need the complementary number of events, that is, at each time t, the number of failures due to a specific
cause that will occur after t. Since we know the total number of events, we can define:

COMPUTE I_CUM_1 = 272-CUM_1 .
EXECUTE .
COMPUTE I_CUM_2 = 76-CUM_2 .
EXECUTE .
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These vectors contain, for each observed time, the number of individuals failing after this time. The desired
estimates are obtained by dividing each element by the total number of cases, 541 in the follicular data set:

COMPUTE S_til_1 =I_CUM_1 / 541 .
EXECUTE .
COMPUTE S_til_2 =I_CUM_2/ 541 .
EXECUTE .

4.3 Competing risks analysis with SAS

There are no SAS4 procedures specifically designed to perform a competing risks analysis. However, we can
use existing procedures and web-available macros to implement the methodology. The Kaplan-Meier estimate
of the overall survival function is obtained by the LIFETEST procedure. The OUTSURV option permits to
create a new data frame containing the estimates. Version 9.2 of this software provides the Nelson-Aalen
estimates for the cumulative hazard function (see 3.1), but it is not possible with earlier versions, where they
must be constructed manually (follow the example available at http://www.ats.ucla.edu/stat/sas/
examples/asa/asa2.htm).

Cumulative incidence functions can be obtained manually from the previous estimates, but there are macros
available to construct them. See for example, the book by Pintilie (2006), where the author describes some
useful macros for non-parametric and regression analysis (available at the author’s web site). Other macros can
be found at http://mayoresearch.mayo.edu/mayo/research/biostat/sasmacros.cfm and
http://www.biostat.mcw.edu/software/SoftMenu.html (Gichangi and Vach, 2005). When it
comes to survival-like functions, S∗j (t), through the Kaplan-Meier estimates, and Sj(t), from the cumulative

incidence functions, are straightforward to obtain with the above-mentioned procedures. To obtain S̃j(t) at each
observed failure time point, the LIFETEST procedure can also be used. For example, consider the follicular
cell lymphoma data: there are 541 patients, 272 for whom a disease-related relapse -cause 1- is observed. To
estimate S̃1(t) associated to these relapses, apply the LIFETEST procedure to failures from cause 1, that is,
treating failures from cause 2 as censored observations. By the ODS statement, information on number of
failures at each time point is saved (variable Failed in the new data set), which is enough information to
implement the estimator (3.3):

*compute the number of individuals failed from cause 1 at each time;
proc lifetest data=data1;
time dftime*cause(0,2);
ods output ProductLimitEstimates=cause1_0;
run;

*compute the number of individuals remaining to fail;
data cause1_1;
set cause1_0;
where Survivalˆ=.;
ind=272-Failed;
keep time failed left ind;
run;

*obtain S˜ for cause 1, for each time;
data cause1_2;
set cause1_1;
Surv_tilde_1=ind/541;
run;

3SAS Institute Inc. SAS for Windows (2001) v.8.2, Cary, NC, USA. URL http://www.sas.com
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