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Abstract

The distribution of spatial domain structures originated during one and three dimensional

Poisson-Voronoi transformations are computed analytically extending the recently obtained re-

sults for the two dimensional case. The presented method gives a full description of the developed

microstructure and is valid for tessellations of any dimensionality. The temporal and spatial depen-

dences of the domain structure are completely discriminated and separated, showing the existence of

geometric configurations independent of time. A single computation of the probability distribution

of these geometric configurations allows us to calculate the total free-boundary and size probabil-

ity distributions at any desired time. The obtained results show full agreement with stochastic

simulations and reproduce completely the previously existing partial results. A discussion about

the potential applications of the method to the calculation of other geometrical properties and the

characteristics of the final static structure leading to a gamma distribution of sizes is also presented.
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I. INTRODUCTION

Partition of space in separate domains giving rise to a tessellation is common in many

physical systems. In such systems, the geometrical properties of the domain structure deter-

mine most of the macroscopic properties and influence the posterior dynamics and evolution

of the system. Grain microstructure in metals, cellular structure in granular materials or

foams and the domain structure of magnetic materials are some typical examples of these

kind of systems. In this work we analyze the domain structure generated during a Poisson-

Voronoi (PV) nucleation and growth transformation. In a PV transformation, a set of

randomly distributed nucleation points starts growing simultaneously and isotropically oc-

cupying the untransformed space. The collision of two growing domains defines a static

boundary and the two domains remain distinguishable. The initial state of the system is a

random point distribution of nucleation sites, while the final stage -when all the untrans-

formed space is occupied- is a Poisson-Voronoi cellular network or tessellation [1][2]. In

between, the system consists of new phase domains partly in contact with each other and

surrounded by untransformed regions.

In a one-dimensional space, the domains are line segments which progressively occupy

the adjacent untransformed space at both sides of the segment. After colliding with other

domains at both sides, these mono-dimensional domains remain static. In two and three-

dimensional spaces, the initial circular or spherical growing domains become progressively

transformed into polygonal or polyhedral cells because of the collisions with their neighbours.

Figures 1 and 2 show the configuration of a given region at three different stages during a one

and a two-dimensional PV transformations respectively. This type of transformation is also

referred as transformation with saturation of nucleation sites [3][4][5], growth of pre-existing

nuclei [6], cell model [7][8] or crystallization with simultaneous nucleation [9].

A PV transformation is completely determined by two parameters, namely, the intensity

of the Poisson process ρ, that is the density of initial seeds or nucleation points, and the

growth rate of the domains u; these parameters determine the kinetics and the domain struc-

ture at any time t. Choosing the time origin t = 0 at the beginning of the transformation,

the space occupied by a domain without collisions at time t is KD(ut)D, where D is the

dimension of the system and

KD =
2π

D

2

DΓ (D/2)
. (1)
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Then the transformed space fraction x (t) is obtained from

x (t) = 1 − exp
[

−ρKD(ut)D
]

(2)

which is the well-known Avrami or KJMA (Kolmogorov-Johnson and Mehl-Avrami) equa-

tion for this kind of transformation [10][11] [12]. The evolution of x (t) for D = 1 and 2

is also depicted in figures 1 and 2. As all domains have the same growth rate, the spatial

configuration at a given value of x (t) is independent of the value of u. For the sake of

simplicity, in this work we will consider u = 1; the results for any other value of the growth

rate are easily obtained with the appropriate time scaling.

At the end of the transformation, this means when x (t) → 1 and t → ∞, the whole space

is occupied by static domains forming a PV tessellation, whose geometrical features have

been widely studied [2][13][14][15]. For instance, the probability density function (PDF) of

domain sizes of a PV tessellation is known to be a Gamma probability function

f (a) =
(νρ)ν

Γ (ν)
aν−1 exp (−νρa) , (3)

where the size a is defined as the length, area or volume occupied by a domain and the expo-

nent ν is found to be 2, 3.575 and 5.586 for D = 1, 2 and 3 respectively [16]. These result is

analytically deduced for the one-dimensional case [7][17], but it has not been mathematically

proofed for D > 1. For D > 1, the validity of the Gamma distribution has been checked

against stochastic simulations by fitting the numerical values of the exponent ν [13][15] [16].

The temporal evolution of the domain size distribution in a one-dimensional PV trans-

formation was completely described in reference [17]. In a one-dimensional system, the

domains can be treated as growing line segments which can be in just three collision states:

a) no-collisions, b) collision at one side, c) collisions at each side. This simplicity of the

collision process facilitates an analytical treatment that gives a complete description of the

domain structure at any time t during the transformation. The PDF of other characteristics

such as the length of untransformed gaps or the size of domain aggregates was also derived

by Schulze [17].

Finding an explicit solution for the temporal evolution of the domain structure for D > 1

remains an unsolved problem. There is an intrinsic topological reason for this, the number

of growth directions in one-dimensional systems is finite, while it becomes infinite in higher

dimensional systems. This prevents the extension of the method used in D = 1 to higher
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dimensions. Only very recently [18][19] the authors presented an analytical method for cal-

culating the PDF of any geometrical characteristic of the domains at any finite time t during

a PV transformation. This was possible by revealing the underlying self-similarity of the

growth-and-impingement process along the transformation. By this approach the deduced

analytical integral expressions can be calculated numerically to any desired accuracy, and

results for the domain size and domain free boundary distributions in a two-dimensional

transformation were presented. Furthermore, one of the main theoretical results of such

method is the fact that it is fully independent of the dimensionality of the space under

consideration. We show that in this paper by presenting a detailed calculation for the cases

of D = 1 and D = 3.

In section II we recapitulate the method and we generalize them to deal with PV transfor-

mations in spaces of any dimension. In section III we present the application of the method

to a one-dimensional PV transformation. Although the total size distribution for the D = 1

case was previously calculated, the new derivation presented here completes the generaliza-

tion of the method. The explicit results obtained for the one-dimensional system provide

additional information of the spatial configuration and they allow us a direct comparison

with D > 1 systems, this being particularly useful in the discussions given in following sec-

tions. In section IV we extent the calculation method to D > 1 and to an arbitrary domain

property. Computations of the free boundary and size of the domains are presented in detail

for the three-dimensional case, which is a case with high physical significance. Section V is

devoted to the final static structure, the potentiality of the presented calculation method

to provide a derivation of the Gamma distribution of sizes observed in PV tessellations is

discussed. The similarities between the D = 1 results, from which the Gamma distribution

is analytically obtained, and the D = 2 and 3 computations are presented and discussed.

Finally, in section VI we summarize the main results of the work.

II. TIME-INVARIANT PROBABILITY DISTRIBUTIONS OF GEOMETRIC

CONFIGURATIONS

The method presented in reference [18] is based on the calculation of the time-invariant

probabilities of geometric configurations for domains with a certain number of extended

collisions. Considering, without loss of generality, u = 1, the number k of extended collisions
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of a domain with nucleation point O is defined as the number of neighbouring nucleation

points Oi within a distance 2t of O. This is equal to the number of neighbouring domains that

would impinge with the domain if there was no screening by previous collisions. Considering

a Poisson point-distribution with density ρ in a space of dimension D, the probability of a

domain to have k extended collisions at time t is given by

Tk (t) =

(

KD2DtDρ
)k

exp
(

−KD2DtDρ
)

k!
, (4)

which is the probability of finding exactly k points within a region of volume KD (2t)D. At

t = 0 all the domains have k = 0 collisions, then T0 (0) = 1 and Tk (0) = 0 for any k > 0.

As the transformation proceeds, each Tk (t) function increases until reaching a maximum

value and then diminishes towards zero. A graphical representation of the Tk (t) functions

for D = 2 was given in reference [19].

Following the procedure detailed in references [18] and [19], the collision configuration of

a domain can be defined by the positions {Oi} (i = 1..k) of the k surrounding nucleation

points nearer than a distance 2t. In a D = 1 system these positions are determined just by

the distances ±2ti between Oi and O, where ti is the collision time between the two domains.

In D = 2 and 3 spaces these positions can be expressed as Oi = (2ti, θi) and Oi = (2ti, θi, ϕi)

in polar coordinates centered at the domain origin. Using a normalization li = ti/t of the

collision times, the collision configuration of a certain domain can be defined by the set {li},
{li, θi} or {li, θi, ϕi} for D = 1, 2 or 3 respectively. The probability of finding a domain

with a certain collision configuration at time t is found multiplying the probability ρdVDi of

finding a nucleation point within dVDi and the probability exp
(

−KD2DtDρ
)

of finding no

other nucleation point within the KD (2t)D region, this probability can be written as

Pk (O1, ..., Ok, t) = Tk (t)
k!

KD

k
∏

i=1

dVDi, (5)

where dVDi is the volume differential element at position Oi. For the cases of D = 1, D = 2

and D = 3 we have dV1i = 2dli, dV2i = lidlidθi and dV3i = l2i sin (θi) dlidθidϕi. The essential

point here comes from the fact that the probability of equation (5) is composed by two fac-

tors, one only dependent on time and the other only dependent on the collision configuration.

This result implies that the evolution of the domain structure in a PV transformation can

be interpreted as a sum of domain k-populations with time invariant normalized geometric

properties, each one of this populations containing a fraction of domains at time t given
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by equation (4). In the above expression we implicitly assumed a temporal order for the

collision times, that is li−1 < li. If this temporal order above chosen is not considered the

right hand side (rhs) of equation (5) should be divided by k!.

If the probability of finding a specific geometrical configuration among the domains with

given k is time invariant, then the PDF of any geometrical property of these domains must

be also time invariant. For a certain geometric characteristic, the calculation of these time-

invariant functions will allow us the construction of the overall PDF at any time t just by

adding the contributions Tk (t) of each k-population. In the following sections this is carried

out for the free-boundary and for the size of the domains. Finally, the explicit expressions

for the probability of a certain collision configuration of a domain with k extended collisions,

as they will be used in the following sections, can be written as

k!
k
∏

i=1

dli, for D = 1

k!
πk

k
∏

i=1

lidlidθi, for D = 2

k!
(

3
4π

)k
k
∏

i=1

l2i sin (θi) dlidθidϕi, for D = 3

(6)

which correspond to the time-invariant term in the rhs of equation (5) for the specific cases

of one, two and three dimensions.

III. RESULTS FOR D=1

A. Temporal evolution of the free boundary distribution

The free boundary fraction b of a domain is defined as the fraction of the domain boundary

in contact with untransformed space. In the case of a D = 1 PV transformation, the free

boundary fraction becomes a discrete variable having only three possible values: b = 1

(domains without collisions), b = 1/2 (domains with collisions in one side) and b = 0

(domains with collisions in each side). Thanks to this simplicity, the probability Qk,b of

being in one of these three cases for a domain with k extended collisions can be easily

calculated.

For k = 0 and k = 1 all the domains have b = 1 and b = 1/2 respectiveley, and so

Q0,1 = 1, Q0, 1
2

= 0, Q0,0 = 0 (7)
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and

Q1,1 = 0, Q1, 1
2

= 1, Q1,0 = 0. (8)

After that, each new extended collision has the same probability of being at either side of the

domain. The domains with collisions in just one side maintain b = 1/2 while the domains

with collisions in both sides have b = 0. This leads to the following general expression

Qk,1 = 0, Qk, 1
2

=

(

1

2

)k−1

, Qk,0 = 1 −
(

1

2

)k−1

(9)

for k > 0. These expressions give the fraction of domains in each of the three possible

boundary states for the population of domains with k extended collisions, these probabilities

are time invariant as expected. Therefore, the overall probability Qb (t) of finding a domain

in one of the three states at a certain time t can be easily obtained adding the contributions

of each k-population, that is

Qb (t) =
∞

∑

k=0

Qk,bTk (t) . (10)

Substituting the Tk (t) expression of equation (4) in the above equation we obtain

Q1 (t) = exp (−4ρt)

Q 1
2
(t) = 2 [1 − exp (−2ρt)] exp (−2ρt)

Q0 (t) = [1 − exp (−2ρt)]2

. (11)

The previous expressions can be derived using other arguments, for instance they can be

expressed in function of the transformed fraction x (t) = 1 − exp (−2ρt) as

Q1 (t) = [1 − x (t)]2

Q 1
2
(t) = 2 [1 − x (t)]x (t)

Q0 (t) = x (t)2

(12)

where it becomes obvious that Q1 (t), Q0 (t) and Q 1
2
(t) are respectively the probability of

two randomly chosen points to be found both in untransformed space, both in transformed

space and each one in a different state. The simplicity of the collision process in a D = 1

transformation makes the derivation of the above probabilities possible by many different

ways. The derivation in terms of extended collisions is presented here for completeness.
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B. Temporal evolution of the size distribution

In a D = 1 PV transformation the size of a domain corresponds to its length a. We define

here the normalized size of a domain as

s =
a

2t
(13)

where 2t is the size of a domain without any collision blocking its growth. These size s is

completely determined by the particular collision sequence of the domain {li}. Therefore,

the time-invariant size PDF gk (s) for domains with a given k can be calculated using the

probability for a certain collision sequence given by equation (6) and integrating over all the

possible sequences:

gk (s) ds = k!

1
∫

l1=0

· · ·
1

∫

lk=lk−1

δ (s − Sk (l1, ..., lk))

k
∏

i=1

dli (14)

where δ (.) is the Dirac delta function and Sk (l1, ..., lk) is a function which calculates s for

a particular collision sequence {li}.
The function Sk (l1, ..., lk) can be explicitly obtained in D = 1. For domains with k = 0

and k = 1 it is obvious that

S0 = 1, S1 (l1) =
1 + l1

2
. (15)

For k > 0, a discussion similar to the one in the free-boundary calculation leads to

Sk (l1, ..., lk) =







1+l1
2

, with probability
(

1
2

)k−1

l1+li
2

, with probability
(

1
2

)i−1
. (16)

In order to clarify the origin of the previous expression the derivations for k = 2 and

k = 3 will be detailed as examples. For a domain with k = 2 and a certain {l1, l2} with

l1 < l2, there is an equal probability of having the two extended collisions in the same side

or in different sides. In the former case the growth is stopped just in one side of the domain

at the first collision time, and the normalized domain size is then S2 (l1, l2) = 1+l1
2

. In the

latter case the growth is stopped at both sides of the domain and the size is S2 = l1+l2
2

. For

k = 3 and a certain {l1, l2, l3} with l1 < l2 < l3, there is a 1/4 probability of having all the

collisions at the same side and so S3 (l1, l2, l3) = 1+l1
2

, there is a 1/2 probability of having
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l1and l2 at different sides and so S3 (l1, l2, l3) = l1+l2
2

, and there is a 1/4 probability of having

the first and the second collision at the same side and the third one in the opposite side, this

giving S3 (l1, l2, l3) = l1+l3
2

. Extending this reasoning to larger k numbers the above general

expression for Sk (l1, ..., lk) is obtained for any k > 0.

Now, the functions gk (s) can be obtained calculating the integration in equation (14).

The first size PDF corresponding to k = 0 is then

g0 (s) = δ (s − 1) . (17)

For k > 0 the substitution of equation (16) in equation (14) leads to

gk (s) ds = k!

1
∫

l1=0

· · ·
1

∫

lk=lk−1

[

(

1

2

)k−1

δ

(

s − 1 + l1
2

)

+

k
∑

i=2

(

1

2

)i−1

δ

(

s − l1 + li
2

)

]

k
∏

i=1

dli.

(18)

The integration of the previous equation gives

gk (s) =







k (k − 1) s (1 − s)k−2 , for s < 1
2

k (k + 1) (1 − s)k−1 , for 1
2

< s < 1
. (19)

A detailed derivation of this result is given in appendix A.

Figure 3 shows the gk (s) functions for k = 1, 2, 3, 4 and 5. As shown in figure 3 the

time-invariant size probability density functions are strickingly simple. Using the expressions

obtained for the gk (s) functions, the total PDF of normalized sizes can be obtained as

gtotal (s, t) =
∞

∑

k=0

gk (s)Tk (t) , (20)

where the time evolution of the overall system is obtained as a summation of the time-

invariant functions, weighted by the fraction of domains with certain k at certain time t

given by equation (4). Figure 4 shows the gtotal (s, t) when the overall transformed fraction

is x (t) = 0.6. At this stage of the transformation the domains with k = 0 constitute the

16% of all the domains, and 99% of the domains have k ≤ 5. The total size probability

density function of figure 4 was computed adding the contributions of the gk (s) distributions

with k ranging from 0 to 5, which are also shown in the figure. The validity of the obtanied

results was tested by comparing to stochastic simulations. An unidimensional array of 214

positions was progressively covered by approximately 330 seeds randomly spread. Bars in

figure 4 correspond to the average of 100 of these simulations, showing full agreement with
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the computed gtotal (s, t). It must be noted that the height of the bar at s = 1, that is the

bin corresponding to the domains without collisions, has been artificially reduced in order to

improve the appraising of the details of the rest of the distribution. The probability density

function at s = 1 is a Dirac delta function, and so the height of the bar in a histogram

depends on the bin size.

The number of gk (s) distributions needed to compute the total PDF depends on the time

t and the desired accuracy of the calculation. However, in the case of D = 1 an explicit

result for the total size PDF can be obtained from equation (20). Using equations (4), (17)

and (19), the infinite series of equation (20) can be analytically solved. Then, from the

normalized size PDF gtotal (s, t) the total size PDF fD=1 (a, t) is obtained using the variable

change in equation (13) giving

fD=1 (a, t) = gtotal (s, t)
ds
da

=

= exp (−4ρt) δ (a − 2t) + exp (−2ρa) [2ρ (2 + 4ρt − 2ρa) H (a − t) + 4ρ2aH (t − a)]
(21)

where H (.) is the Heaviside step function. The first term in the rhs of the equation corre-

sponds to the PDF of domains with no-collisions, all of them with a = 2t corresponding to

the space covered by their two moving boundaries at time t. The second term corresponds

to the domains with one collision, and the third term corresponds to the static distribution

of domains with both sides blocked. This last term also corresponds to the final size PDF

when t → ∞, which is the Gamma probability function of equation (3) for D = 1. The

evolution of the total size PDF is depicted in figure 5, the final Gamma probability function

is shown with a dashed line for reference. The emmergence of the final Gamma distribution

as the transformation advances and more and more domains become completely blocked will

be further discussed below.

IV. RESULTS FOR D=3

In a three dimensional PV transformation a collision configuration {li, θi, ϕi} (i = 1...k)

determines unequivocally any geometrical property of the domain. Likewise the previous

development for the domain size in a D = 1 space, we can define a function Yk ({li, θi, ϕi})
which calculates a given geometrical property y for a domain with collision configuration

{li, θi, ϕi}. Then, the time-invariant PDF of the y property for the domains with a certain
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value of k can be calculated as

gY
k (y)dy = k!

(

3

4π

)k
1

∫

l1=0

π
∫

θ1=0

2π
∫

ϕ1=0

· · ·
1

∫

lk=lk−1

π
∫

θk=0

2π
∫

ϕk=0

δ (y − Yk ({li, θi, ϕi}))
k

∏

i=1

l2i sin (θi) dlidθidϕi.

(22)

And now, the total PDF of the y property at time t can be obtained adding the contributions

of the k-populations, this is

gY
total (y, t) =

∞
∑

k=0

gY
k (y)Tk (t) . (23)

The calculation of the gY
k (y) functions is more or less complex depending on the geomet-

rical property; in some cases the analytical form of the gY
k (y) functions can be obtained [19],

while in other cases a numerical integration of equation (22) is required. At low values of the

transformed fraction x (t), that is at the early stages of the transformation, the number of k

distributions required for the calculation of the total PDF is relatively low, but it increases

as the transformation proceeds. Figure 6 shows the value of k0.99 (t) which stands for the

minimum number of k needed to cover at least 99% of the total number of domains. As

it is observed, the calculation of the total distribution of a certain geometric property at

t → ∞ using the present method becomes impractical because it may require the numerical

calculation of an infinite number of gY
k (y) functions. However, at any finite time t, the total

PDF can be calculated to arbitrary accuracy adding a finite number of functions and, as

it is observed in figure 6, the number of k-populations needed for the calculation increases

abruptly only at values of x (t) very close to 1 when the overall geometrical configuration is

practically static. This implies that even the final configuration at x (t) = 1 can be approx-

imated to any desired accuracy from the configuration obtained at x (t) . 1 using a finite

number of gY
k (y) functions.

A. Temporal evolution of the free boundary distribution

The free boundary fraction b of a domain is now defined as the fraction of the original

spherical boundary that is in contact with untransformed space, this is equal to the fraction

of solid angle still not screened by collisions with neighbouring domains. In a PV transfor-

mation all the domains start growing simultaneously with equal growth velocity, then the

collision between two domains can be interpreted as the intersection of two equally sized
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spheres of normalized radius 1 at distance li from their centres. This intersection occupies

a fraction (1−li)
2

of solid angle; however, in order to compute the free solid angle remaining

after k extended collisions at positions {li, θi, ϕi} (i = 1...k), the overlaps between differ-

ent collisions should be taken into account. In order to do this computation we define the

function

Ci (θ, ϕ, li, θi, ϕi) = H
(

d2 − 1
)

(24)

with

d2 = (sin θ cos ϕ − 2li sin θi cos ϕi)
2+(sin θ sin ϕ − 2li sin θi sin ϕi)

2+(cos θ − 2li cos θi)
2 (25)

where d is the distance between a boundary point (1, θ, ϕ) and the neighbouring nucleation

point Oi = (2li, θi, ϕi). This bivaluated function gives a value of 1 for any solid angle not

occupied by the i-th extended collision, that is with d > 1, and a value of 0 otherwise. With

the aid of Ci, the function Bk which gives the free boundary fraction for a given collision

configuration can be written as

Bk (l1, θ1, ϕ1..., lk, θk, ϕk) =
1

4π

π
∫

θ=0

2π
∫

ϕ=0

k
∏

i=1

Ci (θ, ϕ, li, θi, ϕi) sin (θ) dθdϕ. (26)

For k = 1, the function B1 (l1, θ1, ϕ1) reads

B1 (l1, θ1, ϕ1) =
1 + l1

2
. (27)

With the definition of the Bk functions the integration of equation (22) gives the time-

invariant free boundary probability density functions gB
k (b). Figure 7 shows the result of

this integration for different values of k ranging from 1 to 20. The function corresponding

to k = 0 is obviously

gB
0 (b) = δ (b − 1) , (28)

for k = 1 the integration of equation (22) reduces to a variable change b = 1+l1
2

giving

gB
1 (b) = 6 (2b − 1)2 H

(

b − 1

2

)

, (29)

and the gB
k (b) functions with k > 1 have been calculated by Monte Carlo numerical inte-

gration ensuring a relative error lower than 10−3. The mean value of each time invariant

gB
k (b) function, this is the mean occupied solid angle in a domain with k extended collisions,

12



must be also time invariant and can be independently calculated[19]. Because of the ran-

dom distribution of nucleation points, all the angular positions of the neighbouring domains

are equiprobable. Bearing in mind that each collision occupies a fraction (1−li)
2

of the free

boundary, the average free boundary fraction of a domain with a set of collision times {li}
is

bk ({li}) =
k

∏

i=1

(1 + li)

2
, (30)

and the mean value of b for the population of domains with k extended collisions is obtained

to be

bk =

∫ 1

0

bgB
k (b) db = k!

1
∫

l1=0

· · ·
1

∫

lk=lk−1

bk ({li})
k

∏

i=1

l2i dli =

(

8 − 1

8

)k

. (31)

The mean values bk of the normalized probability functions are indicated in figure 7.

Recalling equation (31), it confirms the result obtained in reference [18] that the mean

free boundary of domains after k extended collisions is

bk =

(

2D − 1

2D

)k

, (32)

which phisically means that, on average, the free boundary decreases by a factor 2−D after

each extended collision. Given that the number of orthogonal directions in a D-dimensional

space is 2D and the number of sectors divided by these orthogonal directions is 2D, it appears

that an average of one sector (one quadrant for D = 2 or one octant for D = 3) is occluded

by each extended collision, and not an orthogonal growth direction as it may intuitively

appear.

Now, from equation (23), the total PDF gB
total (b, t) is calculated adding the corresponding

contributions of the k domains at time t. Figure 8 shows the evolution of gB
total (b, t) at

three different stages during the transformation. As all the domains have b = 0 when

x (t) → 1, the function gB
total (b, t) tends to a Delta function δ (b − 0) at the final stages of

the transformation. In the calculations presented in figure 8, the total PDF was obtained

using the contributions of the gB
k (b) functions with k ranging from 0 to 20. At x (t) = 0.75

the domains with k ≤ 20 represent more than 99% of the total.
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B. Temporal evolution of the size distribution

The calculation of the size PDF in D = 3 is performed following the same steps than

the free boundary fraction development of the previous section. First of all we define the

normalized size of a domain

s =
3a

4πt3
(33)

where a is the volume occupied by the domain at time t. Using the function Ci defined

in equations (24) and (25) the calculation of the size of a domain with a certain collision

configuration can be obtained by

Sk (l1, θ1, ϕ1..., lk, θk, ϕk) =
3

4π

1
∫

r=0

π
∫

θ=0

2π
∫

ϕ=0

k
∏

i=1

Ci

(

θ, ϕ,
li
r
, θi, ϕi

)

r2 sin (θ) drdθdϕ, (34)

noting that Ci

(

θ, ϕ, li
r
, θi, ϕi

)

is equal to 1 for any point (r, θ, ϕ) nearer to the nucleation

point of the domain than to the neighbouring nucleation point Oi = (2li, θi, ϕi). Now, the

integration of equation (22) gives the time invariant functions gS
k (s) depicted in figure 9.

The probability density function corresponding to k = 0 is again a delta function

gS
0 (s) = δ (s − 1) , (35)

and the integration of equation (22) for k = 1 is equivalent to the variable change

s = S1 (l1, θ1, ϕ1) =
1

2

(

1 +
l1
2

(

3 − l21
)

)

(36)

this leading to

gS
1 (s) =





2 sin
[

arccos(2s−1)+π
3

]

√
s − s2

− 4



H

(

s − 1

2

)

. (37)

As in the free boundary case, the gS
k (s) functions with k > 1 have been computed by

numerical integration of equation (22).

Similarly to the average free-boundary fraction in the previous section, the mean nor-

malized size of the domains with a given number k of extended collisions can be explicitly

obtained giving

sk =

∫ 1

0

sgS
k (s) ds =

8

k + 1

(

1 − 7k+1

8k+1

)

. (38)
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This result is derived in appendix B and it can be extended to any dimension D giving a

value of

sk =
2D

k + 1

[

1 −
(

2D − 1

2D

)k+1
]

. (39)

The values of sk corresponding to the plotted gS
k (s) functions are also shown in figure 9.

All the gS
k (s) functions obtained by numerical integration of equation (22) satisfy this mean

value, this result ratifying the correctness of the computation.

Finally, the overall PDF gS
total (s, t) is calculated from equation (23) and the total PDF

in terms of the volume a instead of the normalized size s can be obtained using the variable

change in equation (33), this is

fD=3 (a, t) = gS
total (s, t)

ds

da
. (40)

The results obtained for fD=3 (a, t) at x (t) = 0.25, 0.5 and 0.75 are presented in figure 10.

As in the one dimensional case, the final static Gamma distribution is progressively obtained

as more and more domains become completely blocked during the transformation. Similarly

to the one and two dimensional cases [19], the analytical results obtained in this work have

been checked against stochastic simulations of the system checking the correctness of the

calculation. Details of these stochastic simulations can be found in references [6] and [16].

V. ORIGIN OF THE FINAL GAMMA SIZE DISTRIBUTION

The emmergence of a static Gamma distribution of sizes at the end of a PV transformation

is not a surprising fact, the Gamma distribution is linked to Poisson processes by definition.

Considering a Poisson process with rate λ, the probability of the h-th Poisson event occurring

at time t is given by a Gamma distribution with probability density function

p (h, t) =
λ (λt)h−1

(h − 1)!
exp (−λt) (41)

which is equivalent to equation (3) with ν = h and a mean value ρ−1 = νλ−1. Therefore,

the final size distribution of a PV transformation might be considered as the probability of

finding a domain with a certain set of collisions at distances (or times) distributed Poisson-

like. This is straightforwardly seen for the one-dimensional system, where each domain

grows from its nucleation point in two branches occupying respectively the left and the

right hand side untransformed spaces. The growth of these branches is stopped after one
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collision at distance t with a neighbouring domain, this neighbour having a nucleation point

at distance 2t. Hence, such collisions have a Poisson probability exp (−2ρt) with rate λ = 2ρ

of occurring at time t and the probability of having the first collision in one of the branches

at time t is given by

p(1, t) = 2ρ exp (−2ρt) . (42)

Then, the probability of having a domain branch with final length aj = t is given by

fbranch(aj) = 2ρ exp (−2ρaj) (43)

and the probability of having a domain (formed by two branches) with final size a = a1 +a2

is given by the convolution of two of these functions

fdomain (a) =

∞
∫

0

∞
∫

0

fbranch(a1)fbranch(a2)δ (a1 + a2 − a) = 4ρ2a exp (−2ρa) (44)

which is the Gamma probability function with ν = 2 corresponding to a one-dimensional

PV tessellation.

For D = 2 and D = 3 systems a rude similar approach can be attempted. Let us consider

the growth of a domain as the growth of n branches each one occupying a fraction of angle

(D = 2) or solid angle (D = 3), the growth of each branch will stop after colliding once

in the corresponding sector. In order to follow with this approach we assume each branch

occupying an equal sector DKD

n
(2π

n
for D = 2 and 4π

n
for D = 3). In each one of these

sectors, the probability of having the first collision with a neighbouring nuclei at time t is

given by
DKD2DtD−1ρ

n
exp

(

−KD2DtDρ

n

)

(45)

which is the probability of finding a neighbouring nucleation point at distance 2t inside the

sector, multiplied by the probability of finding no other nucleus at smaller distance. Hence,

the probability function of having a branch occupying an area aj = πt2

n
for D = 2 or a

volume aj = 4πt3

3n
for D = 3 is given by

fbranch (aj) = 2Dρ exp
(

−2Dρaj

)

(46)

and the probability of a domain to have a size a = a1 + ... + an is obtained if we convolute

n of these probability functions obtaining

fdomain (a) =

(

2Dρ
)n

an−1

(n − 1)!
exp

(

−2Dρa
)

(47)
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Restricting the possible size probability functions to functions with expected value of ρ−1

we have that only n = 4 and n = 8 for D = 2 and D = 3 are allowed, in which case the

two distributions become Gamma probability functions with ν = 2D. It should be noted

that this approach is inspired in ref. [15]. Here, however, the probability functions are

constructed in function of the occupied space in each sector instead of the collision distance,

this allows a complete analytical treatment and extension to the D = 3 case.

The actual size distribution of a PV tessellation have values of the exponent ν different

from 2D. Figure 11 shows the comparison between the actual final Gamma size probability

functions in PV transformations in D = 2 and D = 3 spaces and the Gamma functions

with ν = 4 and ν = 8 derived from this approach, it is observed that the distributions with

exponent 2D have smaller dispersion around the mean value. From the approach presented

here, the value of the exponent is related to the average number of first neighbours of a

domain. In a PV tessellation the average number of real collisions is 6 and 15.54 for D = 2

and D = 3 respectively[7], which are very different from the 2D collisions considered in

the approach. However, the average number of ’full neighbours’, defined as the number of

neighbouring nucleation points that can be connected with the domain origin with a straight

line without crossing a third domain, is indeed 2D [7]. Then, the structure can be interpreted

as domains with an average of 2D main collisions but with a large geometric anisotropy

produced by secondary collisions in the remaining solid angle fraction not obstructed by full

neighbours. Contrary to the D = 1 system, where all domains have exactly 2 real collisions,

for D > 1 the number of possible real collisions of a completely blocked domains goes from 3

(D = 2) or 4 (D = 3) to infinity, implying a wide distribution of probable domain geometries.

This wider distribution of domain shapes produces a larger size dispersion around the mean

value, which implies a smaller exponent in the Gamma distribution as its variance is given

by ν−1ρ−2.

From this approach it may be argued that the presence of Gamma size distributions in

physical systems must have its origin in a random distribution of nucleation points or ini-

tial particle positions. In different systems, experimental distributions of area or volume are

fitted by statistical distributions such as the Gauss, Gamma and log-normal[20]. If the struc-

ture is uniquely determined by a Poisson point process the Gamma distribution appears, this

is the case in different types of phase transformations where the final structure is completely

dependent on the initial random distribution of seeds [21][22]. When the structure is allowed
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to relax under some particular dynamics the anisotropy of the domains is generally reduced,

this leading to different types of domain size distributions. In coarsening structures driven

by surface tension, the unfavourable smallest domains disappear, the structure coarsens but

an invariant distribution of sizes appears. In many cases these structures produce an in-

verse exponential size distribution with larger size dispersion than the Gamma distribution

[23][24], this larger dispersion is originated by the continuously growth and shrinkage of the

favourable and unfavourable cells although the shape of the domains is much more uniform

than in a PV tessellation. These microstructures are typically observed during normal grain

growth in metallurgy[25] and soap bubble froths[24].

In other cases, after some degree of relaxation the system continues to present a Gamma

distribution of sizes but with a more uniform distribution of cell shapes and sizes than in

a PV tessellation. This seems to be the case in sphere packings and some other granular

materials[26] [27]. In ref. [26] the topological parameters of the Voronoi cells found in

uniform sphere packing simulations with low density are very close to the values of a PV

tessellation. They found that the number of faces per cell NF and the surface cell area SC

increase when reducing packing density PD. For high packing densities, PD = 0.605, they

found NF = 14.41 and SC = 5.45a2/3 (a being the mean cell volume), while at PD = 0.188

they found NF = 15.33 and SC = 5.87a2/3. It should be noted that values of NF = 15.54

and SC = 5.82a2/3 correspond to a PV tessellation while NF = 14 and SC = 5.32a2/3 cor-

respond to an ordered cube-octahedron structure[7]. Therefore, the structure changes from

being composed by highly asymmetric cells with a large variance of sizes at low packing

densities to a more uniform and narrower Gaussian-like distribution at high packing densi-

ties. In ref. [27] they obtained Gamma-like size distributions for the cell volumes of sphere

packings at all densities, these distributions have an exponent ν that decreases towards the

value corresponding to a PV tessellation (ν = 5.586) for low packing densities. Following

the present approach, the presence of Gamma-like size distributions in these systems may

be interpreted as a signature of the initial completely random distribution of sphere posi-

tions, the corresponding Voronoi cell structure becoming more uniform (this means larger ν

values) as the sphere positions are accomodated to higher packing densities. An interesting

point in ref. [27] is the reduction of the exponent of the Gamma distributions when the

increase in density causes a transition towards a jammed state. From a pure topological

view, this reduction of the exponent may be due to the continous relaxation of some parts
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of the structure towards a more uniform and dense distribution of local environments while

some other parts are arrested in lower density local configurations, this would increase the

size dispersion around the mean value implying a reduction of the exponent.

However, the validity of the gamma distribution and the values of the exponent ν for

D = 2 and D = 3 PV structures remain as a semi-empirical result. In this issue the

comparison with the completely solvable D = 1 case may give us some clues. In sections III

and IV we obtained that the Gamma probability function appears adding the contributions of

gS
k (s) functions corresponding to totally blocked domains, this means domains with s < 1/2

in the D = 1 case. Inspecting equation (19) we observe that these probability functions of

normalized sizes are Beta probability functions

Γ (α + β) sα−1 (1 − s)β−1

Γ (α) Γ (β)
(48)

with parameters α = ν and β = k − 1. For large k numbers the contribution of partially

blocked domains, this means the s > 1/2 part of the gk (s) functions, tends to disappear

they becoming pure Beta probability functions. For D = 2 and D = 3 the same behaviour

is found for the gS
k (s) functions. Figure 12 shows the gS

k (s) functions computed numerically

from equations (22) and (34) compared with Beta probability functions with parameters

α = ν, β (k) =
(k + 1) ν

2D

[

1 −
(

2D
−1

2D

)k+1
] − ν. (49)

The value of parameter β (k) is introduced in order to obtain Beta probability functions with

mean value equal to the value of sk calculated in the previous section. It is observed that the

agreement between the calculated functions and the Beta functions is very good for large k

numbers, in which the gS
k (s) functions are expected to describe the size distribution of mainly

completely blocked domains. However, it should be noted that the domain populations with

k = 10 (D = 2) and k = 20 (D = 3) extended collisions, which are the larger k numbers

shown in the figure, still have a significant proportion of non-blocked domains. Therefore,

it is expected that the domains with k ≫ 1 will have domain size distributions very well

described by a Beta distribution. Furthermore, for k ≫ 1 parameter β (k) can be reduced

to β (k) =
(

(k+1)
2D − 1

)

ν, giving the value of β = k − 1 found for the completely blocked

domains in D = 1.

Now, we propose the normalized size distributions of completely blocked domains with k
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extended collisions to be Beta-like distributions that can be written as

gBlocked
k (s) =

Γ
(

ν (k+1)
2D

)

sν−1 (1 − s)ν
(k+1)

2D
−ν−1

Γ (ν) Γ
(

ν (k+1)
2D − ν

) (50)

and then the Gamma probability function appears as

∞
∑

k=0

gBlocked
k (s) Tk (t) ds

lim t→∞

=
(νρ)ν

Γ (ν)
aν−1 exp (−νρa) da. (51)

which is the sum of Beta probability functions weighted by the relative number of k-domains

at time t. Equation (51) can be easily proofed if ν = 2D, but it is found valid for any value of

ν considering a sufficiently large time t. It should be noted that at t → ∞, that is when the

Gamma distribution is formed at the end of the transformation, only domains with k ≫ 1

have significant contributions to the total.

Similarly to the Gamma size distribution, the validity of Beta distributions of normalized

sizes for domains with k extended collisions is at present a heuristic result. The calculation,

by means of the method presented in this article, of the distribution of sizes for completely

blocked domains as well as the distributions of other geometrical parameters such as the

number of faces, edges, or ”full neighbours” may cast light into the origin of the dispersion

of sizes and shapes arising from the random distribution of points and the value of the

exponent ν in the Gamma and Beta distributions discussed in this section. Such calculations

are currently in progress.

VI. CONCLUSIONS

Poisson-Voronoi (PV) space tessellations and transformations are found in many different

systems concerning biology[28], geology [14], chemistry[29][30], metallurgy[31] and others.

In many cases the presence of a PV structure is related to a young or initial cellular structure

[24], which subsequently evolves or relaxes to a more stable structure following the particular

dynamics of the system. The analytical knowledge of the initial distribution of sizes or other

geometric characteristics of the domains, such as the number of vertices and edges or the

boundary area, may be of great interest for the mathematical modelling of these systems.

In this article, the geometric configuration generated during a PV transformation of

arbitrary dimensionality has been described in terms of populations of domains with a
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given number k of extended collisions. It has been found that for these k-populations

the probability distribution of any geometric property is time invariant; only their relative

amount changes along the growth of the structure with a well defined probability Tk (t).

This can be applied to compute the temporal evolution of the overall probability density

function of any geometric property of the domain structure. This development, that was

previously applied to a two-dimensional transformation, has been extended and generalized

here to one and three dimensions. In the one-dimensional case, the development gives an

explicit solution and the results previously obtained by Schulze [17] are reproduced. In

the three-dimensional case, the temporal evolution of the domain size and free boundary

distributions can be analytically calculated for the first time and general expressions for

extending the calculation to other domain characteristics have been presented.

The results presented here give a deep and accurate knowledge of the geometric structure

during a PV transformation; this enables the study of properties and spatial correlations

in partially occupied systems originated in nucleation and growth processes. Moreover, the

application of the present general method to the D = 1 case has allowed us to perform a

direct comparison between the explicit expressions obtained for D = 1 and the numerical

results computed for D > 1. This gives some hints to the explicit form of the probability

functions obtained for D > 1 where the infinite number of growth directions prevents, till

this moment, to derive explicit results. As shown in section V, if explicit general expressions

of the time invariant size distributions could be obtained for any D, this may lead to the

theoretical proof of the Gamma distribution of sizes observed in PV tessellations.

Finally, the validity of the KJMA equation has been proofed for a wide range of pro-

cesses with different nucleation and growth laws[9] [32]. Therefore, although the application

of the calculation method is restricted to a PV transformation, the fact that the KJMA

equation is obtained here as a result of the time invariant geometric distributions [18] sug-

gests that a clever normalization of the domains may allow the extension of the method to

transformations with more complex nucleation and growth laws.
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Appendix A:

Integration of equation (18) is clearly deduced considering certain k numbers. Let us first

consider k = 1, in such case the integration reduces to the variable change

g1 (s) ds =

1
∫

l1=0

[

δ

(

s − 1 + l1
2

)]

dl1 = 2H

(

s − 1

2

)

(A1)

where the fact that 0 < l1 < 1 and then 1
2

< s < 1 leads to the heaviside step function.

Now, considering k = 2 we have

g2 (s) ds = 2

1
∫

l1=0

1
∫

l2=l1

[(

1

2

)

δ

(

s − 1 + l1
2

)

+

(

1

2

)

δ

(

s − l1 + l2
2

)]

dl2dl1 (A2)

the integration of the two terms inside the brakets, taking into account the integration limits

of l1 and l2, results in

g2 (s) ds =

[

4 (1 − s)H

(

s − 1

2

)]

+

[

2 (1 − s)H

(

s − 1

2

)

+ 2sH

(

1

2
− s

)]

=

= 6 (1 − s) H

(

s − 1

2

)

+ 2sH

(

1

2
− s

)

. (A3)

Proceeding likewise for larger k numbers we obtain

g3 (s) ds = 12 (1 − s)2 H
(

s − 1
2

)

+ 6s (1 − s) H
(

1
2
− s

)

g4 (s) ds = 20 (1 − s)3 H
(

s − 1
2

)

+ 12s (1 − s)2 H
(

1
2
− s

)

...

gk (s) ds = k (k + 1) (1 − s)k−1 H
(

s − 1
2

)

+ k (k − 1) s (1 − s)k−2 H
(

1
2
− s

)

(A4)

which is the result in equation (19).

Appendix B:

In order to calculate the mean normalized size of a domain with k extended collisions

let us consider a set of collision times {li} (i = 1...k) and a spherical shell at a normalized
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distance r from the domain origin. The fraction of this shell not occupied by a particular

collision at li is

c (li, r) =







(1+li/r)
2

, for r > li

1, for r < li
. (B1)

Figure 13 shows a schematic view of a domain with a collision at li and a domain shell

(dashed line) at distance r. The fraction of domain shell not occupied by the i-th collision

is c = 1−li
2

at distance r = 1 and c = 0 at distance r = li.

As any angular position of the surrounding domains is equiprobable, then the average

fraction of this shell not occupied by any of the k extended collisions is given by

bk ({li} , r) =

k
∏

i=1

c (li, r) (B2)

and the mean value over all the possible configurations {li} is obtained to be

bk (r) = k!

1
∫

l1=0

· · ·
1

∫

lk=lk−1

bk ({li} , r)

k
∏

i=1

l2i dli =

(

8 − r3

8

)k

. (B3)

The derivation of this result can be more easily illustrated considering small k values. For

k = 1 it is clear that

b1 (r) =

r
∫

l1=0

(1 + l1/r)

2
l21dl1 +

1
∫

l1=r

l21dl1 =
8 − r3

8
. (B4)

For k = 2 the integration must be performed taking into account that l1 < l2, this results

in the following integration

b2 (r) = 2!





r
∫

l1=0





r
∫

l2=l1

(1 + l1/r)

2

(1 + l2/r)

2
l22dl2 +

1
∫

l2=r

(1 + l1/r)

2
l22dl2



 l21dl1 +

1
∫

l1=r

1
∫

l2=l1

l22l
2
1dl2dl1



 =

=

(

8 − r3

8

)2

. (B5)

The result in equation (B3) is obtained by induction proceeding likewise for larger k values.

Therefore, the mean normalized size of a domain with k extended collisions, that is the

mean value sk =
∫ 1

0
sgS

k (s) ds of the time invariant size probability density functions, can

be calculated giving

sk = 4π

∫ 1

0

bk (r) r2dr =
8

k + 1

(

1 − 7k+1

8k+1

)

. (B6)
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FIG. 1: Evolution of the transformed fraction and local spatial configuration at three different

stages during a D = 1 PV transformation.

FIG. 2: Evolution of the transformed fraction and local spatial configuration at three different

stages during a D = 2 PV transformation.

FIG. 3: (Color on-line). Time-invariant size probability density functions of domains with a number

of extended collisions k = 1, 2, 3, 4 and 5 in a D = 1 PV transformation.

FIG. 4: (Color on-line). Total domain-size distribution in a D = 1 PV transformation at a

transformed fraction x (t) = 0.6. Calculated size distribution (thick line) compared with the results

of a stochastic simulation (bars). The contribution of each of the gk (s) functions (with k = 0, 1,

2, 3, 4 and 5) is also shown.

FIG. 5: Calculated domain-size probability density function at x (t) = 0.4, 0.8 and 1 in a D = 1

PV transformation. The dashed line corresponds to the final gamma distribution.

FIG. 6: Number of k-populations needed to encompass 99% of the domains as a function of the

overall transformed fraction.

FIG. 7: (Color on-line). Time-invariant free-boundary fraction probability density functions of

domains with a number of extended collisions from k = 1 to k = 20 in a D = 3 PV transformation.

Dashed lines: Position of the mean value bk of each distribution.

FIG. 8: Total free-boundary fraction probability density function in a D = 2 PV transformation

at three different transformed fractions x (t) = 0.05, 0.25, 0.5 and 0.75.

FIG. 9: (Color on-line). Time-invariant size probability density functions of domains with a number

of extended collisions from k = 1 to k = 20 in a D = 3 PV transformation. Dashed lines: Position

of the mean value sk of each distribution.

FIG. 10: Calculated size probability density function at x (t) = 0.25, 0.5 and 0.75 in a D = 3 PV

transformation. The dashed line corresponds to the final gamma distribution.
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FIG. 11: Comparison of Gamma size distributions. Two-dimensional system (Top): Distributions

with exponent ν = 3.575 (dashed line) and ν = 4 (solid line). Three-dimensional system (Bottom):

Distributions with exponent ν = 5.586 (dashed line) and ν = 8 (solid line).

FIG. 12: (Color on-line). Comparison of the proposed time-invariant Beta distributions of nor-

malized sizes (solid lines) with the gS
k (s) functions obtained by numerical integration of equation

(22) (symbols). Two-dimensional system (Top): k = 3 (blue), k = 6 (red), k = 8 (green), k = 10

(orange). Three-dimensional system (Bottom): k = 4 (blue), k = 10 (red), k = 15 (green), k = 20

(orange).

FIG. 13: Sketch of a domain with a collision at li.
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Figure 3.
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Figure 5.
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Figure 6.
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Figure 7.
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Figure 8.

0 0.5 1

Free-boundary fraction b

0

1

2

3
P
ro
b
ab
il
it
y
 d
en
si
ty
 g
B
to
ta
l(
b
,t
)

x(t)=0.05

x(t)=0.25x(t)=0.5

x(t)=0.75

Figure 8



Figure 9.
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Figure 10.
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Figure 11.
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Figure 12.
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