
On the Computational Security
of a Distributed Key Distribution Scheme

Vanesa Daza, Javier Herranz, and Germán Sáez

Abstract—In a distributed key distribution scheme, a set of servers helps a set of users in a group to securely obtain a common key.

Security means that an adversary who corrupts some servers and some users has no information about the key of a noncorrupted

group. In this work, we formalize the security analysis of one such scheme [11] which was not considered in the original proposal. We

prove the scheme is secure in the random oracle model, assuming that the Decisional Diffie-Hellman (DDH) problem is hard to solve.

We also detail a possible modification of that scheme and the one in [24] which allows us to prove the security of the schemes without

assuming that a specific hash function behaves as a random oracle. As usual, this improvement in the security of the schemes is at the

cost of an efficiency loss.

Index Terms—Cryptography, key distribution, secret sharing schemes, provable security.

Ç

1 INTRODUCTION

THERE are many situations where a group (or conference)
of users needs a common secret key in order to use it

for some purposes such as for secure communication by
using symmetric encryption techniques or to allow the
access to some restricted resource such as forums in the
Internet or multiplayer computer games or, in general, to
identify the members of the conference in front of each
other or in front of external entities.

There are some different ways in which these users can

securely obtain this common key, depending on the

resources available to them. For example, in group key

exchange protocols [7], the users broadcast partial values

that allow all of them, after a certain number of rounds of

communication, to securely compute the same group key.

Current schemes [5], [22] work with only three or four

rounds of communication.
Group key distribution schemes [12], [23] are also

managed by the users of the group themselves, but are

more suitable for dynamic situations, where users can join

or leave the group at any period of time, which is decided

by the own group members. This dynamism capability

makes these schemes slightly different from group key

exchange protocols, which must be reinitialized every time

that the composition of the group changes.

A drawback of these two approaches is that there must be
some kind of synchronization among the users because they
must all execute the protocol at the same time. In some
scenarios, this can be a problem and it is desirable that every
user be able to obtain the conference key whenever he wants.

To achieve this property, Needham and Schroeder [25]
proposed considering a key distribution center which
computes and stores the conference keys and sends them
to the users when they contact it. However, this solution
has some drawbacks: The center is a bottleneck of the
system, a possible point of failure, and a clear target for
attacks because it knows all of the keys of the system.

To overcome these problems, Naor et al. [24] introduced
the notion of distributed key distribution schemes. The task of
the key distribution center is shared among a set of servers
which independently send some information to the users,
which allows them to compute the conference key. In a
nutshell, the protocol is divided into three different phases.
In the initialization phase, servers jointly generate some
shared secret information. Later, in the key request phase, a
user asks some servers for a conference key; servers check
that this user actually belongs to the conference and, if so,
each of them uses its share of the secret information to
compute a partial conference key. In the key delivery phase,
the user combines the received information to obtain the
final conference key. A necessary property is that all of the
users in the same conference must obtain the same key,
independently of the set of servers that they contact.

1.1 Related Work

Distributed key distribution schemes have been considered
in both information-theoretic [4], [10], [24] and computa-
tional [11], [13], [24] frameworks. The first proposal of
distributed key distribution schemes in a computational
framework was given in the original paper [24] as a natural
application of the concept of threshold pseudorandom
functions (TPRFs). Although the specific security of
distributed key distribution schemes was not considered
there, they proved that their TPRFs satisfy some properties

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 8, AUGUST 2008 1087

. V. Daza is with the Departament d’Informàtica i Matemàtiques,
Universitat Rovira i Virgili (URV), Av. Paı̈sos Catalans, 26, 43007,
Tarragona, Spain. E-mail: vanesa.daza@urv.cat.

. J. Herranz is with the IIIA, Artificial Intelligence Research Institute, CSIC,
Spanish National Research Council, Campus UAB s/n, E-08193
Bellaterra, Spain. E-mail: jherranz@iiia.csic.es.

. G. Sáez is with the Departament Matemàtica Aplicada IV, Universitat
Politècnica de Catalunya (UPC), C/ Jordi Girona, 1-3 Campus Nord,
Mòdul C-3, 08034 Barcelona, Spain. E-mail: german@ma4.upc.edu.

Manuscript received 29 Aug. 2005; revised 23 Nov. 2007; accepted 4 Feb.
2008; published online 20 Mar. 2008.
Recommended for acceptance by F. Lombardi.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0288-0805.
Digital Object Identifier no. 10.1109/TC.2008.50.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

(in the random oracle model and under the Decisional
Diffie-Hellman (DDH) Assumption), which directly implies
that the resulting distributed key distribution schemes are
secure in the formal model defined some years later. The
proposal in [24] pursues increasing server availability and
decreasing network communication; it does not take very
much consideration of the computational costs for servers
and users.

In [11], an alternative scheme was proposed with the
goal of reducing the computational load on the users,
which was quite heavy in the proposals of [24]. The price
for this improvement is increasing the computational and
communication costs for the servers. The idea is that this
different way of distributing the costs of the scheme can
make more sense in practice because servers are assumed
to be powerful devices, whereas users can be mobile
devices (PDAs, mobile phones, etc.) with low computa-
tional resources. In such situations, a user can broadcast a
query for a key to a set of servers and expects to receive the
key quite directly, without needing to perform some extra
operations to obtain it (other than decrypting). On the other
hand, servers can be, in some way, paid for doing most of
the work. However, the proposal in [11] did not include
any formal security analysis.

The first explicit and formal security model for dis-
tributed key distribution schemes in the computational
framework was given in [13]. Roughly speaking, a
distributed key distribution scheme is secure if an adver-
sary who corrupts some subset of servers and some
conferences of users has no information about the key of
a different, and noncorrupted, conference. In the same
work, a general construction of secure distributed key
distribution schemes starting from distributed signature
schemes was provided.

1.2 Our Contribution

In this work, we formally prove that the scheme in [11]
enjoys the security properties required for distributed key
distribution schemes. The proof is by reduction to the
hardness of the DDH problem in the random oracle model.
We consider malicious adversaries and, so, we add
mechanisms such as verifiable secret sharing and zero-
knowledge proofs of knowledge to detect dishonest
participants.

We also detail how to modify a part of the scheme in
order to avoid the use of a specific hash function, which is
modeled as a random oracle in the security proofs. This
modification was already mentioned (briefly) in [24] and is
valid for the scheme proposed there as well. As usually
happens, the improvement in the security of the schemes is
at the cost of a reduction in their efficiency because now the
servers must maintain a table where each conference is
assigned one value jointly chosen by them.

1.3 Organization of This Paper

In Section 2, we describe the framework of distributed key
distribution schemes: the protocols that define such
schemes and the formal security requirements that they
must satisfy. Then, in Section 3, we recall ElGamal
encryption and a protocol for the joint generation of a
shared secret value because they are essential tools of the

scheme that we study. In Section 4, we review the
distributed key distribution scheme proposed in [11] and
then we analyze it: We add the security analysis of the
employed protocol to compute proofs of knowledge, which
provides robustness to the scheme, and we prove that the
whole scheme is secure in the random oracle model. We
propose, in Section 5, a slight modification to the schemes
in [11] and [24], which allows us to prove their security
without the (sometimes too strong) assumption that a hash
function behaves as a random oracle. Finally, we devote
Section 6 to the conclusions of this work.

2 DISTRIBUTED KEY DISTRIBUTION SCHEMES

Naor et al. introduced the notion of distributed key
distribution schemes in [24]. In this kind of scheme, we
have a set U ¼ fU1; . . . ; Umg of m users and a set S ¼
fS1; . . . ; Sng of n servers. Users in the same conference C � U
want to obtain a common secret key, �C , for example, in
order to communicate securely with the other members of
the conference or to use it as an access key for some
restricted resources. To obtain �C , users must interact with
some servers in S. The subsets of servers that are allowed to
provide conference keys are those in the access structure
� � 2S , which must be monotone increasing: If A1 � A2 and
A1 2 �, then A2 2 �.

In more detail, a distributed key distribution scheme
consists of the following phases:

. Initialization phase. This phase involves only the
servers, which interact with each other. The input is
the access structure � and the output contains some
public information and partial secret information for
each server Si 2 S.

. Key request phase. In this phase, a user Uj contacts
a subset of servers in order to obtain a conference
key for some conference C to which he belongs.
Servers send to Uj some value(s) which depend on
their partial secret information, on the identity of Uj,
and on the conference C.

. Key delivery phase. Finally, the user Uj combines
the received values and tries to compute the
conference key �C for the conference C. If the
contacted subset of servers belongs to the access
structure �, then Uj is always able to compute the
correct �C .

Communication Model. We assume the following
communication model for the distributed key distribution
scheme that we study in this paper. On the one hand,
communication between servers is done through secret and
authenticated channels, not necessarily synchronous. On
the other hand, communication between servers and users
requires authenticated channels, but does not require secret
or synchronous channels.

2.1 Security of Distributed Key Distribution
Schemes

The level of security required for distributed key distribu-
tion schemes depends on the scenario where the conference
members use the generated key and basically on the type of
attacks the application must be protected against. A high

1088 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 8, AUGUST 2008

enough (and standard) level of security is the equivalent of
semantic security for encryption schemes [20]. Roughly
speaking, an adversary should not be able to distinguish
a conference key �C from a value taken at random from the
set of possible keys, even if it corrupts some subset of
servers and the protocol is executed for other conferences.
The adversary can require the execution of the protocol for
conferences of his choice, as many times as he wants; this
corresponds to a dishonest user who starts many sessions
of the same application, with different conferences.

2.1.1 The Adversarial Model

Obviously, the number of servers that an adversary can
corrupt must be limited; otherwise, if he controls, for
example, an authorized set of servers in �, he can compute
all of the conference secret keys and there is no security at
all. Therefore, an adversary structure A � 2S must be
defined, containing those subsets of dishonest servers that
the system is able to tolerate. It must be monotone
decreasing: If a subset B can be corrupted by A, then any
subset contained in B can also be corrupted by A. A trivial
condition to ensure the security of the schemes in this
scenario is that A \ � ¼ ;.

We deal with static but malicious adversaries. Static
means that the set of corrupted servers is chosen at the
beginning of the life of the system and remains fixed from
that moment on. Malicious means that the adversary can
put together the private information of the corrupted
parties and can force them to deviate from the correct
execution of the protocols. In this case, a standard
requirement for the designed protocols is that of robustness.
There must be mechanisms to detect the corrupted parties
which do not follow the protocol correctly; once this is
done, there must remain enough honest parties to success-
fully finish the execution of the protocol. A necessary
condition to ensure robustness is Ac � �, where
Ac ¼ fP �BjB 2 Ag. Throughout this paper, since we
want robustness, we will assume that this condition is
satisfied by the structures considered in the protocols.

2.1.2 Formal Security Model for Distributed Key

Distribution Schemes

The adversary against the distributed key distribution
scheme will be denoted as F . Such an adversary F is given
the public parameters of the system: the set of servers
S ¼ fS1; . . . ; Sng, the access and adversary structures � �
2S and A � 2S , and the set of users U ¼ fU1; . . . ; Umg.

Extending the security model introduced in [13], in-
spired by other works on key distribution (see [1], for
example), we describe here a game G, played by an
adversary F against a distributed key distribution scheme.
We consider schemes which fall inside the model explained
in this work, with an initialization phase performed only by
servers, a key request and computational phase where
servers and users interact, and a key delivery phase where
users compute the conference keys. The game G, which
captures the capabilities (requesting the execution of the
protocol, Step 3) and the goals (distinguishing a conference
key from a random key, Steps 4-6) of the adversary F ,
works as follows:

1. The adversary chooses a subset of servers B 2 A to
be corrupted.

2. The initialization phase of the distributed key
distribution scheme, which involves only servers,
is executed. The adversary F obtains all of the
public information and the secret information of the
corrupted servers Sj 2 B.

3. The adversary F adaptively chooses Qconf different
conferences C0 � U. The key request and the compu-
tational phase of the scheme, as well as the key
delivery phase, are executed for each user of these
conferences, as many times asF wants. As a result,F
obtains all of the information produced in these
executions. One could think that the adversary has
corrupted all members of such conferences C0. F
obtains the private information generated by the
corrupted servers, the information made public by all
of the servers, the information obtained by users inC0

(including the resulting conference key �C 0), etc.
4. The adversary chooses a conference C different

from the conferences it has queried in the
previous step. For this conference, the key request
and computational phase of the scheme is exe-
cuted. The adversary F obtains the private
information of the corrupted servers and the
information broadcast by all the servers, but it
has no access to the secret information received by
users in C. This Step 4 can be executed in parallel
to Step 3 to allow concurrent attacks. Furthermore,
more key conference queries can be made by the
adversary after this step, for conferences C0 6¼ C,
which are answered as in Step 3.

5. A random bit b� 2 f0; 1g is chosen by a challenger. If
b� ¼ 1, the adversary F is given the real key �C . If
b� ¼ 0, the adversary is given an element taken
uniformly at random from the set of possible
conference keys.

6. The adversary F outputs a bit b0 2 f0; 1g, with b0 ¼ 1
if F thinks that the received element is actually �C
and b0 ¼ 0 otherwise. It wins the game if b0 ¼ b�.

We define the advantage of such an adversary F in
breaking the semantic security of the distributed key
distribution scheme as

" ¼ Pr½b0 ¼ b�� � 1

2
:

Definition 1. An adversary F ðU;S;�;A; T ; ";QconfÞ-breaks
the distributed key distribution scheme if it plays game G in
time at most T and its advantage in breaking the semantic
security of the scheme is at least ".

Regarding the protocol of Naor et al. [24], they actually
propose TPRFs which, in particular, can be easily trans-
formed into distributed key distribution schemes. They
define the security requirements for such functions and
prove that their proposal of TPRF satisfies these require-
ments, in the random oracle model, under the DDH
Assumption. It is easy to see that this fact directly implies
that the resulting distributed key distribution scheme is
secure in this formal model.

DAZA ET AL.: ON THE COMPUTATIONAL SECURITY OF A DISTRIBUTED KEY DISTRIBUTION SCHEME 1089

For simplicity, we have decided to concentrate on the
case of one single session for each conference. In the case of
the studied scheme, one possibility to deal with different
sessions s would be to include another input to the hash
function H, that is, the conference key for C in the session s
would be �C;s ¼ HðC; sÞ�. Since, in the security proof, we
will assume that H behaves as a random oracle, this
solution would be secure. The same technique could be
applied to the scheme in [24], in order to allow different
sessions.

3 BUILDING BLOCKS

In this section, we review two cryptographic primitives
that will appear in the explanation of the proposal of the
distributed key distribution scheme that we study in this
work.

3.1 ElGamal Encryption

In [17], ElGamal proposed a public-key probabilistic
encryption scheme. The public parameters of the scheme
are two large primes, p and q, such that qjp� 1, and an
element g verifying that the multiplicative subgroup GG ¼
hgi of ZZ�p has order q (this mathematical framework will be
common to all of the protocols explained in this work).

Every user U generates both his public and private keys
by choosing a random element x 2 ZZ�q and computing
y ¼ gx mod p. The public key of user U is y and his private
key is x.

If someone wants to encrypt a messagem 2 GG for user U ,
he chooses a random element � 2 ZZ�q and computes r ¼
g� mod p and s ¼ my� mod p. The ciphertext of message m
that is sent to user U is c ¼ ðr; sÞ.

When U wants to recover the original message m from
the ciphertext c ¼ ðr; sÞ, he computes

m ¼ sr�x mod p:

The semantic security of the ElGamal cryptosystem is
equivalent to the DDH Assumption [14], which states that
the DDH problem is hard to solve.

Definition 2 (DDH problem). We say that an algorithm is an
ð"; T Þ-solver of the DDH problem if it runs in time at most T
and distinguishes with probability at least 1=2þ " between the
two probability distributions DDH and Drand, where
DDH ¼ ðga; gb; gabÞ, for uniformly and independently chosen
values a; b 2 ZZq, and Drand ¼ ðga; gb; gcÞ, for uniformly and
independently chosen values a; b; c 2 ZZq.

3.2 Secret Sharing Techniques

In this section, we explain some basics on secret sharing
schemes. These schemes can also be used by a set of players
to jointly generate shares of a random secret value � 2 ZZq
such that the value y ¼ g� mod p is public.

In a secret sharing scheme, a dealer (usually denoted by D)
distributes shares of a secret value among a set of players
P ¼ fP1; . . . ; Png in such a way that only authorized subsets
of players (those in the monotone increasing access
structure � � 2P) can recover the secret value from their
shares, whereas nonauthorized subsets do not obtain any
information about the secret.

Secret sharing schemes were introduced independently
by Shamir [29] and Blakley [3] in 1979. Shamir considered
threshold access structures � ¼ fA � P : jAj � tþ 1g, defined
by a threshold tþ 1, and proposed a secret sharing scheme
for these structures based on polynomial interpolation.
Other works have proposed schemes realizing more
general access structures, such as vector space secret sharing
schemes [6]. An access structure � is realizable by such a
scheme, in a finite field ZZq for some prime q, if there exists a
positive integer r and an assignment of vectors :
P [fDg�!ðZZqÞr (one for each participant) such that A 2
� if and only if ðDÞ is a linear combination of the vectors
in f ðPiÞgPi2A. Here, D denotes a special entity (real or not),
outside the set P. If a real dealer D wants to share a secret
k 2 ZZq among the players in P, he chooses a random vector
v 2 ðZZqÞr such that v � ðDÞ ¼ k. The share of each player
Pi 2 P is ki ¼ v � ðPiÞ. If A 2 �, there exist values f�Ai gPi2A
such that ðDÞ ¼

P
Pi2A �

A
i ðPiÞ. Then, it is easy to see that

k ¼
P

Pi2A �
A
i ki mod q. Using simple linear algebra, one can

also see that subsets out of � obtain no information at all
about the secret value k.

Simmons et al. [30] introduced linear secret sharing
schemes, which can be seen as a generalization of vector
space secret sharing schemes where each player can be
assigned more than one vector (and, therefore, the length of
each share can be larger than the secret). They proved that
any access structure can be realized by a linear secret
sharing scheme, but the scheme is, in general, quite
inefficient in the sense that the rate between the length of
the secret and the length of the shares is very low.

From now on in our work, we will consider any possible
access structure �, so we will know that there exists a linear
secret sharing scheme realizing this structure. For simpli-
city, we will suppose that this scheme is a vector space
scheme defined by a function . All of the results are valid
in the more general case where each player is associated
with more than one vector as well.

3.2.1 Joint Generation of a Random Shared Secret

Value

If the secret value to be shared is a random number from
the corresponding finite field, the generation and distribu-
tion of shares in a secret sharing scheme can be performed
by the players themselves, without any external party (like
the dealer).

Now, we explain the protocol for the joint generation of
a random secret value �, shared among players in P
according to the access structure �. The protocol is secure
against the action of a malicious adversary who can corrupt
a subset of players in the adversary structureA. An obvious
required condition to ensure the privacy of the final secret
is � \ A ¼ ;. We assume that � can be realized by a vector
space secret sharing scheme defined by a mapping
 : P [fDg ! ðZZqÞr. Some other parameters are public,
like p, q, and two elements g, h such that GG ¼ hgi has order
q and h 2 GG. The protocol, which is a generalization of the
threshold protocol in [19], consists of the following steps:

1. Each player Pi 2 P chooses at random a value ki 2
ZZq and distributes it among all players in P, with the

1090 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 8, AUGUST 2008

following verifiable secret sharing technique (which
is a generalization of [26]):

a. Pi chooses two random vectors vi ¼
ðvð1Þi ; . . . ; v

ðrÞ
i Þ a n d wi ¼ ðwð1Þi ; . . . ; w

ðrÞ
i Þ i n

ðZZqÞr such that vi � ðDÞ ¼ ki. Then, Pi
sends to each player Pj in P the pair

ðkij; k0ijÞ ¼ ðvi � ðjÞ;wi � ðjÞÞ. He also makes

public the commitments Vi‘ ¼ gv
ð‘Þ
i hw

ð‘Þ
i , for

1 � ‘ � r.
b. Each player Pj 2 P verifies the correctness of his

share kij by checking that

gkijhk
0
ij ¼

Yr
‘¼1

ðVi‘Þ ðPjÞ
ð‘Þ
; ð1Þ

where ðPjÞð‘Þ is the ‘th component of the vector

 ðPjÞ. If this check fails, Pj makes public a

complaint against Pi.
c. For any complaint that Pi receives from some

player Pj, he must broadcast a pair of values
ðkij; k0ijÞ satisfying (1).

d. Player Pi is marked as disqualified if he receives a
complaint from a set of players out of A or if he
answers some complaint with values which do
not satisfy (1).

2. Each player defines the set of nondisqualified

players Qual. Since Ac � �, we have that Qual 2 �.
Furthermore, for all players Pi 2 Qual that pass this

phase, there are valid shares kij corresponding to

players Pj that form an authorized subset.
3. The generated random secret will be � ¼

P
Pi2Qual ki.

Each player Pj 2 P computes his share �j of the

secret � as �j ¼
P

Pi2Qual kij.
4. Now, the players want to compute the value

y ¼ g� ¼
Q

Pi2Qual g
ki 2 ZZ�p. They use Feldman’s ver-

ifiable secret sharing scheme (see [15] for the

original threshold version):

a. Each player Pi 2 Qual broadcasts Ai‘ ¼ gv
ð‘Þ
i , for

1 � ‘ � r.
b. Each player Pj 2 Qual verifies if

gkij ¼
Yr
‘¼1

ðAi‘Þ ðPjÞ
ð‘Þ
: ð2Þ

If this check fails, player Pj complains by

broadcasting the pair ðkij; k0ijÞ that satisfies (1)

but does not satisfy (2).
c. If player Pi receives some valid complaint at

Step 4.b, the other players Pj 2 Qual run the
reconstruction phase of Pedersen’s scheme to
recover ki and, in particular, Ai ¼ gki . Other-
wise, the value gki is computed from the
commitments Ai‘ and the public vector ðDÞ as

gki ¼ gvi� ðDÞ ¼
Yr
‘¼1

gv
ð‘Þ
i ðDÞ

ð‘Þ
¼
Yt
m¼1

ðAi‘Þ ðDÞ
ð‘Þ
:

d. Finally, the value y ¼ g� can be computed as

y ¼ g
P

Pi2Qual
ki ¼

Y
Pi2Qual

gki :

Something similar happens with the values

Dj ¼ g�j ¼ g
P

Pi2Qual
kij
;

which can be publicly computed from the values gkij

obtained in Steps 4.b and 4.c. We denote the output of this
protocol with the expression:

ð�1; . . . ; �nÞ !ðP;�;AÞ �; g�; fDjg1�j�n

� �
;

where �i is the share of the secret � held by player Pi and
the values g� and fDjg1�j�n are publicly known.

It is not difficult to see that this protocol is simulatable in
the following sense: Given a corruptible subset B 2 A and a
value Y 2 GG, it is possible to simulate, in polynomial time,
values which are indistinguishable from the ones that an
adversary corrupting players in B would obtain from an
execution of the protocol which outputs g� ¼ Y . We denote
all this simulated information by SimðB; Y Þ. This fact
ensures that the protocol is secure because an adversary
does not obtain any information from the execution of the
protocol that he could not produce by himself.

The proof of this fact is omitted here by lack of originality
since it is basically a rewriting of the proof of simulatability of
the protocol in [19], where threshold secret sharing is
replaced with linear secret sharing. Note that this change
does not add any new subtle issue to the proof in [19], which
had been proposed to correct some flaws in previous well-
known protocols for distributed key generation [18], [26].

4 THE DISTRIBUTED KEY DISTRIBUTION SCHEME

OF DAZA ET AL.

In this section, we analyze the scheme proposed in [11]. The
goal of this paper is to prove the security of this scheme
because [11] does not include any security analysis. After
reviewing and modifying the protocols of the scheme, we
first prove that the employed proof of knowledge is secure.
Then, in Section 4.3, we will prove that the whole
distributed key distribution scheme is secure.

In the original proposal of Naor et al. [24], servers must
send the partial information to users throughout private
channels. In practice, this can be done, for example, by
using a suitable encryption scheme. Then, the user must
check the correctness of the received values and combine
some correct values to obtain the final key; this step
involves some modular exponentiations, which can be
costly to the user if he does not have enough computational
resources.

The goal of the scheme by Daza et al. [11] is to reduce the
computational effort required to the users. The idea is as
follows: Since the information received by users must be
encrypted anyway, an encryption scheme such as ElGamal
cryptosystem can be used. In general, any multiplicatively
homomorphic encryption scheme EPKðmÞ satisfying

DAZA ET AL.: ON THE COMPUTATIONAL SECURITY OF A DISTRIBUTED KEY DISTRIBUTION SCHEME 1091

EPKðm1 �m2Þ ¼ EPKðm1Þ � EPKðm2Þ could be used. The
partial encryptions computed by the servers can be
combined by the servers themselves (with one extra round
of communication) in order to produce an encryption of the
final conference key. This value is sent to the user, who is
the only one who can decrypt it and obtain the key. In this
way, the number of operations that users must perform is
significantly reduced at the cost of increasing the computa-
tional and communication effort required to servers. Note
that this may make sense in real scenarios where users have
low computational resources and servers are paid in some
way for doing this work.

4.1 The Scheme

Let U ¼ fU1; . . . ; Umg and S ¼ fS1; . . . ; Sng be the sets of
users and servers. Let �;A � 2S be the access and
adversary structures satisfying A \ � ¼ ; and Ac � �.
Again, we assume that the access structure � can be
realized by a vector space secret sharing scheme. That is,
there exist a positive integer r and a function :
S [fDg�!ðZZqÞr such tha t A 2 � i f a nd on ly i f
 ðDÞ 2 h ðSiÞiSi2A.

We denote by � ¼ �ð�;AÞ ¼ fR � PjR� B 2 �; for all
B 2 Ag � � the monotone increasing family of robust
subsets. Since � and A satisfy Ac � �, we know that P 2 �
and so the family � is not empty. In the scheme, a user who
wants to know a conference key must contact with the
servers of some robust subset R 2 �.

Let H be a hash function (collision and preimage
resistant) that inputs a conference C � U and outputs an
element in GG ¼ hgi � ZZ�p. In the security proof of the
scheme, this hash function is assumed to behave as a
random oracle (following a usual methodology introduced
in [2]).

Each userU 2 U has an ElGamal secret key x 2 ZZ�q and the
matching public key is y ¼ gx. The parameters ðp; q;GG ¼ hgiÞ
are the same for all of the servers and users in the system.

Initialization phase. In order to compute their secret
shares, servers in S jointly execute the protocol

ð�1; . . . ; �nÞ !ðS;�;AÞ �; g�; fDjg1�j�n

� �
;

where �; �i 2 ZZq are random, as explained in Section 3.2.1.
Note that, in the proposal published in [11], a different

(and simpler) protocol for the joint generation of a random
secret is used. However, when analyzing security, one
realizes that the simpler protocol is not simulatable and,
therefore, the security of the distributed key distribution
scheme as it is in [11] cannot be proved. However, the
protocol explained in Section 3.2.1 is simulatable and the
whole scheme can be proven secure, as we will see in
Section 4.3.

Key request and computational phase. A user U in a
conference C � U asks for the conference key �C to a robust
subset of servers R 2 �:

1. Each server Si 2 R applies the hash function H to
the conference C, obtaining hC ¼ HðCÞ 2 GG. The
conference key will be �C ¼ h�C .

2. Then, server Si 2 R encrypts the value h�iC using the
ElGamal public key y of user U . That is,

. server Si chooses a random element �i 2 ZZ�q ,

. it computes ri ¼ g�i and si ¼ h�iC y�i , and

. server Si broadcasts the ciphertext ci ¼ ðri; siÞ.
3. Server Si computes a noninteractive and zero-

knowledge proof of the knowledge of values �i
and �i, which make the ciphertext ci consistent:

Proofi ¼ PKfð�i; �iÞ : Di ¼ g�i ^ ri ¼ g�i ^ si

¼ h�iC y
�ig:

More details about the design and security of this

proof of knowledge, which makes use of a hash

function Ĥ : f0; 1g� ! ZZq, are given in Section 4.2.
4. Each server Si 2 R verifies the proofs published by

the rest of the servers until it obtains correct partial
ciphertexts from an authorized subset A 2 �. Notice
that such a subset in � always exists because R 2 �
and, therefore, R� B 2 � for any possible subset B
of incorrect partial ciphertexts computed by cor-
rupted servers.

Since A 2 �, we know that there exist values

f�Aj gSj2A such that � ¼
P

Sj2A �
A
j �j.

5. Using homomorphic properties of ElGamal encryp-
tion, server Si can compute an encryption ðr; sÞ of
the conference key �C ¼ h�C from the values cj
broadcast by servers Sj 2 A as follows:

r ¼
Y
Sj2A

r
�Aj
j ¼ g

P
Sj2A

�Aj �j

;

s ¼
Y
Sj2A

s
�Aj
j ¼ h

P
Sj2A

�Aj �j

C y

P
Sj2A

�Aj �j

¼ h�Cy

P
Sj2A

�Aj �j

:

Since the elements f�jgSj2A are random, the elementP
Sj2A �

A
j �j is also random and, so, ðr; sÞ is a valid

ElGamal encryption of the message h�C . We also note

that the resulting ciphertext ðr; sÞ does not depend

on the considered authorized subset A 2 �.

Key delivery phase. Each server in R sends to user U the

ciphertext c ¼ ðr; sÞ that he has computed. User U selects a

value that has been sent by all of the servers of some subset

out of A (this means that there exists at least one honest

server in this subset and, so, the corresponding ciphertext

must be the correct one). The user decrypts it and obtains

the conference key �C ¼ h�C . Note that, as desired, the

obtained key does not depend on the set of servers who

have participated in the execution of the protocol.

4.2 The Proof of Knowledge

In the protocol described above, each server Si must

compute the proof

Proofi ¼ PK ð�i; �iÞ : Di ¼ g�i ^ ri ¼ g�i ^ si ¼ h�iC y�i
� �

:

This proof can be computed using a standard strategy [8],

[16], [28] that transforms an interactive proof of knowledge

1092 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 8, AUGUST 2008

into a noninteractive one by using a hash function Ĥ, which
is modeled in the security analysis as a random oracle.

For some known values A;B;C; g1; g2; g3 2 GG, the proof

PK ð�; �Þ : A ¼ g�1 ^ B ¼ g�1 ^ C ¼ g�2 g
�
3

n o

can be computed as follows: Let Ĥ : f0; 1g� ! ZZq be a hash
function. The prover does the following:

1. Choose uniformly and at random u; v 2 ZZ�q .
2. Compute T1 ¼ gu1 , T2 ¼ gv1, and T3 ¼ gu2gv3.
3. Compute h ¼ ĤðA;B;C; g1; g2; g3; T1; T2; T3Þ.
4. Compute w1 ¼ u� �hmod q and w2 ¼ v� �hmod q.
5. The proof of knowledge is the tuple ðh; w1; w2Þ.

The verifier of the proof must check if

h ¼ Ĥ A;B;C; g1; g2; g3; g
w1

1 A
h; gw2

1 B
h; gw1

2 g
w2

3 C
h

� �
:

If so, then he accepts the proof; otherwise, he rejects the
proof.

A zero-knowledge proof of knowledge must satisfy

three properties: correctness, which means that the verifier
always accepts the proof if the prover knows the secret
values; soundness, which means that, if a prover does not
know the secrets, then the probability that he computes a
proof that makes the verifier accept is negligible; and,
finally, zero-knowledge means that the only information that
the verifier obtains from the execution of the protocol is if
the prover knows the stated secret values or not.

The correctness of the protocol explained above is trivially
fulfilled. We next prove that the protocol also achieves the
other two properties in the random oracle model [2], where a

hash function is seen as a totally random function.
Soundness. We prove that an algorithm B which has

probability " to compute a valid proof knows the values �
and � with probability "2=5.

In effect, the randomness of algorithm B consists of the
randomness of the values output by the (random) hash
function Ĥ and the own randomness ofB. If an execution ofB
produces a tuple ðh; w1; w2Þ, then we denote as X the
randomness employed byB just before asking to the random
oracle the value ĤðA;B;C; g1; g2; g3; g

w1

1 A
h; gw2

1 B
h; gw1

2 g
w2

3 C
hÞ.

We denote as Y the rest of randomness employed by B
(including the value output by the random oracle in the
aforementioned query).

We denote as W � X 	 Y the set of random choices (or
executions of B) that lead to a valid proof of knowledge. By

hypothesis, we have that Pr½W � ¼ ". We apply to this
situation the well-known splitting lemma (see, for example,
[27]), also known as heavy-row lemma.

Then, there exists V �W such that, for all ðx; yÞ 2 V ,
we have

Pr
y0
ðx; y0Þ 2W½ � � "

2
and Pr½V jW � � 1

2
:

When we execute B with randomness ðx; yÞ, we will

obtain ðx; yÞ 2 V with probability at least "=2. In this case,
we execute B again with fixed x and random y0. With
probability at least "=2, the new execution ðx; y0Þ belongs to
W , that is, it also leads to a valid proof of knowledge.

Since Ĥ and Ĥ 0 are random functions, the probability
that

h ¼ ĤðA;B;C; g1; g2; g3; g
u
1 ; g

v
1; g

u
2g

v
3Þ

¼ Ĥ 0ðA;B;C; g1; g2; g3; g
u
1 ; g

v
1; g

u
2g

v
3Þ ¼ h0

is 1=q. Since q > 5, we have in particular that the probability
that h 6¼ h0 is 1� 1=q > 4=5.

Summing up, B would obtain with probability at least
"=2 � "=2 � ðq � 1=qÞ > "2=5 two valid proofs of knowledge
ðh; w1; w2Þ corresponding to the randomness ðx; yÞ and
ðh0; w01; w02Þ corresponding to the randomness ðx; y0Þ such
that h 6¼ h0.

Since the randomness x is equal until the crucial query to
the random oracle Ĥ, we get

. gw1

1 A
h ¼ gw

0
1

1 A
h0 and

. gw2

1 B
h ¼ gw

0
2

1 B
h0 .

The first statement implies that

w1 þ �h ¼ w01 þ �h0 mod q;

whereas the second statement implies

w2 þ �h ¼ w02 þ �h0 mod q:

Therefore, algorithm B can compute

� ¼ w1 � w01
h0 � h mod q and � ¼ w2 � w02

h0 � h mod q:

Zero knowledge. We show that a verifier does not
obtain any new information from the execution of the
protocol other than the proof itself. In order to prove this,
we show that the verifier himself could have computed a
valid proof of knowledge which is indistinguishable from a
real one computed by an honest prover in the random
oracle model.

In effect, the verifier can choose at random
w1; w2; h 2 ZZq. Then, he can impose that

Ĥ A;B; C; g1; g2; g3; g
w1

1 A
h; gw2

1 B
h; gw1

2 g
w2

3 C
h

� �
¼ h:

Since the hash function Ĥ is assumed to behave as a totally
random function (the proof is valid in the random oracle
model), then this step is consistent and produces a valid
proof of knowledge which is indistinguishable from a real
one computed by an honest prover who knows � and �.
This is true if the value imposed on the hash function Ĥ in
the simulation does not produce a collision with previously
assigned values.

4.3 Security Analysis

In this section, we prove that the scheme of Daza et al.,
explained in Section 4.1, is secure with respect to the formal
model explained in Section 2.1.2 as long as the DDH
problem (see Definition 2) is hard to solve. As happens with
the scheme of Naor et al. [24], the proof is valid in the
random oracle model for the hash functions H and Ĥ. In
Section 5, we will explain how it is possible to erase this
assumption for the hash function H (this modification is
valid for both schemes). This will be at the cost of a loss in
efficiency.

DAZA ET AL.: ON THE COMPUTATIONAL SECURITY OF A DISTRIBUTED KEY DISTRIBUTION SCHEME 1093

Theorem 1. Assume that the distributed key distribution scheme
of Daza et al. can be ðU;S;�;A; T ; ";QconfÞ-broken with QH

queries to the random oracle H and QĤ queries to the random
oracle Ĥ, satisfying Qconf < q=ð2nÞ and QĤ < q2=2.

Then, the DDH problem can be ð"0; T 0Þ-solved, where "0 �
"=4 and T 0 � T þ TfQH þ ð7þ n2ÞTfQconf , where Tf is the

time to perform a modular exponentiation.

Proof. Let D ¼ ðga; gb; gcÞ be an instance of the DDH
problem; the goal is to decide if D ¼ DDH or D ¼ Drand.
To do it, we will run the hypothetical adversary F
against the scheme of Daza et al. We initialize the
scheme with the same public parameters that appear in
the given instance of the DDH problem: the primes p and
q and the element g. We send to F the information about
the sets and the structures: S, �, A, U, and C.

Since we are assuming that the hash function H :
f0; 1g� ! GG behaves as a random function, we maintain
a table TABH as follows: When F asks for the value
HðCÞ for some conference C � U, we look for the input
C in the table TABH . If it is already in the table, we
return to F the corresponding output. If not, we choose
at random �C 2 ZZq and define hC ¼ HðCÞ ¼ ðgaÞ�C . We
return this value to F and store the new relation in
TABH . The condition hC1

6¼ hC2
must be satisfied for any

two different conferences C1 6¼ C2.
In an analogous way, we manage a table TABĤ for

the values of the random hash function Ĥ that is used in
the proofs of knowledge.

The adversary F plays game G against the scheme
and we must simulate all of the information that F
obtains in the different steps of the game. Note that the
simulation that we propose below will be consistent only
in the case where D ¼ DDH :

1. F chooses a subset B 2 A of corrupted servers.
Without loss of generality (adding, if necessary,
some players to the original subset B), we can
assume that B is a maximal nonauthorized
subset, that is, for any server Si 62 B, it is fulfilled
that B [fSig 2 �.

2. The initialization phase of the scheme must be
executed, which involves only the servers. The
adversary obtains the public information and the
private information of the corrupted servers. We
proceed as follows: We compute SimðB; gbÞ,
which is all the information that the adversary
would obtain in an execution of the joint protocol
for the generation of a shared secret value � such
that g� ¼ gb (described in Section 3.2.1). This
information, SimðB; gbÞ, consists (basically) of the
values f�0jgSj2B and fg�0igSi2P .

3. In Step 3 of the game, F chooses different
conferences C0 � U. For each user U 2 C0, with
ElGamal public key y, the adversary F must
receive all the information that U and servers in B
would see in an execution of the protocol where
U obtains an encryption of the conference key
�C0 ¼ h�C 0 ¼ ga�C0 b. We allow the adversary F to
know the secret key of user U and, thus, to obtain
the final conference key �C0 .

We are implicitly assuming that gc ¼ gab. So,
first, we compute an ElGamal encryption (under
U ’s public key, y) of the assumed final key
�C 0 ¼ gc�C0 : We choose at random � 2 ZZ�q and
compute

r ¼ g� and s ¼ ðgcÞ�C0 y�:

Then, we compute the partial ElGamal encryp-
tions, starting with servers Sj 2 B; for them, we
know the shares �0j, so we choose at random �j 2
ZZ�q and compute

rj ¼ g�j and sj ¼ ga�C0ð Þ�
0
jy�j :

We can easily compute Proofj for these servers Sj
as well since we know the values �0j and �j.

Finally, for servers Si 62 B, we know

that B [fSig 2 �. This implies the exis-

tence of values �0 and f�jgSj2B such that

 ðSiÞ ¼ �0 ðDÞ þ
P

Sj2B �j ðSjÞ. Then, we can

compute the values

ri ¼ r�0

Y
Sj2B

r
�j
j and si ¼ s�0

Y
Sj2B

s
�j
j ;

which form a valid ElGamal encryption of the
value h

�0i
C0 ¼ ðga�C0 Þ

�0i under public key y.
To simulate Proofi for servers Si 62 B, we

proceed as we described in Section 4.2. We
choose at random w1; w2; h 2 ZZq and define

Ĥ Di; ri; si; g; hC 0 ; y; g
w1Dh

i ; g
w2rhi ; h

w1

C0 y
w2shi

� �
¼ h:

This relation is stored in the table TABĤ . Note
that there cannot be collisions among different
simulations of proofs of knowledge because there
is only one simulation for the values Di, hC0 , y
corresponding to server Si, conference C0, and
user U with public key y. However, there can be
other kind of collisions if some input of Ĥ
obtained in a simulation has been already asked
to the random oracle by F . If we detect such a
collision, we abort the game and output a random
answer to the given instance of the DDH
problem. Since we simulate at most nQconf proofs
of knowledge and F is allowed to make at most
QĤ queries to the random oracle Ĥ, the prob-
ability � that such a collision occurs is

� � nQconfQĤ

q3
:

Since Qconf < q=ð2nÞ and QĤ < q2=2, the prob-
ability that no collision occurs is 1� � > 1=2.

4. The adversary F chooses a conference C different
from the previous conferences C0. We can
simulate the information that F would obtain
from the execution of the protocol for C, exactly
in the same way as in the previous step. The
difference is that now we do not allow F to
obtain the ElGamal decryption, which is, suppo-
sedly, the final conference key �C .

1094 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 8, AUGUST 2008

Note that this Step 4 can eventually occur in
parallel to the previous Step 3; the simulation can
be done in exactly the same way. As well, new
key conference queries, such as those in Step 3,
could be made by the adversary now for
conferences C0 satisfying C0 6¼ C. They are an-
swered exactly as explained in Step 3.

5. In Step 5, we send to F the value ðgcÞ�C . Note that,
if gc ¼ gab, this value is exactly �C .

6. The adversary F outputs a bit b0.

We answer to the given instance D of the DDH
problem as follows: If F outputs 1, we state that D
follows the Diffie-Hellman distribution or, in other
words, that c ¼ abmod q. If F outputs 0, we state that
c 6¼ abmod q.

Let us compute the probability "0 that we solve the
DDH problem correctly. If some collision happens in the
management of the table TABĤ , then we succeed with
probability 1/2. If no collisions occur, then we can
distinguish two cases. On the one hand, if D ¼ DDH ,
which happens with probability 1/2 since D is taken at
random between DDH and Drand, all of the values that F
receives during the game are consistent and, in Step 6, he
receives the correct value of�C (that is, b� ¼ 1). In this case,
by hypothesis,F will output the correct answer b0 ¼ b� ¼ 1
with probability at least "þ 1=2. And, with this prob-
ability, we will answer correctly thatD follows the Diffie-
Hellman distribution. On the other hand, if D ¼ Drand
(which also happens with probability 1/2), all of the
information thatF receives during the game is completely
independent of the bit b�which defines the game, soF will
output the correct b0 ¼ 0 with probability 1/2.

Summing up, considering all of the possible cases, we
obtain that the probability of correctly solving the
instance of the DDH problem is at least

� � 1
2
þ ð1� �Þ � 1

2
� 2"þ 1

2
þ 1

2
� 1
2

� 	
¼ 1

2
þ "ð1� �Þ

2
>

1

2
þ "

4
:

Therefore, we get "0 � "=4. With respect to the
execution time T 0 of our algorithm for solving the
DDH problem, if we consider as significant only the
time Tf to perform modular exponentiations, then T 0

is the same as the execution time T of F plus the
time of answering the QH queries to the hash
(random) oracle H plus the time of simulating the
information that F obtains in game G (ElGamal
partial encryptions, proofs of knowledge, etc.). Sum-
ming up, we have T 0 � T þ TfQH þ ð7þ n2ÞTfQconf . tu

5 A MODIFICATION TO AVOID THE RANDOM

ORACLE MODEL

The security of the distributed key distribution schemes in
[11], [24] can be proven in the random oracle model. This is
a usual strategy in cryptography, although the assumption
of the total randomness of a hash function is unrealistic.
Even if a proof in the random oracle model is always better
than nothing, efforts are constantly being made by
cryptographers to provide protocols whose security does
not rely on this assumption.

In their work, Naor et al. [24] briefly mention a possible
modification in the way in which the values hC are
computed in order to avoid the use of hash function H
and, therefore, the assumption of the random oracle model
for this function in the security proof. We detail this
modification here, which is also valid for the scheme of
Daza et al. that we study in this paper. However, note that
the random oracle model will still be necessary for the
function Ĥ if we consider the zero-knowledge proofs of
knowledge to achieve robustness against malicious adver-
saries (in both schemes).

The idea is that servers will jointly compute a value hC 2
GG ¼ hgi for each conference C and store this relation in a
table. In some sense, the management of this table by the
servers plays the role of a random oracle model. Since the
values hC can be random, servers can compute them offline
in the initialization phase. Later, when a new conference
key is requested, they publicly assign to this conference C
one of the precomputed values hC and store the relation in
the table. When all of the users in conference C have
obtained the key �C , they erase this relation from the table.

Note that this solution may be suitable only for scenarios
where the expected number of conferences is not too big
since the size of the table that must be managed by the
servers is linear on the number of expected conferences.

There are different possibilities for this joint generation
of the value hC . A first (naive) solution consists of each
server Si 2 S generating, at random, a value �C;i 2 ZZq and
then broadcasting the value hC;i ¼ g�C;i . The final value to
be stored in the table is

hC ¼
Y
Si2S

hC;i ¼ g
P

Si2S
�C;i
:

However, this solution requires simultaneous broadcast
channels [21] for all of the servers in S to ensure that all of
the values hC;i are broadcast at the same time, with
independence. If not, a server Sj corrupted by the
adversary could wait and choose its value hC;j in order to
result in a desired hC . Later, he can do the same for a
different conference C0 and produce, for example, hC0 ¼ h2

C .
In this case, if the adversary could have access to the key
�C ¼ h�C , then he would be able to compute the conference
key �C0 ¼ h�C0 ¼ �2

C , thus breaking the security of the
scheme.

Such an assumption about simultaneous broadcast
channels may be very strong in some scenarios. For this
reason, an alternative (and less efficient) solution is that
servers run, for each value hC to be computed, the protocol
described in Section 3.2.1. With this last modification, the
security of the two distributed key distribution schemes
[11], [24] can be proven in a similar way. Since the protocol
in Section 3.2.1 is simulatable, the information that the
adversary obtains in the generation of the values hC can be
perfectly simulated in the security proof. The relation
between the times T 0 and T , in Theorem 1, will now include
the time of simulating Qconf times the execution of the
aforementioned protocol. Note that this use of verifiable
secret sharing techniques (i.e., protocol in Section 3.2.1) to
achieve “mutually independent channels” is not new; see
the original paper [9] on verifiable secret sharing.

DAZA ET AL.: ON THE COMPUTATIONAL SECURITY OF A DISTRIBUTED KEY DISTRIBUTION SCHEME 1095

6 CONCLUSIONS

In this work, we have analyzed an existing distributed key

distribution scheme [11] whose security had not been

studied at all. This scheme is especially suitable in real

scenarios where users have low computational resources

and servers are even paid in some way for doing most of

the work. We have considered a formal security model for

this kind of scheme. We have proven that this specific

scheme achieves the desired level of security in the random

oracle model as long as the DDH problem is hard to solve.

To do so, we have first replaced the protocol for the joint

generation of a random value in [11] with a more secure

one and we have also analyzed the security of a zero-

knowledge protocol, which provides robustness to the

scheme.
We also discuss a modification of the scheme in [11]

which is also valid for the scheme in [24], which replaces

the use of a hash function with a table that must be

managed by the servers. On the one hand, this results in

less efficient distributed key distribution schemes, maybe

only suitable for scenarios where the expected number of

conferences is small, but, on the other hand, this modifica-

tion allows us to avoid the strong assumption that this hash

function behaves as a random oracle.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees of

the IEEE Transactions on Computers for their helpful

comments about this work. The work of the first two

authors was partially supported by the Spanish Ministry of

Education and Science under Projects TSI2007-65406-C03-

02 (“eAEGIS”) and CONSOLIDER CSD2007-00004

(“ARES”). The work of V. Daza was also supported by

the Government of Catalonia under Grant 2005-SGR-00446.

The work of J. Herranz was also supported by the

Government of Catalonia under Grant 2005-SGR-00093.

Finally, the work of G. Sáez was partially supported by the

Spanish Ministry of Education and Science under Project

TSI2006-02731.

REFERENCES

[1] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated Key
Exchange Secure against Dictionary Attacks,” Proc. Int’l Conf.
Theory and Application of Cryptographic Techniques, pp. 139-155,
2000.

[2] M. Bellare and P. Rogaway, “Random Oracles Are Practical: A
Paradigm for Designing Efficient Protocols,” Proc. First ACM Conf.
Computer and Comm. Security, pp. 62-73, 1993.

[3] G.R. Blakley, “Safeguarding Cryptographic Keys,” Proc. Nat’l
Computer Conf., Am. Federation of Information, Processing Societies,
pp. 313-317, 1979.

[4] C. Blundo, P. D’Arco, V. Daza, and C. Padró, “Bounds and
Constructions for Unconditionally Secure Distributed Key Dis-
tribution Schemes for General Access Structures,” Theoretical
Computer Science, vol. 320, pp. 269-291, 2004.

[5] E. Bresson and D. Catalano, “Constant Round Authenticated
Group Key Agreement via Distributed Computation,” Proc.
Seventh Int’l Workshop Practice and Theory in Public Key Crypto-
graphy, vol. 2947, pp. 115-129, 2004.

[6] E.F. Brickell, “Some Ideal Secret Sharing Schemes,” J. Combinator-
ial Math. and Combinatorial Computing, vol. 9, pp. 105-113, 1989.

[7] M. Burmester and Y.G. Desmedt, “A Secure and Efficient
Conference Key Distribution System,” Proc. Int’l Conf. Theory and
Application of Cryptographic Techniques, vol. 950, pp. 275-286, 1994.

[8] J. Camenisch, “Group Signature Schemes and Payment Systems
Based on the Discrete Logarithm Problem,” PhD thesis, ETH
Zurich, Diss. ETH No. 12520, 1998.

[9] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable
Secret Sharing and Achieving Simultaneity in the Presence of
Faults,” Proc. 26th IEEE Symp. Foundations of Computer Science,
pp. 383-395, 1985.

[10] P. D’Arco and D.R. Stinson, “On Unconditionally Secure Robust
Distributed Key Distribution Centers,” Proc. Eighth Int’l Conf.
Theory and Application of Cryptology and Information Security,
pp. 346-363, 2002.

[11] V. Daza, J. Herranz, C. Padró, and G. Sáez, “A Distributed and
Computationally Secure Key Distribution Scheme,” Proc. Fifth
Information Security Conf., pp. 342-356, 2002.

[12] V. Daza, J. Herranz, and G. Sáez, “Constructing General Dynamic
Group Key Distribution Schemes with Decentralized User Join,”
Proc. Eighth Australasian Conf. Information Security and Privacy,
pp. 464-475, 2003.

[13] V. Daza, J. Herranz, and G. Sáez, “Protocols Useful on the Internet
from Distributed Signature Schemes,” Int’l J. Information Security,
vol. 3, no. 2, pp. 61-69, 2004.

[14] W. Diffie and M.E. Hellman, “New Directions in Cryptography,”
IEEE Trans. Information Theory, vol. 22, no. 6, pp. 644-654, 1976.

[15] P. Feldman, “A Practical Scheme for Non-Interactive Verifiable
Secret Sharing,” Proc. 28th IEEE Symp. Foundations of Computer
Science, pp. 427-437, 1987.

[16] A. Fiat and A. Shamir, “How to Prove Yourself: Practical
Solutions of Identification and Signature Problems,” Proc.
Advances in Cryptology, pp. 186-194, 1986.

[17] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms,” IEEE Trans. Information Theory,
vol. 31, pp. 469-472, 1985.

[18] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust
Threshold DSS Signatures,” Proc. Int’l Conf. Theory and Application
of Cryptographic Techniques, pp. 354-371, 1996.

[19] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure
Distributed Key Generation for Discrete-Log Based Cryptosys-
tems,” Proc. Int’l Conf. Theory and Application of Cryptographic
Techniques, vol. 1592, pp. 295-310, 1999.

[20] S. Goldwasser and S. Micali, “Probabilistic Encryption,”
J. Computer and System Sciences, vol. 28, pp. 270-299, 1984.

[21] A. Hevia and D. Micciancio, “Simultaneous Broadcast Revisited,”
Proc. 24th Ann. ACM Symp. Principles of Distributed Computing,
pp. 324-333, 2005.

[22] J. Katz and M. Yung, “Scalable Protocols for Authenticated Group
Key Exchange,” Proc. Advances in Cryptology, pp. 110-125, 2003.

[23] H. Kurnio, R. Safavi-Naini, and H. Wang, “A Group Key
Distribution Scheme with Decentralised User Join,” Proc. Third
Conf. Security in Comm. Networks, pp. 146-163, 2002.

[24] M. Naor, B. Pinkas, and O. Reingold, “Distributed Pseudo-
Random Functions and KDCs,” Proc. Int’l Conf. Theory and
Application of Cryptographic Techniques, pp. 327-346, 1999.

[25] R.M. Needham and M.D. Schroeder, “Using Encryption for
Authentication in Large Networks of Computers,” Comm. ACM,
vol. 21, pp. 993-999, 1978.

[26] T.P. Pedersen, “Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing,” Proc. Advances in Cryptology, pp. 129-
140, 1991.

[27] D. Pointcheval and J. Stern, “Security Arguments for Digital
Signatures and Blind Signatures,” J. Cryptology, vol. 13, no. 3,
pp. 361-396, 2000.

[28] C.P. Schnorr, “Efficient Signature Generation by Smart Cards,”
J. Cryptology, vol. 4, pp. 161-174, 1991.

[29] A. Shamir, “How to Share a Secret,” Comm. ACM, vol. 22, pp. 612-
613, 1979.

[30] G.J. Simmons, W. Jackson, and K. Martin, “The Geometry of
Secret Sharing Schemes,” Bull. ICA, vol. 1, pp. 71-88, 1991.

1096 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 8, AUGUST 2008

Vanesa Daza received the degree in mathe-
matics from the University of Barcelona (UB),
Spain, in 1999 and the PhD degree in mathe-
matics from the Technical University of Catalo-
nia (UPC), Barcelona, in 2004. Afterward, she
joined a crypto-based security company as a
senior researcher. She currently holds a lecturer
position in the CRISES research group in the
Rovira i Virgili University (URV), Tarragona,
Spain. Her research interests are mainly related

to distributed cryptography, including secret sharing and multiparty
computation.

Javier Herranz received the degree in mathe-
matics and the PhD degree in applied mathe-
matics from the Technical University of
Catalonia (UPC), Barcelona, in 2000 and 2005,
respectively. After that, he spent nine months at
the �Ecole Polytechnique, Palaiseau, France,
and nine months at the Centrum voor Wiskunde
en Informatica (CWI), The Netherlands, as a
postdoctoral researcher, granted with an ERCIM
fellowship (from May 2005 to October 2006). He

is currently a postdoctoral researcher at IIIA-CSIC, Bellaterra, Spain.
His research interests are mostly related to cryptography, especially to
digital signatures and distributed cryptographic protocols.

Germán Sáez received the degree in mathe-
matics from the University of Barcelona (UB),
Spain, in 1987 and the PhD degree in mathe-
matics from the Technical University of Catalo-
nia (UPC), Barcelona, in 1998. He is an
associate professor in the Department of Ap-
plied Mathematics IV at UPC. He was the
general cochair of Eurocrypt ’07. He belongs to
the Research Group on Mathematics Applied to
Cryptography (MAK) at UPC. His research

interests include secret sharing schemes and digital signatures in
distributed scenarios.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DAZA ET AL.: ON THE COMPUTATIONAL SECURITY OF A DISTRIBUTED KEY DISTRIBUTION SCHEME 1097

