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Abstract 
 

Application-layer networks (ALN) are software 
architectures that allow the provisioning of services 
requiring a huge amount of resources by connecting large 
numbers of individual computers. The ALN simulation 
project CATNET evaluates a decentralized mechanism for 
resource allocation in ALN, which is based on the 
economic paradigm of the Catallaxy, against a 
centralized mechanism using an arbitrator object. In both 
versions, software agents buy and sell network services 
and resources to and from each other. The economic 
model is based on self-interested maximization of utility 
and self-interested cooperation between agents. This 
article describes the design of money and message flows 
for centralized and decentralized coordination in both 
versions and shows preliminary results. 

1. Allocation of Resources in Application 
Layer Networks 
 

Application-layer networks (ALN) are software 
architectures that coordinate the provisioning of services 
requiring a huge amount of resources by connecting large 
numbers of individual computers. Such global Internet-
based networks, like today’s Grids [2] and Peer-to-Peer-
Computing [14], take advantage of such infrastructures 
with applications like multicast services for global 
audiences, storage repositories of peta-scale data sets, or 
parallel computing applications requiring teraflops of 
processing power. 

Such applications are executed in multiple resource 
locations distributed throughout the Internet, coordinated 
on the application layer using a dedicated network, the 
ALN. An ALN scenario would be the distributed 
provisioning of web services for Adobe’s Acrobat (for 
creating PDF files). Here, word-processor client programs 
would transparently address the nearest/ cheapest Acrobat 
service instance in order to create PDF files. The overall 
objective of the ALN would be (a) to always provide 
access to some Acrobat service instance, such that a 
minimum number of service demands have to be rejected, 

and (b) to optimize network parameters such as 
provisioning and transmission costs. This paper assumes 
that the future development of these applications will lead 
to clients paying for the access to a service and the 
corresponding on- or offline exchange of payment; the 
individual goal of a client would become to access a 
service cheaply, while services may try to maximize 
income. 

In order to keep an ALN operational, service control 
and resource allocation mechanisms are required. Their 
basic purpose would be to match service supply and 
demand, in the likely case of multiple, redundant service 
instances, to meet those objectives. The simple service 
discovery mechanisms available today in decentralized 
networks (e.g. Jini [19]) seldom provide such 
functionality, as the case of redundant service instances is 
yet rare.  

However, a realization of these mechanisms by 
employing a centralized coordinator instance (auctioneer, 
arbitrator, dispatcher, scheduler, manager), like e.g. in 
GLOBUS [8] or CONDOR-G [9], has several drawbacks.  

First, ALN and the underlying networks are very 
dynamic and fast changing systems: service demands and 
nodes connectivity changes are frequent, and new 
different services are created and composed continuously. 
Information collected from the network is considered to 
be outdated when it reaches the coordinator; any solution 
computed on the basis of this information tries to 
optimize a past and inconsistent state of the network. 
Dynamic ALN need a continuous, real-time coordination 
mechanism, which reflects the changes in the 
environment.  

A second related property is that the coordinator 
should have global knowledge on the state of the network. 
This is mostly achieved by calculating the time steps such 
that actual status information from all nodes arrives safely 
at the coordination instance. However, if the diameter of 
the network grows, this approach leads to long latency 
times for the nodes.  

Third, a centralized coordinator is part of the problem 
that decentralized ALN are trying to solve: As bids and 
offers have to route through the network to the single 
instance which collects global knowledge and computes 
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the resource allocation, the distribution and deployment of 
services throughout the network is counteracted. This is 
currently not a problem as the control information is small 
compared to the allocation data itself, but may increase 
when the principle is applied to more and more 
application areas. 

These drawbacks lead to the search for a truly 
decentralized coordination concept which is able to 
allocate services and resources in real-time without a 
dedicated coordinator instance. This concept should on 
one hand be able to cope with technical shortcomings like 
varying amounts of memory and disk space, internet 
connection speed and sporadic appearance and 
disappearance of the services. On the other hand, it is 
desirable that the network as a whole shows optimized 
behavior with regard to low overhead communication, 
short computation times, and economical resource 
allocation.  

Recent research in Grid computing has also recognized 
the value of price generation and negotiation, and in 
general investigates economic models for trading 
resources and services and the regulation of supply and 
demand of resources in an increasingly large-scale and 
complex Grid environment. A general overview on 
resource management and scheduling in Grids is given in 
[4]. However, each Grid project is differently designed, 
and it is not possible to compare different allocation 
mechanisms within the same network without changing 
the fundamentals.  

In the remainder of this article, we first introduce a 
decentralized economic concept for coordination, the 
Catallaxy, and describe the CATNET project. The 
following section compares money and message flows in 
the application-layer network economic model, both with 
a centralized (baseline) and a decentralized 
implementation. Next we describe how the experiments 
are conducted in both cases. The article closes with some 
preliminary experimental results and an outlook to further 
research. 

2. The Catallaxy Paradigm and the CATNET 
Project 
 

The Catallaxy coordination approach [7; 10] is an 
economic coordination mechanism for information 
systems consisting of autonomous network elements, 
which is based on constant negotiation and price 
signaling. Using concepts from agent-based 
computational economics [18], the goal is to develop new 
technical possibilities of coordinating decentralized 
information systems consisting of autonomous software 
agents. The software agents are able to adapt their 
heuristic strategies using machine learning mechanisms 
[17], and this constant revision of strategies leads to a co-
evolution of software agent strategies, a stabilization of 

prices throughout the system and self-regulating 
coordination patterns [6]. The resulting patterns are 
comparable to those witnessed in human market 
negotiation experiments [13]. 

Earlier work in the context of computer science has 
used economic principles for resource allocation in 
operating systems, packet routing in computer networks, 
and load balancing in distributed computer systems [5; 
11]. Most of these approaches rely on using a centralized 
auctioneer and the explicit calculation of an equilibrium 
price as a valid implementation of the mechanism. A 
successful implementation of the Catallaxy paradigm for 
a distributed resource allocation mechanism promises the 
advantage of a more flexible structure and inherent 
parallel processing compared to a centralized, auctioneer-
based approach. This comparison can be done using both 
economical and technical criteria.  

For the economic evaluation of the overall success of 
the control mechanism we use the “maximum social 
welfare utility” (SWF) criterion, which is the sum of all 
individual utility function values of the participating 
nodes [16]. Every Client, Service Copy or Resource gains 
individual utility from buying lower or selling higher than 
the perceived market price. It can be enhanced by doing 
more transactions in the same time, but communication 
costs subtract from it. In total, SWF balances revenues 
and cost throughout the network. Increasing performance 
and decreasing communication in the whole network thus 
directly computes to relatively maximize social welfare 
utility. Other evaluation parameters are communication 
cost, allocation efficiency, network traffic and service 
access latency. 

The goal of the CATNET
1 project is thus to evaluate the 

Catallaxy paradigm for decentralized operation of 
application layer networks in comparison to a baseline 
centralized system. To achieve this, we have developed 
the CATNET ALN simulator, which allows to 
experimentally compare two main resource allocation 
strategies: A centralized approach in which allocation 
decisions are taken centrally and a decentralized 
approach, where local agents negotiate resources using 
economic models. 

The CATNET ALN simulator is implemented on top of 
the JAVASIM [3; 12] network simulator. It can be 
configured to simulate a specific ALN, such as a content 
distribution network or peer-to-peer network. Different 
agent types can be instantiated, namely clients, resource 
agents, and service agents. Network resources to be 
allocated encompass service access, bandwidth and 
storage. The simulation builds on a TCP/IP network 
model supported by JAVASIM. It describes the generic 
structure of a node (either an end host or a router) and the 

                                                 
1 CATNET is supported by European Commission Information Society 
Technologies Programme under contract no. IST-2001-34030. 
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generic network components, which can both be used as 
base classes to implement protocols across various layers.  

3. Money and Message Flows in the network 
 

During the runtime of the network, software agents in 
the network nodes buy and sell access to network service 
copies using a heuristic and adaptive negotiation strategy. 
Changes in prices for certain services reflect changes in 
the supply and demand situation, which are propagated 
throughout the network. Both client and service provider 
agents will adapt their strategies about where to buy and 
sell based on the received information, and thus 
continuously change the state of the network.  

 

3.1 The general simulation setup 
 

The CATNET application simulates two main control 
mechanisms for network coordination: a “baseline” 
control mechanism and a “catallactic” control mechanism. 
The baseline control mechanism computes the resource 
allocation decision in a centralized service/resource 
provider. The catallactic control mechanism has the 
characteristic that its resource allocation decisions are 
carried out by self-interested agents with only local 
information about the environment. Each agent has a 
resource discovery facility and a negotiation strategy 
module. The following class types are defined: 
• Client: a computer program on a certain host, which 

needs access to a web service to fulfill its design 
objectives. The Client (C) tries to access that 
“service” at an arbitrary location within the computer 
network, use it for a defined time period, and then 
continues with its own program sequence. Client 
programs run on a connected network “resource”. 

• Service: an instantiation of a general application 
function, embodied in a computer program.  

• Service Copy: one instance of the “service”. The 
service copy (SC) is hosted on a “resource” 
computer, which provides both storage space and 
bandwidth for the access of the service. 

• Resource (R): a host computer, which provides a 
limited number of storage space and access 
bandwidth for service transmission. Resources are 
connected via network connections defined in a 
topology script.  

• Network Connections: These connections are 
intended to be of equal length and thus of equal 
transmission time and costs. 

The trace collection of the simulation execution is 
done via a database for processing at a later stage after the 
simulation. 

 

3.2. Message Flows in the Baseline Model 
 

In order to simulate different control mechanisms we 
first consider the baseline system as a special case of the 
generic catallactic control mechanism. Through 
configuration in input scripts of the simulator, different 
behavior of the simulator can be set up. As a 
consequence, the comparison of simulation results should 
become easier to control and the development efforts 
focus on a single, generic system.  

The centralized baseline mechanism employs a 
dedicated service coordinator (the master service copy, 
MSC), which is known to the individual service copies. 

The client broadcasts a “request_service” message on 
its network connections. Either the receiving resource (R) 
provides a service copy (SC) of the requested type or not.  

If a SC is available, the resource routes the request to 
that service copy, adding its costs for storage and 
bandwidth consumption. The SC directs the request to the 
Master Service Copy (MSC), provided with information 
about costs and the amount of the message’s hop counter, 
i.e. the number of passed resources, indicating the 
distance to the requesting client.  

Resource hosts (R) forward the received request – 
independent of the successful detection of the service – to 
their neighboring resource hosts, increasing the message’s 
hop counter. Using this procedure, all adjacent resources 
will be inquired. If the hop counter exceeds a given 
number, the message is discarded. 

The MSC receives all the information from the R/SC 
pairs, is able to compute the costs of providing a service 
and sends back an accept/propose message revealing the 
“cheapest” SC to the client. In addition, it informs the 
selected R/SC pair. The resource allocates a timeslot and 
the SC provides the service. After that, the client sends 
the formerly agreed reward to the SC, which redirects the 
payment share for bandwidth and storage to its R host. 

ServiceCopyResourceClient Master SC

6: accept

5: accept

4: accept

7: transfer_money

1: request_service

2: request_service

8: transfer_money

3: request_service

 
 
Figure 1. Money and Message Flows: Baseline Approach 
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3.3. Message Flows in the Catallactic Model 
 

The Catallactic control mechanism has the 
characteristic that its resource allocation decisions are 
carried out by decentralized SCs with only local 
information about the environment.  

Again, the clients send out a “service_request” 
message on its network connections in a Gnutella-like 
fashion [1; 14]. The receiving resource forwards the 
message to the neighboring resource hosts. If the resource 
holds a SC of the requested type, the resource routes the 
request to it. In order to return a valid quote to the client, 
the SC has to inquire the resource about the provisioning 
costs by initiating a negotiation for bandwidth costs. A 
successful negotiation on this behalf allows the SC then to 
negotiate for the price for the provision of the service with 
the client. 

The client orders all incoming proposals in its inbox 
and subsequently negotiates for service access. It is 
guided in its strategy by the subjective market price, 
which is computed from all price quotes the agent 
receives from the SCs, regardless of the particular sender. 
If the initial offer price does not match within an interval 
around the market price, the negotiation will be 
discontinued. Otherwise, the agents will engage in a 
bilateral alternating offers protocol [15] until acceptance 
or final rejection of the offer. 

An accept message from the client lets the SC confirm 
both negotiations (with the resource for bandwidth and 
with the client for service provision). The resource 
reserves bandwidth and the contracts are sealed. The 
service provision is mirrored by the according money 
flow. On the other hand, a reject message from the client 
immediately stops further negotiation and initiates a reject 
message from the SC to the resource.  

To maximize utility, the agents will change their initial 
offer prices, starting with demand and supply prices given 
in an input data script, according to the following scheme: 
Rs and SCs as sellers will lower their offer price by one 
money unit if the negotiation was not successfully 
finished. They will raise their initial price by one money 
unit after an offer has been accepted. The clients and SCs 
as buyers will change their initial prices vice versa. 

If a SC has been turned down several times (having 
sent propose messages but never received an “accept”), it 
will try to relocate to another resource. According to the 
major share of received request messages, measured by 
incoming connections, the SC will ask the neighboring 
resource host for a free storage slot. If that target resource 
is fully occupied, the SC will ask the second-often relay 
of request messages and so on. If successful, the SC 
initializes a new instance at the target resource host and 
deletes the old instance. The overall effect is that SCs 
move themselves around the network in the physical 
direction of the demand. In the baseline approach, the SC 

wanting to relocate sends a query message to the MSC, 
who will inform the SC about where to relocate to.  

 

ServiceCopyResourceClient

4: propose

2: request_service

10: transfer_money

8: accept

7: accept

5: cfp

3: cfp

9: transfer_money

6: propose

1: request_service

 
Figure 2. Money and Message Flows: Catallactic 

Approach 
 

4. Conducting Experiments 
 

The application layer network is build on top of a 
physical network topology. The physical network 
topology is specified in the input of the simulator. The 
topology could be random or having a determined 
structure specified by the user. In Figure 3 we show one 
of the physical topologies, which we used in the 
experiments. This topology uses a central ring of nodes. 
On each central node, another ring of nodes is attached. 
Each of the attached nodes has a certain number of leaves. 

 
 

Figure 3. Example of network topologies, approx. 100 
nodes 

 

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03) 
0--7695-1919-9/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 6, 2008 at 7:23 from IEEE Xplore.  Restrictions apply.



On top of the physical nodes, a number of different 
software agents are created, which form the application 
layer network. The software agents are Clients, Service 
Copies, and Resources. Each node can host Clients, 
Resources, and/or Service Copies. A node can host 
several agents or none at all. In the latter case, the node 
just acts as a router.  

The application layer network formed by these agents 
is varied in the experiments. In order to simulate the node 
density of the application layer network, we vary the 
number of Resource agents and Service Copies available 
to Clients. In order to simulate the dynamics of the 
application layer network, we connect and disconnect 
during the simulation the available Service Copies. 

For each agent, particular data such as the capacity of 
the Resources can be specified in the initialization of the 
simulator. Recall that the capacity of the resources is high 
in the low node density scenario, and low in the high node 
density scenario, due to the correspondence with content 
distribution networks and peer-to-peer networks, 
respectively. The initial prices of Clients, Service Copies, 
and Resource agents are specified in the initialization of 
the simulator, also the initial budget of Clients.  

The type of control mechanism is another parameter 
specified in the setup of the simulator. The main control 
mechanisms implemented in the simulator are the 
Catallactic and the baseline approach. The modular design 
of the simulator, however, also allows testing variations 
of them to investigate the effect of different parameters in 
each control approach. 

Real world distributed applications like multimedia 
content distribution networks (for instance Akamai), Grid 
implementations, and Peer-to-Peer systems (for instance 
Gnutella) can be characterized in a simplified form by a 
number of a few common features, which inspired the 
design of the application layer network implemented in 
the simulator. Though different in many particular 
mechanisms, these real world applications can be mapped 
to the two-dimensional design space given by 1) the node 
dynamics; and 2) the node density of the application layer 
network.  

Node dynamics measures the degree of availability of 
service-providing nodes in the network. Low dynamics 
mean an unchanging and constant availability; high 
dynamics are attributed to a network where nodes start up 
and shut down with great frequency. 

Node density measures the relation of resource nodes 
to the total number of network nodes. The highest density 
occurs when every network node provides the described 
service to others; the lowest density is reached if only one 
resource node in the whole network exists.  

By varying node dynamics from null to medium to 
high, and node density from low to medium to high, each 
of the two control mechanism is simulated with 9 
scenarios, as illustrated in Figure 4, which leads to 18 
basic experiments. 
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Figure 4: Illustration of the main experiments in a two-

dimensional design space. 
 
The obtained traces are used to compare the 

performance of the Catallactic and the baseline system in 
the different scenarios. As an example, the following 
preliminary output measuring SWF could be found in an 
experiment varying the node density under a high 
dynamics regime (see Figure 5) (however, the results 
have not been statistically validated yet). This experiment 
was conducted with a demand trace of 2000 requests over 
500s coming from 75 clients. In the low node density 
configuration (_20), the ALN consisted of 5 Service 
Copies and 5 Resources, in the medium node density 
configuration (_21) of 25 Resources and 25 Service 
Copies, and in the high node density configuration (_22) 
the application layer network was formed by 75 
Resources and 75 Service Copies.  

High dynamics

0,00

10000,00

20000,00

30000,00

40000,00

_20 _21 _22

S
W

F CA

BL

 
Figure 5: SWF comparison in a high node dynamics 

experiment with varying node density 
 
One can see that with low node density (_20), the SWF 

in the Catallactic (CA) experiment is much lower than in 
the baseline (BL) case. With medium (_21) and especially 
high density (_22), the relations turn until the self-
organizing Catallaxy outperforms the centralized baseline 
mechanism. 
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5. Conclusion and Outlook 
 

CATNET is a network simulator for ALN which can 
simulate different resource allocation models. This article 
shows how, with a relatively simple variation of the 
negotiation protocol, both centralized and decentralized 
coordination can be supported, so that comparable results 
are produced. In our view, this feature distinguishes 
CATNET from most other Grid projects.  

Although the main simulation parameters which we 
vary are the node dynamics and node density, we 
observed that actually the design space which could be 
considered for both systems is much larger. Other 
parameters we have considered to evaluate are, for 
instance, the effect of scale on the coordination 
mechanisms, the influence of particular characteristics of 
the demand trace, design parameters of the baseline 
system to handle highly dynamic environments, and 
parameters of the strategy used in the Catallactic 
coordination to determine prices. 
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