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Abstract. Application layer networks are software architectures that
allow the provisioning of services requiring a huge amount of resources
by connecting large numbers of individual computers, like in Grid or
Peer-to-Peer computing. Controlling the resource allocation in those net-
works is nearly impossible using a centralized arbitrator. The network
simulation project CATNET will evaluate a decentralized mechanism
for resource allocation, which is based on the economic paradigm of the
Catallaxy, against a centralized mechanism using an arbitrator object. In
both versions, software agents buy and sell network services and resources
to and from each other. The economic model is based on self-interested
maximization of utility and self-interested cooperation between agents.
This article describes the setup of money and message flows both for
centralized and decentralized coordination in comparison.

1 Decentralized Resource Allocation Mechanisms and
the Grid

Private computer centers, shielded from public networks, provide computation
and data storage as a closed, private resource, and are mostly controlled by
central arbitrator objects. In contrast, the openly accessible Internet resource
pool offers more than 150 million connected hosts, and the number is growing
exponentially, without any visible control instance. Even if only a fraction of
this processing and storage capacity could be allocated properly, the resulting
computation power would exceed private networks by far. There are additional
advantages as well [2]:

— The system would be self-maintaining: if a computer is damaged the owner is
responsible for repairing it; if the resource stays damaged another computer
can take over its duties.

— Distributed data would be available from any location in the world and
can probably survive disasters more securely than data stored on a single
resource or network. Local catastrophes cause only local effects.



— The costs of using the network would be only a fraction of the costs com-
pared to maintaining own hardware with frequent idle times. Enterprises
always have vast capabilities on their disposal, but only pay for the time
they actually need it.

Currently there exist some Internet -wide public resource infrastructures,
which are called Grids and Peer-to-Peer systems. Grids are Internet accessible
computational resources provided to grid users for execution of computational
intensive parallel applications. Peer-to-Peer systems are end-users computer con-
nected to the Internet which provide their computational and/or storage re-
sources for other end-users usage [20]. Applications which can take advantage of
provisioning of such huge amounts of resources are: multicast services for global
audiences, storage repositories of peta-scale data sets, or parallel computational
application. Such applications are executed in multiple resource locations dis-
tributed throughout the Internet. So that all those application instances work
coordinately, they need to be organized forming a network on top of the Grid,
therefore the name Application Network.

A Grid Application Network scenario would be the distributed provisioning
of web services for Adobe’s Acrobat (for creating PDF files) in an Akamai-like
application layer network; word-processor client programs would transparently
address the nearest/cheapest Acrobat service instance. The overall objective in
the network would be (a) to always provide access to Acrobat service, such that
a minimum number of service demands have to be rejected, and (b) to optimize
network parameters such as provisioning costs and network communication.

In order to keep such a network operational, service control and resource
allocation mechanisms are required. However, these mechanisms are realized in
existing operational large-scale distributed systems by employing a centralized
coordinator instance (like an auctioneer or an arbitrator). This centralized ap-
proach has several drawbacks.

A first prerequisite for a central coordination instance to work properly is
that the environment does not change its state between the beginning and the
end of the computation process, e.g. by ”sliced” computing in discrete times-
lots. Grid application networks, however, are very dynamic and fast changing
systems: service demands and nodes connectivity changes are very frequent, and
new different services are created and composed continuously. Dynamic grid ap-
plication networks need a continuously updating coordination mechanism, which
reflects the changes in the environment.

A second related property is that the coordinator should have global knowl-
edge on the state of the network. This is mostly achieved by calculating the
time steps such that actual status information from all nodes arrives safely at
the coordination instance. However, if the diameter of the network grows, this
approach leads to long latency times for the nodes.

Third, a centralized coordinator is part of the problem that decentralized
grid application networks are trying to solve: As bids and offers have to route
through the network to the single instance which collects global knowledge and
computes the resource allocation, the distribution and deployment of services



throughout the network is counteracted. This is currently not a problem as the
control information is small compared to the allocation data itself, but may
increase when the principle is applied to more and more application areas.

These drawbacks lead to the search for a truly decentralized coordination
concept which is able to allocate services and resources in real-time without a
dedicated and centralized coordinator instance. This concept should on one hand
be able to cope with technical shortcomings like varying amounts of memory
and disk space, internet connection speed and sporadic appearance and disap-
pearance of the services. On the other hand, it is desirable that the network
as a whole shows optimised behavior with regard to low overhead communica-
tion, short computation times, pareto-optimal resource allocation. In addition
to that, the coordination concept should avoid the so-called over-usage of shared
resources — known as the ”tragedy of commons” [11] — or ”free- riding behavior”
[1], [13], [28], which can lead to the network’s collapse.

Recent research in Grid computing has also recognized the value of price gen-
eration and negotiation, and in general economic models for trading resources
and services and the regulation of supply and demand of resources in an increas-
ingly large-scale and complex Grid environment. Examples are the Nimrod/G
Resource Broker and the GridBus project [5], [10].

As a free-market economy is able to adjudicate and satisfy the conflicting
needs of millions of human agents [16], it would be interesting to evaluate if
this decentralized organizational principle could also be used for coordination of
grid application networks. In the remainder of this article, we first introduce a
decentralized economic concept for coordination, the Catallaxy, and describe the
CATNET project. The following section describes money and message flows in
the grid application network economic model, both with a centralized (baseline)
and a decentralized implementation. The article closes with some preliminary
results and an outlook on the applicability of the concept to various domains.

2 Decentralized Economic Coordination: the Catallaxy
Paradigm and the CATNET Project

In grid application networks, different types of resources can be scarce such
as storage, bandwidth, and CPU cycles. Optimization criterions for allocating
these resources can be based on cost-efficiency, performance or a combination
of parameters. In this work, our goal is to develop a simulator, which allows to
experimentally compare two main resource allocation strategies: A centralized
approach in which decisions are taken centrally and a decentralized approach,
where local agents negotiate resources using economic models.

The Catallaxy coordination approach [7], [12] is a coordination mechanism for
systems consisting of autonomous decentralized hard- or software devices, which
is based on constant negotiation and price signaling between the devices. The
mechanism is based on efforts from both agent technology and economics, namely
agent-based computational economics [27], to develop new technical possibilities



of coordinating decentralized information systems consisting of autonomous soft-
ware agents. The software agents are able to adapt their strategies using machine
learning mechanisms [26], and this constant revision of strategies leads to a co-
evolution of software agent strategies, a stabilization of prices throughout the
system and self-regulating coordination patterns [7]. The resulting patterns are
comparable to those witnessed in human market negotiation experiments [19].

Earlier work in computer science has used economic principles for resource
allocation in operating systems, packet routing in computer networks, and load
balancing in distributed computer systems [6], [14]. Most of these approaches rely
on using a centralized auctioneer and the explicit calculation of an equilibrium
price as a valid implementation of the mechanism. A successful implementa-
tion of the Catallaxy paradigm for a distributed resource allocation mechanism
promises the advantage of a more flexible structure and inherent parallel pro-
cessing compared to a centralized, auctioneer- based approach.

The goal of the CATNET project is thus to evaluate the Catallaxy paradigm
for decentralized operation of grid application networks in comparison to a base-
line centralized system. For the evaluation of the overall success of the control
mechanism, we will use the "maximum social welfare-criterion”, which is the
sum of all utilities of the participating nodes [23]. This criterion balances both
costs and revenue incurred by the nodes and allows comparing different variants
of the Catallaxy and baseline implementations.

Social welfare maximizing solutions are a subset of ”Pareto-efficient” ones;
once the sum of the payoffs is maximized, an agent’s payoff can increase only
if another agent’s payoff decreases [29]. The resource allocation efficiency of
an agent adds to the revenue, while communication cost, measured as the ra-
tio of data to control bandwidth consumption, adds to the costs. Increasing
performance and decreasing communication in the whole network thus directly
computes to relatively maximize social welfare. As this property also holds for
local optima of the solution space, ”social welfare” is considered to be the main,
but not the only evaluation parameter. Other evaluation parameters will be the
network traffic and service access latency.

3 Money and Message Flows in the Grid and Application
Network

The lifecycle of a grid application network can be divided in two phases, the
deployment and the allocation phase.

The goal of the deployment phase is the initial positioning of new resources,
services, and service copies [3]. We assume that the deployment phase has already
been carried out and services are initially located in the network. Deployment
can also be economically modeled, as self-interested service deployers compete
for existing resources where services are to be placed, and utility-maximizing
resource providers compete for the provisioning of promising new services.

The allocation phase, which is in the main focus here, changes resource allo-
cations during the runtime of the network, meaning a re-allocation of the initial



positions found in the deployment phase. During the runtime of the network,
software agents in the network nodes buy and sell access to network service
copies using a heuristic and adaptive negotiation strategy. Changes in prices
for certain services reflect changes in the supply and demand situation, which
are propagated throughout the network. Both client and service provider agents
will adapt their strategies about where to buy and sell based on the received
information, and thus continuously change the state of the network.

3.1 The CATNET Network Simulator

CATNET is a simulator for a generic grid application network (GAN). This GAN
simulator is implemented on top of the JavaSim network simulator. It can be
configured to simulate a specific GAN, such as a content distribution network or
Peer-to-Peer network. Different agent types can be instantiated, namely clients,
resource agents, and service agents. Network resources to be allocated encompass
service access, bandwidth and storage.

JavaSim is a component-based, compositional simulation environment [4],
[15]. It is a discrete event simulator targeted at networking research that provides
support for simulation of real network topologies and grid application services,
i.e. data and control messages among application network instances.

JavaSim has been built upon the notion of the autonomous component pro-
gramming model. Similar to COM/COM+, JavaBeans, or CORBA, the basic
entity in JavaSim are components, but unlike the other component- based soft-
ware packages/standards, components in JavaSim are autonomous. Having been
developed entirely in Java, reusing the code has been easy.

For the purpose of network modeling and simulation, the model defines on
top of the autonomous component architecture a generalized packet switched
network model. It describes the generic structure of a node (either an end host
or a router) and the generic network components, which can both be used as
base classes to implement protocols across various layers.

The CATNET application simulates two main control mechanisms for net-
work coordination: a ”baseline” control mechanism and a ”catallactic” control
mechanism. The baseline control mechanism computes the resource allocation
decision in a centralized service/resource provider. The catallactic control mech-
anism has the characteristic that its resource allocation decisions are carried
out by self-interested agents with only local information about the environment.
Each agent has a resource discovery facility and a negotiation strategy module.
The following class types are defined:

— Client: a computer program on a certain host, which needs access to a web
service to fulfill its design objectives. The Client (C) tries to access that
”service” at an arbitrary location within the computer network, use it for
a defined time period, and then continues with its own program sequence.
Client programs run on a connected network ”resource”.

— Service: an instantiation of a general application function, embodied in a
computer program.



— Service Copy: one instance of the ”service”. The service copy (SC) is hosted
on a "resource” computer, which provides both storage space and bandwidth
for the access of the service.

— Resource: a host computer, which provides a limited number of storage space
and access bandwidth for service transmission. Resources (R) are connected
to each other via dedicated network connections.

— Network Connections: These connections are intended to be of equal length
and thus of equal transmission time and costs.

The trace collection of the simulation execution is done via a database for
processing at a later stage after the simulation.

3.2 Message Flows in the Baseline Model

In order to simulate different control mechanisms we first consider the baseline
system as a special case of the generic catallactic control mechanism. Through
configuration in input scripts, different behavior of the simulator can be set up.
As a consequence, the comparison of simulation results should become easier to
control and the development efforts focus on a single, generic system.
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Fig. 1. Money and Message Flows: Baseline Approach

As Fig. 7?7 shows, the centralized baseline mechanism employs a dedicated
service coordinator (the master service copy, MSC), which is known to the indi-
vidual service copies.

The client broadcasts a "request_service” message on its network connections.
Either the receiving resource (R) provides a service copy (SC) of the requested
type or not. If a SC is available, the resource routes the request to that service
copy, adding its costs for storage and bandwidth consumption. The SC directs
the request to the Master Service Copy (MSC), provided with information about
costs and the amount of the message’s hop counter, i.e. the number of passed
resources, indicating the distance to the requesting client.



Resource hosts (R) forward the received request independent of the suc-
cessful detection of the service to their neighboring resource hosts, increasing
the message’s hop counter. Using this procedure, all adjacent resources will be
inquired. If the hop counter exceeds a given number, the message is discarded.

The MSC receives all the information from the R/SC pairs, is able to com-
pute the costs of providing a service and sends back an accept/propose message
revealing the ”cheapest” SC to the client. In addition, it informs the selected
R/SC pair. The resource allocates a timeslot and the SC provides the service.

Contracts have to be fulfilled; a re-negotiation of allocations is out of the
project’s scope. Right after the service has been provided to the client, the client
sends the formerly agreed reward to the SC, which redirects the payment share
for bandwidth and storage to its R host.

3.3 Message Flows in the Catallactic Model

The Catallactic control mechanism has the characteristic that its resource allo-
cation decisions are carried out by decentralized SCs with only local information
about the environment; see Fig. 77.
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Fig. 2. Money and Message Flows: Catallactic Approach

Again, the clients send out a ”service_request” message on its network con-
nections in a Gnutella-like fashion [1], [20]. The receiving resource forwards the
message to the neighboring resource hosts. If the resource holds a SC of the
requested type, the resource routes the request to it. In order to return a valid
quote to the client, the SC has to inquire the resource about the provisioning
costs by initiating a negotiation for bandwidth costs. A successful negotiation
allows the SC then to negotiate for the price for the provision of the service with
the client, like in a very shallow iterated contract net protocol [9], [25].



The client orders all incoming proposals in its inbox and subsequently ne-
gotiates for service access. It is guided in its strategy by the subjective market
price, which is computed from all price quotes the agent gets ”from the mar-
ket”, regardless of the particular sender. If the initial offer price does not match
within an interval around the market price, the negotiation will be discontinued.
Otherwise, the agents will engage in a bilateral alternating offers protocol [21]
until acceptance or final rejection of the offer.

An accept message from the client lets the SC confirm both negotiations
(with the resource for bandwidth and with the client for service provision). The
resource reserves bandwidth and the contracts are sealed. The service provision is
mirrored by the according money flow. On the other hand, a reject message from
the client immediately stops further negotiation and initiates a reject message
from the SC to the resource.

To maximize utility, the agents will change their initial offer prices, starting
with demand and supply prices given in an input data script, according to the
following scheme: Rs and SCs as sellers will lower their offer price by one money
unit if the negotiation was not successfully finished. They will raise their initial
price by one money unit after an offer has been accepted. The clients and SCs
as buyers will change their initial prices vice versa.

If a SC has been turned down several times (having sent propose messages
but never received an ”accept”), it will try to relocate to another resource. Ac-
cording to the major share of received request messages, measured by incoming
connections, the SC will ask the neighboring resource host for a free storage slot.
If that target resource is fully occupied, the SC will ask the second-often relay of
request messages and so on. If successful, the SC initializes a new instance at the
target resource host and deletes the old instance. The overall effect is that SCs
move themselves around the network in the physical direction of the demand. In
the baseline approach, the SC wanting to relocate sends a query message to the
MSC, who will inform the SC about where to relocate to.

4 Conclusion and Outlook

One of the goals of the CATNET project is the setup for a network simulator
which can simulate different coordination models. This article shows how cen-
tralized and decentralized coordination can be supported with a relatively simple
addition to the negotiation protocol, so that comparable results are produced.
The findings can be visualized using NAM [17];

The final evaluation whether the baseline or catallactic mechanism receives
better results has not been made yet. This result will be achievable in the last
project phase in spring 2003. For the time being, the CATNET simulator in
itself already allows investigation into allocation and messaging behavior in grid
application networks.

If CATNET is successful with regard to the Catallactic control mechanism,
allocation and scheduling questions in other decentralized network domains like



hospital logistics [22], factory logistics [18] or adaptive supply chain management
[8], [24] could also be targeted.

In our view, CATNET stands at the very beginning of research into Catal-
lactic Information Systems. In Fig. 7?7, we have indicated how future research
work can be divided into the agent technology layer and an application-specific
layer. Both are linked in a feedback loop. On one hand, the technology has to
constantly (and imperfectly) model an ever-changing state of the application
world. On the other hand, technology’s results and the behavior of its single
elements directly influence the application state by means of self-organization.
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Fig. 3. Catallactic Information Systems

Future research will address the design of control institutions for large, open,
and heterogeneous agent societies. These institutions should influence the multi-
agent systems to enable them to emergently develop towards a state of desirable
global behavior where security, trust and welfare are provided to all participants.
Our research and software is still in its early infancy, but we hope to be able
to provide a first ”proof of concept” for Catallactic Information Systems in the
domain of decentralized grid application networks.
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