
Xweb: A Framework for Application Network Deployment in a Programmable

Internet Service Infrastructure

O. Ardaiz, L. Navarro

Computer Architecture Department

 Polytechnic University of Catalunya

Barcelona 08034 Spain

{oardaiz, leandro}@ac.upc.es

Abstract

An application network consists of a number of

application servers distributed throughout the Internet,

connected and coordinated to provide services with low

latency. Adding, removing and migrating servers,

application networks adapt to demand variations. To

create new servers anywhere in the Internet a

programmable Internet service infrastructure is needed.

In addition application network servers must be deployed

co-ordinately. We propose a framework for application

network deployment that implements such functionality.

1. Motivation

Internet services quality can be greatly improved if an

application network provides them. Application networks

are a set of coordinated application servers distributed

throughout the Internet, thereby clients can access a

nearby server that provides a low latency service.

Application network provide client requests with good

quality of service: a request from location X will be

provided by nearer server A instead of farther server B;

also server A load will not increase beyond a threshold,

causing successive requests to be delayed, and some

requests are redirected to a distant but less loaded server.

Those servers are connected, setting up an application

layer topology, and coordinated for request redirection,

load balancing and replica consistency. Examples of

application networks are content distribution networks,

proxy-caching hierarchies, chat server networks or peer-

to-peer networks as Gnutella [19].

Existing application networks are manually created

and modified: new servers are manually installed and

connections among servers are manually configured.

However Internet services have very dynamic demands

with temporal and spatial variations [18]; static

application networks can not provide these demands with

good service quality (unless they are overprovisioned to

the worst case: the hot spot service demand f.e. Akamai

network[1]). An application network that adapts to those

variations will serve such dynamic demands with a good

service quality. Adapting to demand variations involves

adding and removing servers, migrating servers to

locations where new demand arises, and deleting and

creating connections among servers. To implement this

functionality it is required a programmable Internet

services infrastructure. A programmable infrastructure is

composed of resources distributed throughout the Internet

where service providers can remotely activate and stop

application servers.

Moreover, to facilitate application networks adapt to

demand variations maintaining good service quality while

consuming few resources, application networks must be

deployed, "to spread out or arrange for effective action"

[11], instead of being uncoordinatedly activated. As a

result of application network deployment, application

servers are placed at appropriate locations, connected and

coordinated to provide a good service quality.

1.1. Related Work

Provisioning variable service demands has been

pursued by Radar [16] dynamic hosting service where

static content is migrated towards hosts close to the

demand. P2P and CDN networks that cache static content

also move content close to clients on demand. Application

service providers such as Ejasent [10] are proprietary

frameworks for activating web service at increasing

number of nodes as demand rises; but they only

implement capabilities needed by their customers. As

represented in figure 1, Xweb extends current static

application networks towards an application network

service that is dynamically deployed in a programmable

infrastructure to adapt to demand variations.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 14, 2008 at 05:40 from IEEE Xplore. Restrictions apply.

Xweb

Programmable

Infrastructures:

WebOS, Grids,

Active Services

Web
(Not an infrastructure,

but individual hosts)

Coordinated

Servers &

Resources

On the fly

Activation /

Configuration

Manual

Modifications

Service

Control
(quality service,

efficient resource

utilization)

Modifiability

(temporal/ spatial/

functional variation)

Isolated

Servers

Application
CDN,

P2P

Networks:
Radar,

ASPs,

Ejasent

Figure 1. Xweb vs. other frameworks

On the other side open programmable Internet service

infrastructures have been proposed to facilitate

introduction of new services and promote third party

service development. These infrastructures have been

described as an Internet wide distributed operating system

WebOS [23]; active services that provide per request on

demand service activation, such as AS.1 framework [3].

Some gather processing resource for parallel

computational intensive applications: Grids [12], some

gather storage resources for static content dissemination

and/or archival: Lbone [6], and some allocate generic

resources for conferencing systems: Darwin [7]. However

none of them has been designed with the goal of creating

and modifying dynamically application networks. Xweb

extends programmable infrastructures with deployment

mechanisms (see figure 1), so that application network are

dynamically activated, connected and coordinated.

Vandal [13], Xbone [22] and Xbind [16] deploy virtual

networks and services at layer three maintaining control

of topology, routing and resource utilization, with various

levels of programmability.

2. Deployment Framework

Application networks must not be created activating

application servers uncoordinatedly. Application

networks must be deployed "to spread out or arrange for

effective action" [11]. We have used this metaphor to

model a deployment framework for computer based

application network. In this deployment model there are

application users that demand a service; a limited number

of resources with which to construct that service. A

deployment plan determines which resources have to be

allocated, how to activate and coordinate server instances.

This deployment plan is executed by allocating resources,

distributing service code and installing, executing,

connecting and coordinating servers that provide the

application.

Figure 2. Framework building blocks

A deployment plan is designed to accomplish two

different objectives: provide requested service level, and

minimise resource utilization, while fulfilling any other

imposed constraints. A deployment plan specifies

application network deployment commands. The service

plan contains all commands and information to activate an

application network: resource mapping commands (where

to allocate resources), resource allocation commands

(which resources), and service composition commands

(how to distribute code, how to bind server to resources,

and how to connect and coordinate servers).

3. Xweb Building Blocks

To realize such model we propose to implement a

framework with these building blocks (see figure 2): a

programmable Internet service infrastructure, resource

discovery and monitoring, service specifications, resource

mapping, resource allocation, service composition.

Resource discovery and service specifications provide

input to create a deployment plan with a resource-

mapping algorithm. Allocating resources, distributing

code and composing an application network in the

programmable infrastructure, carry out the deployment

plan. Changes in demand or resource availability are

feedback to resource discovery and service specification

modules triggering a re-deployment operation.

3.1. Internet Service Programmable

Infrastructure

An Internet service programmable infrastructure

comprises a number of nodes that provide resources and

an execution environment. The execution environment at

each node must permit simultaneous execution of several

servers from different application networks. Execution

environments with these properties are multitasking

operating systems, such as UNIX derived OS and virtual

machines such as Java Virtual Machine.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 14, 2008 at 05:40 from IEEE Xplore. Restrictions apply.

3.2. Deployment Plan Input: Resource

Availability and Service Specifications

Resource discovery and monitoring provides

deployment managers with an up-to-date resource offer

specifying which nodes support activation of new

services, its resource type and quantity. Resources can be

discovered and monitored proactively (managers query

nodes) or indirectly (managers lookup resource

availability in a directory f.e. Globus MDS [9]). Xweb

employs a proactive mechanism called multicast

expanded ring search used at the Xbone [21]. It sends

queries at a multicast channel with increasing time-to-live

packets; resources respond queries directly to managers in

a unicast channel. This mechanism, sketched in Fig. 3,

discovers large numbers of nodes in a short time with

little network overhead.

Service specifications summarize service demand and

include service-wide properties and resource

requirements, which indicate how overall service is

provided to users. Service specifications are represented

by three different requirements:

Resource requirements, which can be normalized for

one client demand, i.e. execution environment, storage

size, per request network capacity, request duration, and

service level.

Service demand is a table containing demand

population and access frequency of demand regions,

where regions can be IP subnets, AS areas, or

geographical areas.

Service-wide constraints for application networks are:

maximum network diameter (number of servers a request

will be forwarded to before being provided by an origin

server: high diameter application networks provide the

least costly services because few requests reach to distant

origin servers, low diameter networks provide lower

response times since each request forwarding adds a

delay), level of redundancy (number of different servers

for each region: redundancy comes at a higher cost), a

maximum number of server can be specified to avoid

incurring in a large cost. Fig. 4 shows an XML

specification.

Figure 3. Multicast expanded ring search
discovering increasingly further apart resources

<app_net_specifications id=www.mortero.com

Origin_Server="127.10.12.12:80/mortero.tar">
<Resource Requirements>
 <OSType>SunOS</OSType>
 <Storage Unit="Mbytes">200</Storage>

 <Service_Traffic Unit="Kbits">20<Service_Traffic>
 <Service_Time Unit="sec">10</Service_Time>

 <Client_Dist Unit="InetHops">2</Client_Dist>
 <Server_Load Unit="%">>20</ Server_Load>
</Resource Requirements>
<Service Demand>

<RegionalDemand>
<RegionId Unit="ASnum">1201</RegionId>

<ClientsNum>1000</Traffic>
 <DemandRate Unit="req/sec">0.1</DemandRate>

</RegionDemand>
</Service Demand>

<Service-wide Constraints>
<Max_Network_Diameter>1</Max_Network_Diameter>
 <Redundancy_Level>2</Redundancy_Level>

 <Max_num_servers>5</Max_num_servers>
</Service-wide Constraints>
</app_net_specifications>

Fig. 4. Application Network Specifications

3.3. Resource Mapping

Resource mapping functionality chooses most

appropriate nodes where to deploy application networks.

Resource availability determines sets of candidate nodes.

Service specifications reduce candidate sets and some

combinations are discarded. Among remaining mappings,

it is selected the one which optimises some value: either

maximising overall service quality (service quality is

measured by client-to-server distance and/or server load;

distance is proportional to response time, Internet hops or

path throughput; the higher client-to-server distance the

worse service level can be expected) or/and minimising

costs (cost is measured by resource consumption per

server cost plus network traffic).

In the application networks literature there are several

algorithms that optimise application networks, subject to

different constraints. Some considers storage as the

unique constrained resource and try to minimize overall

client-to-server distance i.e. Dahlin cooperative

replacement algorithm [13] or Stor-Serv Intelligent

Storage Network [8]. Others model application networks

as a load-balancing and minimize replication cost and

distances, Radar [16].

We have designed a simple algorithm that we call

“connected placement” application network mapping

algorithm. If is based on the fact that application networks

create most of its traffic from edge servers to client

(caching can reduce outbound traffic by 40%, therefore it

is a reasonable assumption), therefore it is more important

to minimize client-to-server traffic. First it calculates

positions of edge servers (servers nearer to clients) by a

placement algorithm which minimizes overall client-to-

server distances selecting only among those nodes with

appropriate resources available. In a second phase those

edge servers locations can be consider as client locations

of second level servers, therefore its locations can be

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 14, 2008 at 05:40 from IEEE Xplore. Restrictions apply.

found executing the placement algorithm again. This is

repeated until the maximum network diameter is reached,

when servers are fully connected to each other setting up

a mesh. We will evaluate it in a future work.

3.4. Resource Allocation

A local resource allocator at each resource node has to

keep a list of allocated resources so that it does not

allocate more resources than available. Besides it has to

enforces strict partitioning of resources so that different

application at the same node do not interfere with each

other. Deployment managers can control resource

allocations at resource agents with per node individual

command messages. However it is a mechanism which

suffers from scalability and resource contention problems.

There exist more distributed alternatives such as

“multicast injection”, based on multicast, which provides

distributed resource allocation with comparable

efficiency, little resource contention and much less traffic

generated at deployment managers locations, we have

evaluated it in another paper [2].

3.5. Application Network Composition

Application networks are composed of software

entities executed at different nodes. They communicate

and coordinate for effective service and efficient

resources utilization. Mechanisms required to compose an

application network are 1) distribute service code to

nodes, 2) bind service code to local resources on those

nodes, 3) coordinate all service instances.

Code distribution.

Dynamic Resource Binding.

Dynamic Servers Connection and Coordination

Figure 5. Composition Mechanisms

Application network deployment requires dynamic

resource binding mechanisms, so that services bind and

unbind from resources on the fly.

Composing an application network involves

connecting and coordinating service instances.

Communication is defined by connectivity among its

members and coordination by rules governing

coordination among them. Application layer network

connections are TCP virtual circuits or UDP port pairs

among servers. Rules governing coordination among

service instance are very simple rules: "if cannot be

processed here, forward to node x", "if coming from

nodes x or y, forward to node z". Therefore it involves

creating communication channels, and providing rules on

how to cooperate. Again these mechanisms should be

dynamic.

4. Xweb Implementation: Web Proxy

Caching and Chat Server Application

Network Deployment

Web proxy-caching application network provide a

caching service for web clients. Web pages are cached at

intermediate servers. Pages that cannot be provided by a

server are forward to a parent proxy-cache [24]. Chat

server application networks are a number of chat servers

that are connected and coordinated to share chat channels

[14].

4.1. Deployment and Security Architecture

The deployment model clearly has two differentiated

roles: service provider and resource providers. Resource

providers are programmable infrastructure nodes. They

assume a passive role in that they provide resources and

an execution environment. Service providers assume an

active role in that they command deployment of the

application network, controlling resource allocation and

service composition. Therefore the system architecture is

composed of resource agents at resource providers' nodes

and deployment managers at service providers' nodes.

Resource agent implements resource allocation, code

distribution, resource binding and service composition.

Deployment managers implement resource discovery, a

service specification front-end, resource mapping, and

deployment plan creation. Deployment managers

command resource agents to allocate resources, obtain

service code, bind service programs to allocated

resources, and configure application network

coordination.

 Resource agents implement an access control

mechanism controlled by resource providers. These give

access to certain deployment manager to perform resource

allocation and service composition operation on their

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 14, 2008 at 05:40 from IEEE Xplore. Restrictions apply.

resources. Deployment manager communicate with

resource agents through a secure SSL connection. In this

way only authenticated deployment manager can perform

operations over resources. Deployment managers only

deploy application networks over authenticated nodes. A

certification authority certifies both parties.

4.2. Xweb Programmable Infrastructure and

Resources

The Xweb programmable infrastructure is made from

Linux nodes and Java-Tomcat execution environments

(therefore it is possible to deploy Linux service and

Servlet based application networks). Each node makes

public its resource availability: execution environment,

maximum network capacity, storage capacity and

adjacent network regions where service can be provided.

In our prototype these values are provided by manual

configuration, however they can be obtained dynamically.

Our prototype consists of only three resource nodes, plus

a deployment manager node. In such infrastructure it is

possible to deploy several application networks made up

of three servers.

4.3. Deployment Manager

Multicast Expanded-Ring Search Resource Discovery

and Monitoring Xweb multicast expanded ring search is

the Xbone [22] implementation. Resource agents listen to

IP multicast address 224.192.0.1 waiting for resource

discovery requests. Responses are only sent to trust

managers in a unicast secure SSL connections containing

resource properties. Deployment managers send resource

discovery messages after receiving a deployment request

from a user through its interface, and periodically send

resource availability reports.

Specifications Input Deployment managers have a web

interface so that several service providers can access from

remote locations. Through this interface, service creators

input service names, code location, start time, service

input service specification plus application network

duration and can adjust some deployment parameters.

Resource requirements supported are: execution

environment (type of service), storage size, maximum

distance to server, and network traffic generated; demand

is specified as a list of AS regions; service wide

constraints are maximum number of servers.

Resource Mapping Algorithm The resource mapping

algorithm implementation selects for each demand region

a resource node with enough resources among those that

are nearer to that region. This algorithm does not optimise

number of resource locations, but it provides a good

service since each demand region has one server that is

nearby and has enough resources. Edge servers are

connected in a tree whose root is the node not been

selected for any region.

Deployment Process Control Deployment managers

control if deployment process is being carried out as

planned. They have to maintain a record of every

operation started for future resource release or commit

operations.

4.4. Resource Agents

Local Resource Allocator Resource agents keep a list of

allocated and free local resources. It has to enforce strict

partitioning of resources so that different application

being provided from one node does not interfere with

each other.

In our implementation there are two allocation tables

for storage of resources and network bandwidth capacity.

On receiving an allocation command, resource agents

check if they have available resources to deploy a new

service in its node. If so they proceed to decrease free

resource table and increase allocated resources table in an

atomic operation.

On Demand Code Distribution There exist many

mechanisms for code distribution with different levels of

security and performance. Existing programmable

infrastructures provide mechanism for active code and

executables distribution that are based on file transfer

mechanisms such as FTP. As well any content

distribution mechanism can be adapted such as multicast

transport or HTTP-based.

Xweb implements a code distribution mechanism

based on HTTP. Deployment managers send resource

agents a code server location and code file name as a

URL. Resource agents download code from such location

through an HTTP GET transaction.

Dynamic Server Installation & Activation Applications

are programmed so as to be bound to local resources

forever at installation time and at service start time. They

demand memory, CPU or network capacity to the local

operating system. Without modifying service code it is

required to halt and restart service programs to change its

resource bindings. If application programs were

programmed to bind or unbind to resources at an external

signal, dynamic resource binding would be much easier.

Since we do not modify service programs, Xweb

implements dynamic resource binding by halting and

restarting services. Applications are installed using Linux

RPM package tools. Server programs are stopped, read its

new bindings from a configuration file, and restarted.

Binding to a new resource allocation requires stopping

and starting the service.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 14, 2008 at 05:40 from IEEE Xplore. Restrictions apply.

Dynamic Server Coordination & Communication

Channel Creation It is required on-the-fly switching of

communication channels, and on-the-fly reconfiguration

of cooperation rules responding to deployment manager

commands. However applications create TCP virtual

circuits or UDP port pairs at start up.

Since we have not modified service programs, to

change server connections applications need to be halted,

read its new communication channel configuration, and

restarted creating a new sockets connection. Again most

applications can only be configured at start time on which

will be their parents or peer servers. Therefore resource

agents have to stop, reconfigure and restart servers to

modify coordination rules. Fortunately a system signal

sent to squid proxy-caching server makes it reread its

configuration file.

4.5. Prototype Setup

The prototype programmable infrastructure consisted

of 3 nodes. Every node had a Pentium IV processor with

10 Mbps LAN Internet connectivity and 1 Gbyte storage

capacity. They were running Linux RedHat 7.1 therefore

it could be deployed Linux applications. A resource agent

was installed at each node. A fourth machine had a

deployment manager installed. In the experiments it were

deployed web proxy-caching hierarchy (Cache ALN),

which used squid proxy-caching server [24], and chat

server networks (Chat ALN), which used Internet Relay

Chat server [14]. They required 1 Mbps and 100 Kbps

network capacity, and 200 Mbytes and 1 Mbytes storage

capacity respectively. Clients demand came in both cases

from all available regions; therefore at least one server

should be activated at each node.

5. Temporal Response Evaluation

We measured temporal response to a deployment

request event because we are interested in finding how

quickly application networks can be deployed, and how

fast application networks adapt to demand and resource

availability variations. Figure 6 shows Xweb temporal

response, it consists of three main phases: resource

discovery, deployment plan creation and deployment

time. Resource discovery initiates as soon as an

application network specification web form is post by a

service provider, it ends when resource availability

information is saved.

tResource_Discovery = tMcast_Request + tResource_Availability_Check +

tSecure_Unicast_Response + tUpdate_Resource_Table

tMcast_Request is proportional to network diameter and

message size. tResource_Availability_Check depends on agent

resource availability implementation: a probe, a

notification or last read value. tUpdate_Resource_Table is

proportional to file write-time.

Deployment plan creation time starts when deployment

managers receive specifications, it ends when connections

to resource agents start.

tDeployment_Plan_Creation= tResource_Mapping+ tUpdate_Application_Table

Plan Creation

Time [f-g]

Total Deployment

Time [h-p]

p. Update

Application

Table

h. Unicast

Request

f. Resource Mapping

g. Update Application
Table

a. Dply Mgr Login 4. Deployment Request

Resource Discovery

Time [b-d]

l. Code Distribution

n. Resource Binding

o. Server Coordination

i. Authentication

b. Resource
Availability

Check

d. Update
Resource Table

User

Dply

Mgr

RD_1

RD_2

e. Repeat in x sec.

q.Deploy

Response

k. Resource Allocation

j. Cmd Received

m. Code Installation

l. Code Distribution

n. Resource Binding

o. Server Coordination

i. Authentication

k. Resource Allocation

j. Commands Received

m. Code Installation

Code

Server

ll. Code Transfer

b. Resource
Availability

Check

h. Unicast

Response

a. Multicast

Request
c. Unicast

Response

l. HTTP GET

l. HTTP GET

Fig. 6. Time plot of Deployment Actions
Table 1. Per node actions duration

 Cache ALN Chat ALN

tResource_Availability_Check 0.5 ms

tSecure_Unicast_Request 53 ms ≅
tResource_Allocation 2.1 ms ≅
tCode_Distribution 10284 ms 1530 ms

tServer_Installation 1980 ms 508 ms

tResource_Binding 4440 ms 0 ms

tServer_Activation

tServer_Coordination

460 ms 253 ms

tNode_Deployment 17164 ms 2391 ms

Table 2. Deployment Actions Duration
Cache ALN Chat ALN

tUpdate_Resource_Table 2.4 ms

tResource_Discovery 58.4 ms

tResource_Mapping 1.4 ms ≅
tupdate_Application_Table 3.4 ms ≅
tDeployment_Plan_Creation 4.8 ms ≅
tupdate_Application_Table 3.5 ms ≅
tTotal_Deployment 17175 ms 2402 ms

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 14, 2008 at 05:40 from IEEE Xplore. Restrictions apply.

tResource_Mapping is the computation time required to

calculate a resource mapping and a deployment plan. It

will be proportional to number of resource nodes,

demands areas and algorithm complexity.

TUpdate_Application_Table is proportional to file write-time.

Deployment time starts when connections to resource

agents start, and ends when latest resource agent confirms

it has performed all indicated commands without errors

and to update an application database.

tTotal_Deployment=MAX[tSecure_Unicast_Request+tNode_Deployment_Time

+ tSecure_Unicast_Response] (i) + tUpdate_Application_Table

tNode_Deployment=tResource_Allocation + tCode_Distribution

+tServer_Installation + tServer_Activation + tServer_Coordination

tSecure_Unicast_Request is fairly long since secure SSL

connections require several messages exchanges.

tResource_Allocation depends on the resource allocator

implementation. tCode_Distribution is proportional to code and

size, and code server distance. tServer_Installation is

proportional to number and size of application code files

and file write time. tResource_Binding is proportional to

number of required resources.

6. Results

6.1. Additional Support for Deployment

We have found that Internet services programmable

infrastructures must provide additional support for

application network deployment. Besides providing

shared resources, an execution environment, and

virtualisation support for simultaneous execution of

multiple services, Internet services programmable

infrastructures should provide:

Resource containers that allow strict resource

partitioning among different applications. Which will

likely compete for resources, using resources allocated to

other applications or consume more resources than were

allocated. Mechanisms such as resource container [5] or

cluster reserves [4] are a possible solution.

Virtual resource binders and switching sockets should

provide dynamic resource binding. So that applications

bind dynamically to resources, instead of halting and

restarting them, applications code could be modified to

switch communication channels on receiving an external

signal. Or unmodified applications could bind to a virtual

resource binder at service start time, and virtual resource

binders will bind and unbind to real resources at an

external signal. A switching socket will permit to

reconfigure dynamically communication channels among

servers without application support. We are investigating

Service sockets [20] that provide reconfigurable sockets.

A safe execution environments should not interfere

with applications, altering maliciously or unintentionally

its behaviour, configuration or data. It is a hard problem

without an apparent good solution. Only encrypted

programs seem not to be vulnerable to malicious

execution environments [21].

6.2 Improving Temporal Response

tResource_Discovery is a very low value because there is low

overhead due to transmission latencies (the experiment

was carried on a local area network) and because

Resource_Availability_Check is the lowest possible value (it was

implemented as a function that return resource properties

values obtained some time in the near past).

tDeployment_Plan_Creation is also low because tResource_Mapping is

low. Algorithm did not have to select among many

mappings because specifications were chosen so that all

available nodes were required. Scalability of both times

will have to be measured through simulation.

tResource_Allocation is a low value because resource

allocations are simply written to a locked file.

tServer_Activation and tServer_Coordination are added because server

coordination took place at server start up.

Total deployment has its largest overhead because

tResource_Binding and tCode_Distribution are very long. tResource_Binding

for a proxy caching service involves partitioning storage

resources in a directory hierarchy where files will be

cached afterwards; for typical cache sizes, it is a long

operation in general purpose file systems. tCode_Distribution is

the longest overhead; specially for squid proxy cache,

squid code was 948Kbytes, and because code server was

situated at an international site with average transfers rate

of 80Kbytes. Possible mechanisms to diminish it are

reusing installed code through caching, replicating code

servers, or incrementally loadable application code.

Service installation is the second longest action; it could

diminish if application code could be incrementally

installed. The third longest action, server activation,

involves reading several configuration files, checking

various system parameters and variables, and performing

several operating system calls.

7. Conclusions

This work presents a framework for application

network deployment in a programmable Internet service

infrastructure that provides mechanisms so that

application networks can be rapidly created and can adapt

to demand variations. It consists of these building blocks:

programmable infrastructure, resource discovery, service

specification, deployment plan, resource allocation, and

service composition. It has been implemented in a

prototype called the Xweb. It consists of a programmable

infrastructure made up of nodes that provides a

programming environment where to servers can be

dynamically activated. Each node has a resource agent

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 14, 2008 at 05:40 from IEEE Xplore. Restrictions apply.

that implements resource allocation, code distribution,

resource binding and service composition. Deployment

managers implement resource discovery, a service

specification front-end, resource mapping, and service

plan. This prototype shows how to deploy web-caching

hierarchies and chat server application networks.

Results from such experimental evaluation are two

fold, first implementation efforts shows that

programmable infrastructures should incorporate resource

container for strict resource partitioning and virtual

resource binders in the form of switching socket or

similar for dynamic resource binding. In second place

application networks have been deployed in a period of

time on the order of seconds, which is better that what

could be obtained previously by manual operations.

Acknowledgements

This work was inspired by a research stay in

Information Science Institute University of Southern

California in Xbone project directed by Joe Touch [22].

This work has been partially supported by the Spanish

MCYT project TIC2002-04258-C03-01 “Global and

Peer-to-Peer Computing for Cooperative Learning”.

References

[1] Akamai Inc. "FreeFlow", http://www.akamai.com, Dic 1999.

[2] Ardaiz O., Freitag F., Navarro L., “Multicast Injection for

Application Network Deployment”, 26nd IEEE Conference on

Local Computer Networks. Tampa, Florida, Nov 14-16,2001.

[3] Amir E., McCanne S., Katz R."An Active Service

Framework and its Application to Real-time Multimedia

Transcoding". Proc. SIGCOMM`98

[4] Aron M., Druschel P., Zwaenepoel W. “Cluster reserves: A

mechanism for resource management in cluster-based network

servers”, Proc. ACM SIGMETRICS 2000.

[5] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul.

“Resource containers: A new facility for resource management

in server systems”. Proceedings of OSDI '99, pages 45-58, 1999.

[6] Bassi, A., Beck, M., Moore, T. and Plank, J. “The

Logistical Backbone: Scalable Infrastructure for Global Data

Grids” ,Asian Computing Science Conference 2002, Hanoi,

Vietnam, December, 2002.

[7] Chandra P. et. Al., "Darwin: Customizable Resource

Management for Value-Added Network Services", 6 th IEEE

Intl. Conference on Network Protocols (ICNP'98), 1998.

[8] Chuang, J.. “stor-serv: Adding quality-of-service to network

storage”. Wrksp on Inet Service Quality Economics, Cambridge

MA, Dec. 1999.

[9] Czajkowski K., Fitzgerald S., Foster I., Kesselman C.,

”Grid Information Services for Distributed Resource Sharing”.

Proceedings of HPDC-10, IEEE Press, August 2001.

[10] Ejasent, www.ejasent.com, 2002.

[11] Encyclopaedia Britannica, www.britannica.com, 2002.

[12] Foster, I.; Kesselman, C.: “Globus: A Metacomputing

Infrastructure Toolkit”, in Intl. Jrl. of Supercomputing

Applications ,11/2, p. 115-129, 1997.

[13] Isaacs R.,. Leslie I., "Support for Resource-Assured and

Dynamic Virtual Private Networks" IEEE Jrl. on Sel. Areas in

Comm. Vol. n. 2001.

[14] Kalt C. Internet Relay Chat Protocol RFC 2810, Apr. 2000.

[15] Korupolu M.R., Dahlin M., "Coordinated Placement and

Replacement for Large-Scale Distributed Caches", Proceeding

of IEEE Workshop on Internet Applications, July 1999.

[16] Lazar A., Lim K. S., and Marconcini F., "Realizing a

Foundation for Programmability of ATM Networks with the

Binding Architecture," IEEE JSAC, Special Issues on

Distributed Multimedia Systems, Sept. 1996, pp. 1214—27.

[17] Rabinovich M., Aggarwal A., "RaDaR: A Scalable

Architecture for a Global Web Hosting Service", WWW8

Conference, Toronto May 1999.

[18] Santos J.R., Dasgupta K., Janakiraman G.J. and Turner Y.,

“Understanding service demand for adaptive allocation of

distributed resources”. In Proceedings of IEEE Global Internet

Symposium (GLOBECOM '02), Taiwan, November 2002

[19] Ripeanu M. "Peer-to-Peer Architecture Case Study:

Gnutella Network Analysis", 1st Intl. Conference in Peer-to-

Peer Networks Aug. 2001, Linköpings Universitet, Sweden.

[20] Schmitt M:, Acharya A., Ibel M., Iancu C.,“Service

Sockets: A Uniform User-Level Interface for Networking

Applications”. Technical Report TRCS2001-08, Computer

Science Department, UCSB, September 2001.

[21] Sander T., Tschudin C., ‘Protecting Mobile Agents Against

Malicious Hosts’, Proceedings of Workshop on Mobile Agents

and Security, number 1419 in LCNS, pages 44-60, 1997

[22] Touch J., Hotz S., "X-bone: a System for Automatic

Network Overlay Deployment", Third Global Internet Mini

Conference in conjunction with Globecom´98, Nov. 1998.

[23] Vahdat A.; Anderson T.; Dahlin M.; Culler D.; Belani E.:

“WebOS: Operating System Services For Wide Area

Applications”, in The Seventh IEEE Symposium on High

Performance Distributed Computing. July 1998.

[24] Wessels D.,. Squid Internet Object Cache.

http://www.squid-cache.org. January 1998.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 14, 2008 at 05:40 from IEEE Xplore. Restrictions apply.

