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Abstract

In this paper we introduce the concept of weighted accessibility for access struc-
tures. In some sense, it represents a measure of how difficult or how easy is to
recover the secret. We give also a numerical measure of accessibility for each
participant depending on his position in the access structure. Both concepts, the
accessibility of the access structure and the accessibility of the participants are
closely related. We also provide an axiomatic characterization of the weighted
accessibility for access structures based on four simple properties.
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1 Introduction and preliminaries

Access structures appear in cryptography, in the context of secret sharing schemes.
These are methods of distributing a secret among a set of participants. Each par-
ticipant receives a piece of the secret, its share, in such a way that only specified
coalitions of participants can reconstruct the secret by pooling the shares of their
members. The coalitions of participants which are able to reconstruct the secret are
the authorized coalitions and, given a set of participants, the set of all authorized
coalitions is the access structure.

It is known that for any access structure defined on a given set of participants, there
is a secret sharing scheme realizing it [2]. Therefore, access structures can be studied
independently of secret sharing schemes.

The aim of this paper is that of introducing new concepts to better understand and
analyze access structures. Carreras et al. [1] introduce the notion of accessibility : it
measures how many ways there exist for accessing to the secret and, hence, how easy
or how difficult it is to recover. This concept depends only on the access structure
and not on the particular scheme used for realizing it. In the work of Carreras et
al., the accessibility index is defined for every access structure as the number of
authorized coalitions divided by 2n, where n is the number of participants. It can
be interpreted as the probability of a random coalition to be authorized when each
participant has a probability of 1/2 of belonging to it.

Here we propose a weighted accessibility for every access structure based on the
assumption that the probability to form a random coalition with s members is
αs(1 − α)n−s when each participant has a probability of α of belonging to it.

The plan of the paper is as follows. First, we briefly recall basic concepts on access
structures. Section 2 is devoted to define the notion of weighted accessibility for
an access structure and to study some of its properties. In Section 3 we turn our
attention to the accessibility of the participants and we derive an interesting relation
between this concept and the one defined before. Finally, in Section 4 we try to
reconstruct the structure from the weighted accessibility of its participants and we
prove that it is possible for structures with four or less participants but not for larger
ones.

Let P = {P1, . . . , Pn} be a set of n participants. An access structure on P is a set Γ
of subsets of P (Γ ⊆ 2P ). The subsets in Γ are called authorized coalitions and they
should be able to compute the shared secrets. We denote by AP the set of all access
structures defined on P. From now on, we suppose that the access structures are
monotone, i.e., A ⊆ B ⊆ P with A ∈ Γ implies B ∈ Γ. A monotone structure Γ on
P is completely determined by means of its set Γ0 of minimal authorized coalitions;
Γ0 is called the basis of Γ.

A participant Pi ∈ P that does not belong to any authorized coalition of the basis
Γ0 will be called null participant in the access structure Γ. Given two participants,
Pi, Pj , we say that Pi is over Pj when S ∪ {Pj} ∈ Γ implies S ∪ {Pi} ∈ Γ for every
S ⊆ P \ {Pi, Pj}. In the particular case in which both Pi, Pj are simultaneously
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over the other, we say that Pi and Pj are equivalent participants.

Given two access structures Γ and Γ′ on P, the access structures union and inter-
section are defined as Γ ∪ Γ′ = {S ⊆ P : S ∈ Γ or S ∈ Γ′} and Γ ∩ Γ′ = {S ⊆ P :
S ∈ Γ and S ∈ Γ′}.

We say that two access structures Γ and Γ′ on P are isomorphic if there exists a
permutation π : P → P where π(S) is an authorized coalition of Γ′ if and only if S
is an authorized coalition of Γ, for every subset S ⊆ P.

2 The weighted accessibility of an access structure

Let us generalize the idea of accessibility. Suppose that each participant has a
probability of α of belonging to a coalition.

Definition 2.1 Let us consider a real number α ∈ (0, 1). The α-accessibility index
on P is the map Ωα : AP → R given by

Ωα(Γ) =
n∑

s=1

αs(1 − α)n−s|Γ[s]| (1)

where Γ[s] denotes the subset of Γ formed by authorized coalitions with s participants.

The coalition size s takes values from s = 1 to s = n = |P|, the total number of
participants. As we said in the Introduction, the coefficient αs(1 − α)n−s can be
interpreted as the probability that each random coalition with s members forms,
when each participant has probability α to belong to it.

The 1/2-accessibility agrees with the accessibilty index [1] on P, δP :

Ω1/2(Γ) =

n∑

s=1

1

2s

1

2n−s
|Γ[s]| =

1

2n

n∑

s=1

|Γ[s]| =
|Γ|

2n
= δP(Γ) ∀ Γ ∈ AP .

Since the number of authorized coalitions with s participants satisfies 0 ≤ |Γ[s]| ≤(n
s

)
, we have, ∀ α ∈ (0, 1) and ∀ Γ ∈ AP ,

0 ≤ Ωα(Γ) =

n∑

s=1

αs(1 − α)n−s|Γ[s]| ≤
n∑

s=1

αs(1 − α)n−s

(
n

s

)
= 1 − (1 − α)n.

Thus, it is clear that, 0 ≤ Ωα(Γ) < 1, and Ωα(Γ) = 0 if, and only if, Γ = ∅.

We will say that Ωα satisfies the Empty Structure property: Ωα(∅) = 0.

Example 2.2 Let P = {P1, P2, P3, P4} be a set of four participants. We consider
the access structure Γ with basis Γ0 = {{P1, P2}, {P1, P3}, {P1, P4}}. The cardinali-
ties of authorized coalitions for Γ are |Γ[1]| = 0, |Γ[2]| = 3, |Γ[3]| = 3 and |Γ[4]| = 1,
so that the α-accessibility index for Γ is given by

Ωα(Γ) =

n∑

s=1

αs(1 − α)n−s|Γ[s]| = 3α2(1 − α)2 + 3α3(1 − α) + α4 = 3α2 − 3α3 + α4.
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Following an analogous procedure, the α-accessibility index for the access structure
Γ′ on P with basis Γ′

0 = {{P1, P2}, {P3, P4}} is

Ωα(Γ′) =

n∑

s=1

αs(1 − α)n−s|Γ′[s]| = 2α2(1 − α)2 + 4α3(1 − α) + α4 = 2α2 − α4.

In Figure 1 both weighted accessibilities are compared.
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Figure 1: Comparing weighted accessibilities

For 0 < α < 1/2 the weighted accessibility of Γ is greater than the corresponding
to Γ′, for α = 1/2 both coincide, and for 1/2 < α < 1, the first access structure has
lower weighted accessibility than the second one.

This example shows that the α-accessibility index is not a simple ranking among
access structures on P. The values of α play an essential role so that an access
structure can have higher or lower weighted accessibility than another one according
to distinct values of α.

Let us state two properties of the α-accessibility.

Proposition 2.3 Let Γ and Γ′ be two access structures on P with |P| = n.

(i) If |Γ[s]| ≤ |Γ′[s]| for s = 1, . . . , n, then Ωα(Γ) ≤ Ωα(Γ′) ∀α ∈ (0, 1).

(ii) Ωα(Γ ∪ Γ′) = Ωα(Γ) + Ωα(Γ′) − Ωα(Γ ∩ Γ′) ∀α ∈ (0, 1). We will say that Ωα

satisfies the Transfer property.

Proof Part (i) directly follows from the definition of α-accessibility, whereas the
relations |(Γ ∪ Γ′)[s]| = |Γ[s]| + |Γ′[s]| − |(Γ ∩ Γ′)[s]| for 1 ≤ s ≤ n lead us to the
expression in part (ii). �

Definition 2.4 An access structure Γ on P whose basis Γ0 contains a unique au-
thorized coalition C ⊆ P is called access structure expaned by C. Coalition C is the
generator of structure Γ. If Γ0 = {C} with C ⊆ P, we write Γ =< C >.

Threshold schemes are important examples of access structures. On a set P of n
participants, the basis of a (t, n)-threshold access structure is formed by all subsets
of P with t participants (t ≤ n). If we denote by

[
t, n

]
a (t, n)-threshold access

structure, we have
[
t, n

]
=

⋃
|C|=t < C >.
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Proposition 2.5 Let P be a set of n participants.

(i) If C = {Pi1 , . . . , Pik} with |C| = k ≤ n, then Ωα(< C >) = αk ∀α ∈ (0, 1).

(ii) For a (t, n)-threshold access structure

Ωα(
[
t, n

]
) =

n∑

k=t

(−1)k−t

(
k − 1

k − t

)(
n

k

)
αk ∀α ∈ (0, 1).

Proof (i) Let C be a subset of k participants (k ≤ n). Then,

Ωα(< C >) =
n−k∑

j=0

(
n − k

j

)
αk+j(1 − α)n−k−j = αk.

(ii) The α-accessibility index for a (t, n)-threshold access structure is

Ωα(
[
t, n

]
) =

n∑

s=t

(
n

s

)
αs(1 − α)n−s =

n∑

s=t

(
n

s

)
αs

n−s∑

j=0

(
n − s

j

)
(−α)n−s−j

=
n∑

s=t

(
n

s

) n−s∑

j=0

(−1)n−s−j

(
n − s

j

)
αn−j

=
n−t∑

j=0

n−j∑

s=t

(−1)n−s−j

(
n − s

j

)(
n

s

)
αn−j

If we write n − j = k, the last equality becomes

Ωα(
[
t, n

]
) =

n∑

k=t

k∑

s=t

(−1)k−s

(
n − s

n − k

)(
n

s

)
αk

=
n∑

k=t

(
n

k

) k∑

s=t

(−1)k−s

(
k

s

)
αk

=

n∑

k=t

(
n

k

) [
k−1∑

s=t

(−1)k−s

[(
k − 1

s − 1

)
+

(
k − 1

s

)]
+

(
k

k

)]
αk

=

n∑

k=t

(−1)k−t

(
k − 1

t − 1

)(
n

k

)
αk

�

Note that, in particular, for the < P > structure, we have Ωα(< P >) = αn. We
will say that Ωα satisfies the Unanimity property.

Remark 2.6 Expression in Proposition 2.3 (ii) can be recursively generalized for
finite unions of access structures on a same set of participants P as follows:

Ωα
( k⋃

i=1

Γi

)
=

k∑

i=1

Ωα(Γi)+

k∑

j=2

(−1)j−1
∑

1≤i1<i2<···<ij≤k

Ωα(Γi1 ∩Γi2 ∩ · · · ∩Γij ) ∀α ∈ (0, 1).
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Given an access structure Γ whose basis Γ0 = {C1, . . . , Ck} contains two or more
authorized coalitions, we can write its α-accessibility by means of α-accessibilities
of expaned access structures according to Definition 2.4:

Ωα(Γ) = Ωα
( k⋃

i=1

< Ci >
)

=

k∑

i=1

Ωα(< Ci >) +

k∑

j=2

(−1)j−1
∑

1≤i1<···<ij≤k

Ωα(< Ci1 > ∩ · · · ∩ < Cij >)

Note that if C and C ′ are two authorized coalitions of Γ, then < C > ∩ < C ′ >=<
C ∪ C ′ >. Therefore, the last sum can be computed according to Proposition 2.5
(i):

Ωα(Γ) =

k∑

i=1

Ωα(< Ci >) +

k∑

j=2

(−1)j−1
∑

1≤i1<···<ij≤k

Ωα(< Ci1 ∪ · · · ∪ Cij >)

=

k∑

i=1

α|Ci| +

k∑

j=2

(−1)j−1
∑

1≤i1<···<ij≤k

α
|Ci1

∪···∪Cij
|

The above formula allows us to obtain the α-accessibility index of a monotone access
structure as a polynomial in α from the authorized coalitions of its basis.

Example 2.7 We consider all possible access structures with three participants,
up to isomorphisms. Table 1 contains in its first column the basis of each access
structure, where, for simplicity, we write the authorized coalitions without braces.
The second column shows the vector whose components are the number of authorized
coalitions according to their size, and the third column the respective α-accessibility
index.

Γ0 (|Γ[1]|, |Γ[2]|, |Γ[3]|) Ωα(Γ)

P1P2P3 (0, 0, 1) α3

P1P2 (0, 1, 1) α2

P1P2, P1P3 (0, 2, 1) 2α2 − α3

P1P2, P1P3, P2P3 (0, 3, 1) 3α2 − 2α3

P1 (1, 2, 1) α
P1, P2P3 (1, 3, 1) α + α2 − α3

P1, P2 (2, 3, 1) 2α − α2

P1, P2, P3 (3, 3, 1) 3α − 3α2 + α3

Table 1: α-accessibility of access structures with three participants

The access structures in Table 1 are ranked by increasing order of the vector (|Γ[s]|)3s=1.
This example shows that, for three participants, non-isomorphic access structures
have different α-accessibility index.
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Definition 2.8 Two distinct access structures Γ and Γ′ defined on a set of partic-
ipants P are strategically equivalent, Γ ∽P Γ′ , iff their vectors of cardinalities of
authorized coalitions coincide:

Γ ∽P Γ′ ⇔ |Γ[s]| = |Γ′[s]|, s = 1, . . . , n = |P|.

For each pair of access structures on a set of participants P, strategically equivalent
is weaker than isomorphic. Both concepts, isomorphism and strategically equiva-
lent, agree on sets with two or three participants, but we can find two strategically
equivalent access structures with four participants that are not isomorphic.

Example 2.9 Let Γ and Γ′ be two access structures defined on P = {P1, P2, P3, P4}
with respective basis

Γ0 = {P1P2, P1P3, P1P4, P2P3} and Γ′
0 = {P1P2, P1P3, P2P4, P3P4}.

The access structures Γ and Γ′ are not isomorphic, but (|Γ[s]|)4s=1 = (|Γ′[s]|)4s=1 =
(0, 4, 4, 1). Then Γ ∽P Γ′ and the common α-accessibility is

Ωα(Γ) = Ωα(Γ′) = 4α2(1 − α)2 + 4α3(1 − α) + α4 = 4α2 − 4α3 + α4.

Theorem 2.10 Two access structures Γ and Γ′ defined on P are strategically equiv-
alent if and only if their respective α-accessibilities agree for every α ∈ (0, 1).

Proof It is obvious that the α-accessibilities agree for two strategically equivalent
access structures. Conversely, we will prove that the α-accessibility for α ∈ (0, 1)
univocally determines the vector of cardinalities of authorized coalitions. First, we
write the α-accessibility index as a polynomial in α.

Ωα(Γ) =
n∑

s=1

αs(1 − α)n−s|Γ[s]|

=
n∑

s=1

αs
n−s∑

j=0

(
n − s

j

)
(−α)n−s−j|Γ[s]|

=

n∑

s=1

n−s∑

j=0

(−1)n−s−j

(
n − s

j

)
αn−j|Γ[s]|

=

n∑

s=1

n∑

k=s

(−1)k−s

(
n − s

n − k

)
αk|Γ[s]|

=

n∑

k=1

αk
k∑

s=1

(−1)k−s

(
n − s

n − k

)
|Γ[s]|.

This way, the α-accessibility for an access structure Γ can be written as

Ωα(Γ) =

n∑

k=1

bkα
k where bk =

k∑

s=1

(−1)k−s

(
n − s

n − k

)
|Γ[s]|. (2)
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Now, if an α-accessibility is given, the numbers bk, for 1 ≤ k ≤ n, are known and
the n equalities in the right of expression (2) form a linear system of equations with
unknowns |Γ[1]|, . . . , |Γ[n]|. The matrix of the linear system is a lower triangular
matrix whose entries in the main diagonal are all 1. This guarantees a unique
solution for the unknowns |Γ[s]|, 1 ≤ s ≤ n. �

Example 2.11 On a set P with four participants, let us assume that the α-accessibi-
lity is given by Ωα(Γ) = 4α2 − 4α3 + α4, that is, b1 = 0, b2 = 4, b3 = −4 and b4 = 1.
The linear system with unknowns |Γ[s]|, 1 ≤ s ≤ 4, becomes

|Γ[1]| = 0
−3|Γ[1]| + |Γ[2]| = 4
3|Γ[1]| − 2|Γ[2]| + |Γ[3]| = −4
−|Γ[1]| + |Γ[2]| − |Γ[3]| + |Γ[4]| = 1





and its unique solution is the vector (|Γ[1]|, |Γ[2]|, |Γ[3]|, |Γ[4]|) = (0, 4, 4, 1).

We can provide an axiomatic characterization for the α-accessibility index, but we
need first another notion. Let P and R be two sets of participants such that P ⊂ R,
and suppose that Γ is an access structure defined on P.

Up to now, we have worked with access structures Γ on a unique set of participants
P = {P1, . . . , Pn}. As from now on we will consider diverse sets of participants, to
avoid misunderstanding, we will denote the access structures on P by ΓP (ΓP ⊆ 2P)
and its α-accessibility index by Ωα(ΓP), for each α ∈ (0, 1).

Definition 2.12 The null extension of Γ to R is the access structure

ΓR = {T ⊆ R : T ∩ P ∈ Γ}.

Let us show that neither the adjunction nor the suppression of null participants
affect the α-accessibility.

Proposition 2.13 Let P ⊂ R be two sets of participants and Γ an access structure
defined on P. If ΓR is the null extension of Γ to R, then Ωα(ΓR) = Ωα(Γ) for all
α ∈ (0, 1).

Proof It suffices to show the case R = P ∪ {Pi}, for Pi 6∈ P.

We denote by ΓP [s;Pi] = {S ∈ ΓP | |S| = s and Pi ∈ S}. Then

Ωα(P ∪ {Pi}) =

n+1∑

s=1

αs(1 − α)n+1−s|ΓP∪{Pi}[s]|

=

n+1∑

s=1

αs(1 − α)n+1−s|ΓP∪{Pi}[s;Pi]| +
n∑

s=1

αs(1 − α)n+1−s|Γ[s]|.

As participant Pi is null in P ∪ {Pi}, we have

|ΓP∪{Pi}[1;Pi]| = 0
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and
|ΓP∪{Pi}[s;Pi]| = |Γ[s − 1]| for s = 2, . . . , n + 1.

Therefore,

Ωα(P ∪ {Pi}) =

n+1∑

s=2

αs(1 − α)n+1−s|Γ[s − 1]| +
n∑

s=1

αs(1 − α)n+1−s|Γ[s]|

=
n∑

s=1

αs+1(1 − α)n−s|Γ[s]| +
n∑

s=1

αs(1 − α)n+1−s|Γ[s]|

=

n∑

s=1

αs(1 − α)n−s[α + (1 − α)]|Γ[s]| = Ωα(Γ). �

We will say that Ωα satisfies the Null Participant property.

Theorem 2.14 Let A = ∪PAP . A function F : A −→ R satisfies the proper-
ties of Empty Structure, Transfer, Unanimity and Null Participant iff it is the α-
accessibility index.

Proof So far, we have shown that Ωα satisfies the four properties. Conversely, let
F be a function satisfying them. We will prove that F = Ωα.

According to Remark 2.6, if Γ is an access structure on P, then Γ can be written
as the union of expaned structures. Applying the Unanimity property, F coincides
with Ωα on expaned structures and, applying the Null Participant property, they
also coincide on extensions of expaned structures. Therefore, F = Ωα on A. �

3 The weighted accessibility of the participants

Now we want to offer a measure of the importance of each participant in the access
structure based on the α-accessibility index of the structure. It seems reasonable to
say that the importance of each participant is related to the number of authorized
coalitions that contain the participant. More precisely, we will compare the number
of authorized coalitions that contain a given participant with respect to the number
of authorized coalitions without this participant. In addition these comparisons
will be weighted by means of coefficients related to the probability of each random
coalition to form, when each participant has a probability of α of belonging to it.

Definition 3.1 Let ΓP be an access structure defined on a set of participants P.
Consider a subset Q of P, ∅ 6= Q ⊆ P. The access substructure ΓQ is the restriction
of the access structure ΓP to the subset Q. We denote it by ΓQ.

ΓQ = ΓP |Q = {S|S ∈ ΓP and S ⊆ Q}

Definition 3.2 Let ΓP be an access structure defined on a set of participants P =
{P1, . . . , Pn}. For each real number α ∈ (0, 1), the α-accessibility of a participant
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Pi ∈ P in the access structure ΓP is given by

Iα(Pi,ΓP ) =

n∑

s=1

αs(1 − α)n−s
{
|ΓP [s;Pi]| − |ΓP\{Pi}[s − 1]|

}
, i = 1, . . . , n, (3)

where ΓP [s] = {S ∈ ΓP | |S| = s} and ΓP [s;Pi] = {S ∈ ΓP | |S| = s and Pi ∈ S}.

Fixed a set of participants P = {P1, . . . , Pn}, the α-accessibility of the participants
can be considered as a map Iα : AP → R

N . The ith component of vector Iα(ΓP ) is
Iα(Pi,ΓP) for i = 1, . . . , n.

Note that for all Pi ∈ P, |ΓP [1;Pi]| = 1 if {Pi} ∈ ΓP and |ΓP [1;Pi]| = 0 otherwise.
In addition, ΓP\{Pi}[0] = ∅, for all Pi ∈ P.

Example 3.3 Let P = {P1, P2, P3, P4} be a set of four participants. We consider
the access structure ΓP with basis (ΓP)0 = {{P1, P2}, {P1, P3}, {P1, P4}, {P2, P3}}.

We want to compute, for instance, the α-accessibility of participant P1. To do so,
we need the cardinalities of authorized coalitions containing participant P1:

|ΓP [1;P1]| = 0, |ΓP [2;P1]| = 3, |ΓP [3;P1]| = 3, |ΓP [4;P1]| = 1.

In addition, the authorized coalitions in the access substructure ΓP\{P1} are {P2, P3}
and {P2, P3, P4}; thus,

|ΓP\{P1}[0]| = 0, |ΓP\{P1}[1]| = 0, |ΓP\{P1}[2]| = 1, |ΓP\{P1}[3]| = 1,

so that the α-accessibility of participant P1 becomes

Iα(P1,ΓP) = 3α2(1 − α)2 + 2α3(1 − α) = 3α2 − 4α3 + α4.

An analogous procedure for the remaining participants allows us to obtain the vector
of α-accessibilities:

Iα(ΓP ) = ( 3α2 − 4α3 + α4, 2α2 − 3α3 + α4, 2α2 − 3α3 + α4, α2 − 2α3 + α4 ).

Table 2 shows some vectors of accessibilities according to several selected values of
α.

α Iα(ΓP) %

1/3 ( 0.1975, 0.1235, 0.1235, 0.0494 ) ( 40, 25, 25, 10 )
1/2 ( 0.3125, 0.1875, 0.1875, 0.0625 ) ( 41.67, 25, 25, 8.33 )
2/3 ( 0.3457, 0.1975, 0.1975, 0.0494 ) ( 43.75, 25, 25, 6.25 )

Table 2: α-accessibilities of the participants of ΓP for several values of α

Proposition below groups several properties that can help to see the appropriateness
of the concept above introduced of α-accessibility for the participants.
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Proposition 3.4 Let P = {P1, . . . , Pn} be a set of n participants.

(i) The α-accessibility of a participant Pi in an access structure ΓP vanishes if
and only if Pi is a null participant in ΓP , ∀α ∈ (0, 1).

(ii) Given α ∈ (0, 1), for every access structure, the maximum of the α-accessibility
for the participants is α and this value is reached by a unique participant when
the access structure is expaned by its unipersonal coalition.

(iii) Given α ∈ (0, 1), for non-null participants and every access structure, the
minimum of the α-accessibility is αn reached by every participant when the
unique authorized coalition is P.

(iv) If Pi and Pj are two distinct participants and Pi is over Pj in access structure
ΓP , then Iα(Pi,ΓP) ≥ Iα(Pj ,ΓP) ∀α ∈ (0, 1). In particular, if Pi and Pj are
equivalent participants, their respective α-accessibilities coincide.

Proof In all cases, according to expression (3), we must analyze the differences
|ΓP [s;Pi]| − |ΓP\{Pi}[s − 1]| for s = 1, . . . , n. As we work with monotonic access
structures, C ∈ ΓP\{Pi}[s − 1] implies C ∪ {Pi} ∈ ΓP [s;Pi]. Thus |ΓP [s;Pi]| ≥
|ΓP\{Pi}[s − 1]|.

(i) Since αs(1 − α)n−s > 0 ∀α ∈ (0, 1), Iα(Pi,ΓP) = 0 implies |ΓP [s;Pi]| =
|ΓP\{Pi}[s − 1]| for s = 1, . . . , n, of where C ∪ {Pi} ∈ ΓP [s;Pi] leads us to C ∈
ΓP\{Pi}[s − 1] and, therefore, Pi is a null participant in ΓP . The converse property
follows easily.

(ii) The maximum of Iα(Pi,ΓP) is obtained when, simultaneously, |ΓP\{Pi}[s−1]| = 0

and |ΓP [s;Pi]| =
(
n−1
s−1

)
, for s = 1, . . . , n. That means that the access substructure

ΓP\{Pi} is the empty access structure and all coalitions containing participant Pi are
authorized coalitions: ΓP =< {Pi} >. Note that the remaining participants are null
participants. Then

Iα(Pi,ΓP) =

n∑

s=1

(
n − 1

s − 1

)
αs(1 − α)n−s = α

n∑

s=1

(
n − 1

s − 1

)
αs−1(1 − α)n−1−(s−1) = α.

(iii) For the minimum of Iα(Pi,ΓP) over non-null participants, we impose |ΓP [s;Pi]| =
|ΓP\{Pi}[s − 1]| for s = 1, . . . , n − 1 and |ΓP [n;Pi]| = 1 with |ΓP\{Pi}[n − 1]| = 0.
Now, ΓP =< {P1, . . . , Pn} > and Iα(Pi,ΓP) = αn ∀Pi ∈ P.

(iv) For every pair of distinct participants in ΓP , the difference between their α-
accessibilities can be written as

Iα(Pi,ΓP) − Iα(Pj ,ΓP) =

n∑

s=1

αs(1 − α)n−s×

{
|ΓP\{Pj}[s;Pi]| − |ΓP\{Pi}[s;Pj ]| + |ΓP\{Pj}[s − 1;Pi]| − |ΓP\{Pi}[s − 1;Pj ]|

}
.

If participant Pi is over participant Pj , C ∈ ΓP\{Pi}[s;Pj ] implies C \ {Pj} ∪ {Pi} ∈
ΓP\{Pj}[s;Pi] so that |ΓP\{Pj}[s;Pi]| ≥ |ΓP\{Pi}[s;Pj ]|.

11



In a similar way, ΓP\{Pj}[s− 1;Pi]| ≥ |ΓP\{Pi}[s− 1;Pj ]|. We conclude Iα(Pi,ΓP) ≥
Iα(Pj ,ΓP), if Pi is over Pj. �

For all monotonic access structures, we have introduced two definitions of accessi-
bility: one for the whole structure a another one for each participant. The following
result links together both concepts.

Theorem 3.5 Let P = {P1, . . . , Pn} be a set of n participants. Consider an access
structure ΓP on P. For each participant Pi ∈ P and every real number α ∈ (0, 1),

Iα(Pi,ΓP) = Ωα(ΓP) − Ωα(ΓP\{Pi}), i = 1, . . . , n,

where Ωα(ΓP) and Ωα(ΓP\{Pi}) denote the α-accessibility indices of access structures
ΓP and ΓP\{Pi}, respectively.

Proof We will denote by ∆α[ΓP ;Pi] the difference Ωα(ΓP)−Ωα(ΓP\{Pi}). According
to the definition of the α-accessibility index,

∆α[ΓP ;Pi] =

n∑

s=1

αs(1 − α)n−s|ΓP [s]| −
n−1∑

s=1

αs(1 − α)n−1−s|ΓP\{Pi}[s]|

=

n∑

s=1

αs(1 − α)n−s|ΓP [s;Pi]| +
n−1∑

s=1

αs(1 − α)n−s|ΓP\{Pi}[s]|−

n−1∑

s=1

αs(1 − α)n−1−s|ΓP\{Pi}[s]|

=

n∑

s=1

αs(1 − α)n−s|ΓP [s;Pi]| −
n−1∑

s=1

αs+1(1 − α)n−1−s|ΓP\{Pi}[s]|

=

n∑

s=1

αs(1 − α)n−s|ΓP [s;Pi]| −
n∑

s=2

αs(1 − α)n−s|ΓP\{Pi}[s − 1]|

= Iα(Pi,ΓP)

where, in the last step, we have used the fact that |ΓP\{Pi}[0]| = 0. �

The above Theorem offers an alternative method to compute the α-accessibility of a
participant, especially when both α-accessibility indices of the respective structures
are known, as it happens in the following situations.

Corollary 3.6 Let P be a set of n participants.

(i) If C = {Pi1 , . . . , Pik} with |C| = k ≤ n, then Iα(Pi, < C >) = αk ∀Pi ∈ C,
whereas Iα(Pj , < C >) = 0 ∀Pj ∈ P \ C, ∀α ∈ (0, 1).

(ii) For a (t, n)-threshold access structure,

Iα(Pi,
[
t, n

]
) =

n∑

k=t

(−1)k−t

(
k − 1

k − t

)(
n − 1

k − 1

)
αk ∀Pi ∈ P, ∀α ∈ (0, 1).
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Proof (i) All participants belonging to subset C are equivalent in the access structure
< C > and, according to Proposition 3.4 (iv), their α-accessibilities coincide. In ad-
dition, if participant Pi belongs to C, the access substructure < C > \{Pi} becomes
the empty structure and its α-accessibility index vanishes. This way, according to
Proposition 2.3 (i), if participant Pi ∈ C, Iα(Pi, < C >) = Ωα(< C >) = αk.

Participants in P \ C are null participants and their α-accessibilities are 0.

(ii) Now, all participants in P are equivalent. If ΓP is a (t, n)-threshold access struc-
ture, ΓP\{Pi} is a (t, n−1)-threshold access structure so that we can use Proposition
2.3 (ii) for these access structures:

Iα(Pi,
[
t, n

]
) = Ωα(

[
t, n

]
) − Ωα(

[
t, n − 1

]
)

=

n∑

k=t

(−1)k−t

(
k − 1

k − t

)(
n

k

)
αk −

n−1∑

k=t

(−1)k−t

(
k − 1

k − t

)(
n − 1

k

)
αk

= (−1)n−t

(
n − 1

n − t

)
αn +

n−1∑

k=t

(−1)k−t

(
k − 1

k − t

)(
n − 1

k − 1

)
αk

and the expression in the statement directly follows for every α ∈ (0, 1). �

In Section 2 we introduced the concept of strategic equivalence in order to compare
access structures. Now we try to compare participants in a given access structure
by means of the following concept.

Definition 3.7 Let ΓP be an access structure defined on a set of participants P.
Two distinct participants Pi and Pj are strategically equivalent in ΓP , Pi ∽ΓP

Pj ,
iff

|ΓP [s;Pi]| = |ΓP [s;Pj ]|, s = 1, . . . , n = |P|.

Remark 3.8 An alternative definition of strategically equivalent participants is
given by

Pi ∽ΓP
Pj ⇔ |ΓP\{Pi}[s]| = |ΓP\{Pj}[s]|, s = 1, . . . , n − 1.

To see the equivalence between both definitions, it suffices to consider the following
families of identities for s = 1, . . . , n − 1:

|ΓP [s]| = |ΓP [s;Pi]| + |ΓP\{Pi}[s]| and |ΓP [s]| = |ΓP [s;Pj ]| + |ΓP\{Pj}[s]|.

Conditions |ΓP [s;Pi]| = |ΓP [s;Pj ]| for s = 1, . . . , n − 1 are equivalent to conditions
|ΓP\{Pj}[s]| = |ΓP\{Pi}[s]| for s = 1, . . . , n − 1.

The last condition in Definition 3.7 for n = |P| is always satisfied: |ΓP [n;Pi]| =
|ΓP [n;Pj ]| = |ΓP [n]|, ∀Pi, Pj ∈ P, ∀ΓP access structure on P. Since we have
considered monotonic access structures, this amount only takes value 0 for the empty
structure and value 1 otherwise.

Lemma 3.9 Let ΓP be an access structure defined on a set of n participants P =
{P1, . . . , Pn}. From the vector of α-accessibilities Iα(ΓP) with α ∈ (0, 1), we can
determine the amounts |ΓP [s;Pi]| for s = 1, . . . , n and i = 1, . . . , n = |P|.
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Proof We proceed as in the proof of Theorem 2.10, but now for the α-accessibility
of each participant Pi ∈ P:

Iα(Pi,ΓP) =
n∑

s=1

αs(1 − α)n−s
{
|ΓP [s;Pi]| − |ΓP\{Pi}[s − 1]|

}

=
n∑

k=1

αk
k∑

s=1

(−1)k−s

(
n − s

n − k

){
|ΓP [s;Pi]| − |ΓP\{Pi}[s − 1]|

}

Given the α-accessibility of each participant Pi ∈ P as a polynomial in α, Iα(Pi,ΓP) =∑n
k=1 ck,iα

k, it is possible to determine the amounts

|ΓP [s;Pi]| − |ΓP\{Pi}[s − 1]| = ds,i s = 1, . . . , n, i = 1, . . . , n.

Here, ds,i are known and its value is obtained from c1,i, . . . , cn,i, for each i = 1, . . . , n.

For s = 1, |ΓP [1;Pi]| − |ΓP\{Pi}[0]| = |ΓP [1;Pi]| = d1,i, so that |ΓP [1;Pi]| are deter-
mined for i = 1, . . . , n.

Assume these amounts known for cardinality s = k (1 ≤ k < n), |ΓP [k;Pi]|, for
i = 1, . . . , n. Then,

|ΓP [k + 1;Pi]| = dk+1,i + |ΓP\{Pi}[k]| = dk+1,i +
1

k

n∑

j=1

|ΓP [k;Pj ]| − |ΓP [k;Pi]|,

since |ΓP [k]| = |ΓP [k;Pi]| + |ΓP\{Pi}[k]| and
∑n

j=1 |ΓP [k;Pj ]| = k |ΓP [k]|.

For i = 1, . . . , n, we have proved that each amount |ΓP [k + 1;Pi]|, is determined by
means of all numbers |ΓP [k;Pi]| for i = 1, . . . , n. This finishes the proof. �

Theorem 3.10 Let P = {P1, . . . , Pn} be a set of n participants and ΓP an access
structure on P. Two distinct participants Pi and Pj are strategically equivalent in
ΓP if and only if their α-accessibilities coincide for every α ∈ (0, 1).

Proof If participants Pi and Pj are strategically equivalent in ΓP , |ΓP [s;Pi]| =
|ΓP [s;Pj ]|, for s = 1, . . . , n = |P| and |ΓP\{Pi}[s]| = |ΓP\{Pj}[s]|, for s = 1, . . . , n−1;
this guarantees the equality Iα(Pi,ΓP ) = Iα(Pj ,ΓP).

Conversely, according to Lemma 3.9, once the α-accessibility of a participant Pi

is given for every α ∈ (0, 1), the amounts |ΓP [s;Pi]| are univocally determined for
s = 1, . . . , n: if Iα(Pi,ΓP) = Iα(Pj ,ΓP), in a first step, ds,i = ds,j for s = 1, . . . , n,
and, in a second step, |ΓP [s;Pi]| = |ΓP [s;Pj ]| for s = 1, . . . , n, since these amounts
depend, in addition, on values |ΓP [s̃;Pk]| for all Pk ∈ P and 1 ≤ s̃ < s. �

Example 3.11 Let ΓP be an access structure defined on a set with four participants
P. We assume a vector of α-accessibilities given by

Iα(ΓP) = ( 3α2 − 4α3 + α4, 2α2 − 3α3 + α4, 2α2 − 3α3 + α4, α2 − 2α3 + α4).
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To determine the amounts |ΓP [s;Pi]| for sizes s = 1, 2, 3, 4, and participants P1,
P2, P3 and P4, we will follow the notation and procedure introduced in Lemma 3.9:

ds,i = |ΓP [s;Pi]| − |ΓP\{Pi}[s − 1]| s = 1, . . . , 4, i = 1, . . . , 4.

For participant P1:

d1,1 = 0
−3d1,1 + d2,1 = 3
3d1,1 − 2d2,1 + d3,1 = −4
−d1,1 + d2,1 − d3,1 + d4,1 = 1





⇒ (d1,1, d2,1, d3,1, d4,1) = (0, 3, 2, 0).

An analogous procedure for participants P2, P3 and P4 leads us to determine the
remaining unknowns:

(d1,2, d2,2, d3,2, d4,2) = (d1,3, d2,3, d3,3, d4,3) = (0, 2, 1, 0), (d1,4, d2,4, d3,4, d4,4) = (0, 1, 0, 0).

Now, in a first level, the amounts |ΓP [1;Pi]| for each participant in P directly appear:

(|ΓP [1;P1]|, |ΓP [1;P2]|, |ΓP [1;P3]|, |ΓP [1;P4]|) = (d1,1, d1,2, d1,3, d1,4) = (0, 0, 0, 0),

that is, no participant individually forms authorized coalition in ΓP . In a second
level we obtain the amounts |ΓP [2;Pi]| for each participant in P. In this particular
case, since |ΓP [1;Pi]| = 0 ∀Pi ∈ P, we have

(|ΓP [2;P1]|, |ΓP [2;P2]|, |ΓP [2;P3]|, |ΓP [2;P4]|) = (d2,1, d2,2, d2,3, d2,4) = (3, 2, 2, 1).

A third level allows us obtain the amounts |ΓP [3;Pi]| for each participant in P. We
compute, for instance, |ΓP [3;P1]|.

|ΓP [3;P1]| = d3,1 + |ΓP\{P1}[2]| = d3,1 +
1

2

4∑

j=1

|ΓP [2;Pj ]| − |ΓP [2;P1]|

= 2 +
3 + 2 + 2 + 1

2
− 3 = 3

Analogous computations lead us to obtain the remaining amounts in this level:

(|ΓP [3;P1]|, |ΓP [3;P2]|, |ΓP [3;P3]|, |ΓP [3;P4]|) = (3, 3, 3, 3).

Finally, in a fourth level, it is obtained |ΓP [4;Pi]| for each participant in P.

|ΓP [4;P1]| = d4,1 + |ΓP\{P1}[3]| = d4,1 +
1

3

4∑

j=1

|ΓP [3;Pj ]| − |ΓP [3;P1]|

= 0 +
3 + 3 + 3 + 3

3
− 3 = 1.

It is an expected result. In the last level, when s = n = |P|, all amounts |ΓP [4;Pi]|
coincide and their value equals |ΓP [4]| = 1 for every nonempty access structure.

Note that, according to Theorem 3.10, |ΓP [s;P2]| = |ΓP [s;P3]| for s = 1, 2, 3, 4, since
both participants P2 and P3 have equal α-accessibility for every α ∈ (0, 1).
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Definition 3.12 Let P and P ′ be two sets with a same number of participants, |P| =
|P ′|. The participants of access structures ΓP and Γ′

P ′ have equal α-accessibilities if
there exists a one-to-one map π : P → P ′ so that

Iα(Pi,ΓP ) = Iα(π(Pi),Γ
′
P ′) ∀Pi ∈ P, ∀α ∈ (0, 1).

Corollary 3.13 If the participants of ΓP and Γ′
P ′ have the same α-accessibilities,

then Ωα(ΓP) = Ωα(Γ′
P ′) ∀α ∈ (0, 1).

Proof For each participant Pi in access structure ΓP , let us consider P ′
j the partic-

ipant in access structure Γ′
P ′ obtained from the one-to-one map π, i.e., P ′

j = π(Pi).
In a similar way as in Theorem 3.10, the amounts ΓP [s;Pi], s = 1, . . . , n, can be
obtained from the vector of α-accessibilities and then,

ΓP [s;Pi] = Γ′
P ′ [s;π(Pi)] = Γ′

P ′ [s;P ′
j ] s = 1, . . . , n.

In a wide sense, we can affirm that participants Pi and P ′
j are strategically equiv-

alent (by means of π), although they belong to different sets of participants where
access structures ΓP and Γ′

P ′ are respectively defined. Consequently, for both access
structures, the number of authorized coalitions with a same cardinality is coincident:

ΓP [s] =
1

s

n∑

i=1

ΓP [s;Pi] =
1

s

n∑

j=1

Γ′
P ′ [s;P ′

j ] = Γ′
P ′ [s] s = 1, . . . , n = |P| = |P ′|.

The above equalities guarantee the coincidence of α-accessibility indices of both
structures. �

Situations provided by the real world lead us to compare two access structures
defined on different sets of participants when both sets have the same size. Thus,
it seems reasonable to extend the concept of isomorphic access structures to these
situations. With an abuse of notation, we will use a similar terminology.

Definition 3.14 Let P and P ′ be two sets of participants with |P| = |P ′|. Two
access structures ΓP and Γ′

P ′ are isomorphic if there exists a one-to-one map π :
P → P ′ verifying π(S) is an authorized coalition of Γ′

P ′ if and only if S is an
authorized coalition of ΓP , for every subset S ⊆ P.

Corollary 3.15 If ΓP and Γ′
P ′ are two isomorphic access structures then, the α-

accessibilities of their participants coincide. �

4 Do the α-accessibilities determine the access struc-

ture?

Given two access structures defined on sets with the same number of participants, we
have considered three concepts: (i) isomorphic, (ii) with an equal α-accessibilities
for the participants, and (iii) strategically equivalent. Theorem 3.10 shows that
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an equal α-accessibilities between two structures ΓP and Γ′
P ′ , with |P| = |P ′|, is

equivalent to strategically equivalence (in wide sense) between the corresponding
participants related by means of the one-to-one map, whereas Theorem 2.10 affirms
that two access structures have an equal α-accessibility index if and only if they
are strategically equivalent. From the previous corollaries, (i) implies (ii) and (ii)
implies (iii). From now on, we will try to analyze the converse properties.

According to the results in Section 2, all access structures with three participants are
univocally determined (up to isomorphisms) by means of their α-accessibility indices
(see Table 1 in Example 2.7). Nevertheless, for four participants, it is possible to
find two non-isomorphic access structures strategically equivalent, i.e., with a same
vector of cardinalities of authorized coalitions and, consequently, with an equal α-
accessibility index.

Example 4.1 Let us retake Example 2.9. The non-isomorphic access structures ΓP

and Γ′
P defined on P = {P1, P2, P3, P4} with basis (ΓP)0 = {P1P2, P1P3, P1P4, P2P3}

and (Γ′
P)0 = {P1P2, P1P3, P2P4, P3P4}, respectively, have a common α-accessibility

Ωα(ΓP) = Ωα(Γ′
P) = 4α2 − 4α3 + α4, ∀α ∈ (0, 1). But, if we compute the respec-

tive vectors of α-accessibilities for their participants, both access structures obtain
different allocations.

For access structure ΓP we have:

(ΓP\{P1})0 = {P2P3} ⇒ Ωα(ΓP\{P1}) = α2

(ΓP\{P2})0 = {P1P3, P1P4} ⇒ Ωα(ΓP\{P2}) = 2α2 − α3

(ΓP\{P3})0 = {P1P2, P1P4} ⇒ Ωα(ΓP\{P3}) = 2α2 − α3

(ΓP\{P4})0 = {P1P2, P1P3, P2P3} ⇒ Ωα(ΓP\{P4}) = 3α2 − 2α3

Theorem 3.5 allows us to compute the vector of α-accessibilities for the participants
of ΓP :

Iα(ΓP) = ( 3α2 − 4α3 + α4, 2α2 − 3α3 + α4, 2α2 − 3α3 + α4, α2 − 2α3 + α4).

In a similar way, for access structure Γ′
P , Ωα(Γ′

P\{Pi}
) = 2α2 − α3 ∀Pi ∈ P and

the α-accessibility of each participant is Iα(Pi,Γ
′
P ) = 2α2 − 3α3 + α4 ∀Pi ∈ P,

∀α ∈ (0, 1).

This example shows that, for access structures with four or more participants, the
converse of Corollary 3.13 is not true.

Now, we would analyze a different aspect. All access structures with three par-
ticipants can be reconstructed from the α-accessibility index, up to isomorphisms:
it suffices to observe Table 1 in Example 2.7 from the right column towards the
left column. We ask ourselves for a similar reconstruction from the vector of α-
accessibilities of the participants.

Let us assume that a vector of α-accessibilities is given in an access structure with
four participants. Take, for instance, the corresponding to structure ΓP in Example
4.1:

Iα(ΓP) = ( 3α2 − 4α3 + α4, 2α2 − 3α3 + α4, 2α2 − 3α3 + α4, α2 − 2α3 + α4).
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Note that this is the vector in Example 3.11. From it, the number of authorized
coalitions for each participant and each coalition size was obtained:

(|ΓP [1;P1]|, |ΓP [2;P1]|, |ΓP [3;P1]|, |ΓP [4;P1]|) = (0, 3, 3, 1),

(|ΓP [1;Pk]|, |ΓP [2;Pk ]|, |ΓP [3;Pk]|, |ΓP [4;Pk]|) = (0, 2, 3, 1), k = 2, 3,

(|ΓP [1;P4]|, |ΓP [2;P4]|, |ΓP [3;P4]|, |ΓP [4;P4]|) = (0, 1, 3, 1).

For all participants i = 1, 2, 3, 4: |ΓP [1;Pi]| = 0 implies no participant individually
forms authorized coalition; |ΓP [3;Pi]| = 3 and |ΓP [4;Pi]| = 1 implies all possible
coalitions with a given participant of sizes three and four are authorized coalitions.
Authorized coalitions with size 2:

|ΓP [2;P1]| = 3 ⇒ P1P2, P1P3, P1P4 ∈ ΓP ⇒ P1P2, P1P3, P1P4 ∈ (ΓP)0

Since |ΓP [2;P4]| = 1, only one coalition with size 2 containing participant P4 is
an authorized coalition: P1P4. For participants P2 and P3, since |ΓP [2;P2]| = 2
and |ΓP [2;P3]| = 2, in addition to authorized coalitions P1P2 and P1P3, another
authorized coalition of size 2 necessarily exists, this is P2P3. Thus, also P2P3 be-
longs to (ΓP)0. Finally, if P1P2, P1P3, P1P4 and P2P3 are authorized coalitions, all
coalitions of size three and four also are authorized coalitions, so that these four
coalitions suffice to form the basis of ΓP ,

(ΓP)0 = {P1P2, P1P3, P1P4, P2P3},

and the access structure ΓP has been reconstructed from the vector of α-accessibilities
of the participants.

This process of reconstruction also can be followed for the access structure Γ′
P . Here,

as every participant has the same α-accessibility Iα(Pi,Γ
′
P) = 2α2 − 3α3 + α4, there

are also the same number of authorized coalitions for each one of them:

(|Γ′
P [1;Pi]|, |Γ

′
P [2;Pi]|, |Γ

′
P [3;Pi]|, |Γ

′
P [4;Pi]|) = (0, 2, 3, 1) i = 1, 2, 3, 4.

No participant individually forms authorized coalition, whereas every participant
belongs to two authorized coalition of size 2. Diverse structures can be obtained.
For instance, beginning by participant P1: (i) P1P2, P1P3 ∈ Γ′1

P (ii) P1P2, P1P4 ∈ Γ′2
P

or (iii) P1P3, P1P4 ∈ Γ′3
P . Next, necessarily, in case (i) P2P4, P3P4 ∈ Γ′1

P , in case (ii)
P2P3, P3P4 ∈ Γ′2

P and in case (iii) P2P3, P2P4 ∈ Γ′3
P . All cases assure |Γ′

P [3;Pi]| = 3
and |Γ′

P [4;Pi]| = 1 for i = 1, 2, 3, 4.

For this vector of α-accessibilities we obtain three possible access structures with
respective basis

(Γ′1
P)0 = {P1P2, P1P3, P2P4, P3P4},

(Γ′2
P)0 = {P1P2, P1P4, P2P3, P3P4},

(Γ′3
P)0 = {P1P3, P1P4, P2P3, P2P4}.

Access structures Γ′1
P , Γ′2

P and Γ′3
P are isomorphic and again the access structure

has been determined from the vector of α-accessibilities of the participants, up to
isomorphisms.
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Theorem 4.2 Up to isomorphisms, every access structure defined in sets with at
most four participants can be reconstructed from the vector of α-accessibilities of the
participants.

Proof For two or three participants the conclusion easily follows. More precisely, in
both cases, it suffices the α-accessibility index to reconstruct the access structures
and, by Corollary 3.13, the vector of α-accessibilities of the participants allows us
to determine the α-accessibility index of the structure.

In P = {P1, P2} we have three possible access structures, up to isomorphisms.

Table 3 shows that each access structure is univocally determined from its α-
accessibility in case of two participants and Table 1 in Example 2.7 proves it for
three participants.

(ΓP)0 Ωα(ΓP ) Iα(ΓP)

P1P2 α2 (α2, α2)
P1 α (α, 0)

P1, P2 2α − α2 (α − α2, α − α2)

Table 3: Access structures with two participants

For structures of four participants we know that it is necessary to work with the
α-accessibilities of the participants. We have checked (see Appendix) one by one
all twenty [1] access structures without null participants, up to isomorphisms, as
we did with ΓP and Γ′

P in Example 4.1. In each case, the access structure can be
reconstructed up to isomorphisms.

Access structures of four participants with one, two or three null participants have
been studied as access structures without null participants of three, two or one
participant, respectively. �

The conclusion in the previous Theorem is not possible when the number of partici-
pants increases. We propose an example in a set of five participants where an equal
vector of α-accessibilities for the participants leads to two non-isomorphic access
structures.

Example 4.3 Let P = {P1, P2, P3, P4, P5} be a set of five participants whit α-
accessibilities given by Iα(P1,ΓP) = 3α2−5α3+α4+α5, Iα(Pk,ΓP) = 2α2−3α3+α5,
k = 2, 3, 4, and Iα(P5,ΓP) = α2 − α3 − α4 + α5.

Following the procedure explained in Lemma 3.9 we obtain the amounts

(d1,1, d2,1, d3,1, d4,1, d5,1) = (0, 3, 4, 0, 0),

(d1,k, d2,k, d3,k, d4,k, d5,k) = (0, 2, 3, 0, 0), k = 2, 3, 4, and

(d1,5, d2,5, d3,5, d4,5, d5,5) = (0, 1, 2, 0, 0)

that allows us to compute the number of authorized coalitions for each participant
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and each coalition size:

(|ΓP [1;P1]|, |ΓP [2;P1]|, |ΓP [3;P1]|, |ΓP [4;P1]|, |ΓP [5;P1]|) = (0, 3, 6, 4, 1),

(|ΓP [1;Pk]|, |ΓP [2;Pk]|, |ΓP [3;Pk ]|, |ΓP [4;Pk]|, |ΓP [5;Pk]|) = (0, 2, 6, 4, 1), k = 2, 3, 4,

(|ΓP [1;P4]|, |ΓP [2;P4]|, |ΓP [3;P4]|, |ΓP [4;P4]|, |ΓP [5;P5]|) = (0, 1, 6, 4, 1).

At least two non-isomorphic access structures Γ1
P and Γ2

P satisfy all these conditions.
Their respective basis are

(Γ1
P )0 = {P1P2, P1P3, P1P4, P2P3, P4P5} and

(Γ2
P )0 = {P1P2, P1P4, P1P5, P2P3, P3P4, P2P4P5}.
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5 Appendix

Access structures in sets of four non-null participants P = {P1, P2, P3, P4, }, up
isomorphisms, with α-accessibility index, α-accessibilities of the participants and
determination of structure from their respective α-accessibilities.

(Reference number) Basis

α-accessibility indices Ωα(ΓP) and Ωα(ΓP\{Pi}), i ∈ {1, 2, 3, 4}

Vector of α-accessibilities Iα(ΓP)

Amounts (d1,i, d2,i, d3,i, d4,i), i ∈ {1, 2, 3, 4}

Number of authorized coalitions
(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|), i ∈ {1, 2, 3, 4}

⇒ Basis of possible access structures from the α-accessibilities

(1) (ΓP)0 = {P1, P2, P3, P4}

Ωα(ΓP) = 4α − 6α2 + 4α3 − α4, Ωα(ΓP\{Pi}) = 3α − 3α2 + α3, i = 1, 2, 3, 4.

Iα(Pi,ΓP ) = α − 3α2 + 3α3 − α4, i = 1, 2, 3, 4.

(d1,i, d2,i, d3,i, d4,i) = (1, 0, 0, 0), i = 1, 2, 3, 4.

(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (1, 3, 3, 1), i = 1, 2, 3, 4.

⇒ (ΓP)0 = {P1, P2, P3, P4}

(2) (ΓP)0 = {P1, P2, P3P4}

Ωα(ΓP) = 2α − 2α3 + α4,
Ωα(ΓP\{Pi}) = α + α2 − α3, i = 1, 2, Ωα(ΓP\{Pj}) = 2α − α2, j = 3, 4.

Iα(Pi,ΓP ) = α − α2 − α3 + α4, i = 1, 2, Iα(Pj ,ΓP) = α2 − 2α3 + α4, j = 3, 4.

(d1,i, d2,i, d3,i, d4,i) = (1, 2, 0, 0), i = 1, 2, (d1,j , d2,j , d3,j , d4,j) = (0, 1, 0, 0), j = 3, 4.

(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (1, 3, 3, 1), i = 1, 2,
(|ΓP [1;Pj ]|, |ΓP [2;Pj ]|, |ΓP [3;Pj ]|, |ΓP [4;Pj ]|) = (0, 3, 3, 1), j = 3, 4.

⇒ (ΓP)0 = {P1, P2, P3P4}
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(3) (ΓP)0 = {P1, P2P3, P2P4, P3P4}

Ωα(ΓP) = α + 3α2 − 5α3 + 2α4,
Ωα(ΓP\{P1}) = 3α2 − 2α3, Ωα(ΓP\{Pi}) = α + 2α2 − α3, i = 2, 3, 4.

Iα(P1,ΓP) = α − 3α3 + 2α4, Iα(Pi,ΓP) = 2α2 − 4α3 + 2α4, i = 2, 3, 4.

(d1,1, d2,1, d3,1, d4,1) = (1, 3, 0, 0), (d1,i, d2,i, d3,i, d4,i) = (0, 2, 0, 0), i = 2, 3, 4.

(|ΓP [1;P1]|, |ΓP [2;P1]|, |ΓP [3;P1]|, |ΓP [4;P1]|) = (1, 3, 3, 1),
(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 3, 3, 1), i = 2, 3, 4.

⇒ (ΓP)0 = {P1, P2P3, P2P4, P3P4}

(4) (ΓP)0 = {P1P2, P1P3, P1P4, P2P3, P2P4, P3P4}

Ωα(ΓP) = 6α2 − 8α3 + 3α4, Ωα(ΓP\{Pi}) = 3α2 − 2α3, i = 1, 2, 3, 4.

Iα(Pi,ΓP ) = 3α2 − 6α3 + 3α4, i = 1, 2, 3, 4.

(d1,i, d2,i, d3,i, d4,i) = (0, 3, 0, 0), i = 1, 2, 3, 4.

(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 3, 3, 1), i = 1, 2, 3, 4.

⇒ (ΓP)0 = {P1P2, P1P3, P1P4, P2P3, P2P4, P3P4}

(5) (ΓP)0 = {P1, P2P3, P2P4}

Ωα(ΓP) = α + 2α2 − 3α3 + α4,
Ωα(ΓP\{P1}) = 2α2 − 3α3, Ωα(ΓP\{P2}) = α, Ωα(ΓP\{Pi}) = α + α2 − α3, i = 3, 4.

Iα(P1,ΓP) = α − 2α3 + α4, Iα(P2,ΓP) = 2α − 3α3 + α4,
Iα(Pi,ΓP ) = α2 − 2α3 + α4, i = 3, 4.

(d1,1, d2,1, d3,1, d4,1) = (1, 3, 1, 0), (d1,2, d2,2, d3,2, d4,2) = (0, 2, 1, 0),
(d1,i, d2,i, d3,i, d4,i) = (0, 1, 0, 0), i = 3, 4.

(|ΓP [1;P1]|, |ΓP [2;P1]|, |ΓP [3;P1]|, |ΓP [4;P1]|) = (1, 3, 3, 1),
(|ΓP [1;P2]|, |ΓP [2;P2]|, |ΓP [3;P2]|, |ΓP [4;P2]|) = (0, 3, 3, 1),
(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 2, 3, 1), i = 3, 4.

⇒ (ΓP)0 = {P1, P2P3, P2P4}
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(6) (ΓP)0 = {P1P2, P1P3, P1P4, P2P3, P2P4}

Ωα(ΓP) = 5α2 − 6α3 + 2α4,
Ωα(ΓP\{Pi}) = 2α2 − α3, i = 1, 2, Ωα(ΓP\{Pj}) = 3α2 − 2α3, j = 3, 4.

Iα(Pi,ΓP ) = 3α2 − 5α3 + 2α4, i = 1, 2, Iα(Pj ,ΓP) = 2α2 − 4α3 + 2α4, j = 3, 4.

(d1,i, d2,i, d3,i, d4,i) = (0, 3, 1, 0), i = 1, 2, (d1,j , d2,j , d3,j , d4,j) = (0, 2, 0, 0), j = 3, 4.

(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 3, 3, 1), i = 1, 2,
(|ΓP [1;Pj ]|, |ΓP [2;Pj ]|, |ΓP [3;Pj ]|, |ΓP [4;Pj ]|) = (0, 2, 3, 1), j = 3, 4.

⇒ (ΓP)0 = {P1P2, P1P3, P1P4, P2P3, P2P4}

(7) (ΓP)0 = {P1P2, P1P3, P1P4, P2P3}

Ωα(ΓP) = 4α2 − 4α3 + α4,
Ωα(ΓP\{P1}) = α2, Ωα(ΓP\{Pi}) = 2α2 − α3, i = 2, 3, Ωα(ΓP\{P4}) = 3α2 − 2α3.

Iα(P1,ΓP) = 3α2 − 4α3 + α4, Iα(Pi,ΓP) = 2α2 − 3α3 + α4, i = 2, 3,
Iα(P4,ΓP) = α2 − 2α3 + α4.

(d1,1, d2,1, d3,1, d4,1) = (0, 3, 2, 0), (d1,i, d2,i, d3,i, d4,i) = (0, 2, 1, 0), i = 2, 3,
(d1,4, d2,4, d3,4, d4,4) = (0, 1, 0, 0).

(|ΓP [1;P1]|, |ΓP [2;P1]|, |ΓP [3;P1]|, |ΓP [4;P1]|) = (0, 3, 3, 1),
(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 2, 3, 1), i = 2, 3,
(|ΓP [1;P4]|, |ΓP [2;P4]|, |ΓP [3;P4]|, |ΓP [4;P4]|) = (0, 1, 3, 1),

⇒ (ΓP)0 = {P1P2, P1P3, P1P4, P2P3}

(8) (ΓP)0 = {P1P2, P1P3, P2P4, P3P4}

Ωα(ΓP) = 4α2 − 4α3 + α4, Ωα(ΓP\{Pi}) = 2α2 − α3, i = 1, 2, 3, 4.

Iα(Pi,ΓP ) = 2α2 − 3α3 + α4, i = 1, 2, 3, 4.

(d1,i, d2,i, d3,i, d4,i) = (0, 2, 1, 0), i = 1, 2, 3, 4.

(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 2, 3, 1), i = 1, 2, 3, 4.

⇒
(Γ1

P)0 = {P1P2, P1P3, P2P4, P3P4}
(Γ2

P)0 = {P1P2, P1P4, P2P3, P3P4}
(Γ3

P)0 = {P1P3, P1P4, P2P3, P2P4}
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(9) (ΓP)0 = {P1, P2P3P4}

Ωα(ΓP) = α + α3 − α4, Ωα(ΓP\{P1}) = α3, Ωα(ΓP\{Pi}) = α, i = 2, 3, 4.

Iα(P1,ΓP) = α − α4, Iα(Pi,ΓP) = α3 − α4, i = 2, 3, 4.

(d1,1, d2,1, d3,1, d4,1) = (1, 3, 3, 0), (d1,i, d2,i, d3,i, d4,i) = (0, 0, 1, 0), i = 2, 3, 4.

(|ΓP [1;P1]|, |ΓP [2;P1]|, |ΓP [3;P1]|, |ΓP [4;P1]|) = (1, 3, 3, 1),
(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 1, 3, 1), i = 2, 3, 4.

⇒ (ΓP)0 = {P1, P2P3P4}

(10) (ΓP)0 = {P1P2, P1P3, P2P4}

Ωα(ΓP) = 3α2 − 2α3,
Ωα(ΓP\{Pi}) = α2, i = 1, 2, Ωα(ΓP\{Pj}) = 2α2 − α3, j = 3, 4.

Iα(Pi,ΓP ) = 2α2 − 2α3, i = 1, 2, Iα(Pj ,ΓP ) = α2 − α3, j = 3, 4.

(d1,i, d2,i, d3,i, d4,i) = (0, 2, 2, 0), i = 1, 2, (d1,j , d2,j , d3,j , d4,j) = (0, 1, 1, 0), j = 3, 4.

(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 2, 3, 1), i = 1, 2,
(|ΓP [1;Pj ]|, |ΓP [2;Pj ]|, |ΓP [3;Pj ]|, |ΓP [4;Pj ]|) = (0, 1, 3, 1), j = 3, 4.

⇒
(Γ1

P)0 = {P1P2, P1P3, P2P4}
(Γ2

P)0 = {P1P2, P1P4, P2P3}

(11) (ΓP)0 = {P1P2, P1P3, P1P4, P2P3P4}

Ωα(ΓP) = 3α2 − 2α3, Ωα(ΓP\{P1}) = α3, Ωα(ΓP\{Pi}) = 2α2 − α3, i = 2, 3, 4.

Iα(P1,ΓP) = 3α2 − 3α3, Iα(Pi,ΓP) = α2 − α3, i = 2, 3, 4.

(d1,1, d2,1, d3,1, d4,1) = (0, 3, 3, 0), (d1,i, d2,i, d3,i, d4,i) = (0, 1, 1, 0), i = 2, 3, 4.

(|ΓP [1;P1]|, |ΓP [2;P1]|, |ΓP [3;P1]|, |ΓP [4;P1]|) = (0, 3, 3, 1),
(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 1, 3, 1), i = 2, 3, 4.

⇒ (ΓP)0 = {P1P2, P1P3, P1P4, P2P3P4}
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(12) (ΓP)0 = {P1P2, P1P3, P1P4}

Ωα(ΓP) = 3α2 − 3α3 + α4, Ωα(ΓP\{P1}) = 0, Ωα(ΓP\{Pi}) = 2α2 − α3, i = 2, 3, 4.

Iα(P1,ΓP) = 3α2 − 3α3 + α4, Iα(Pi,ΓP) = α2 − 2α3 + α4, i = 2, 3, 4.

(d1,1, d2,1, d3,1, d4,1) = (0, 3, 3, 1), (d1,i, d2,i, d3,i, d4,i) = (0, 1, 0, 0), i = 2, 3, 4.

(|ΓP [1;P1]|, |ΓP [2;P1]|, |ΓP [3;P1]|, |ΓP [4;P1]|) = (0, 3, 3, 1),
(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 1, 2, 1), i = 2, 3, 4.

⇒ (ΓP)0 = {P1P2, P1P3, P1P4}

(13) (ΓP)0 = {P1P2, P3P4}

Ωα(ΓP) = 2α2 − α4, Ωα(ΓP\{Pi}) = α2, i = 2, 3, 4.

Iα(Pi,ΓP ) = α2 − α4, i = 1, 2, 3, 4.

(d1,i, d2,i, d3,i, d4,i) = (0, 1, 2, 0), i = 1, 2, 3, 4.

(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 1, 3, 1), i = 1, 2, 3, 4.

⇒
(Γ1

P)0 = {P1P2, P3P4}
(Γ2

P)0 = {P1P3, P2P4}
(Γ3

P)0 = {P1P4, P2P3}

(14) (ΓP)0 = {P1P2, P1P3, P2P3P4}

Ωα(ΓP) = 2α2 − α4,
Ωα(ΓP\{P1}) = α3, Ωα(ΓP\{Pi}) = α2, i = 2, 3, Ωα(ΓP\{P4}) = 2α2 − α3.

Iα(P1,ΓP) = 2α2 − α3 − α4, Iα(Pi,ΓP) = α2 − α4, i = 2, 3, Iα(P4,ΓP) = α3 − α4.

(d1,1, d2,1, d3,1, d4,1) = (0, 2, 3, 0), (d1,i, d2,i, d3,i, d4,i) = (0, 1, 2, 0), i = 2, 3,
(d1,4, d2,4, d3,4, d4,4) = (0, 0, 1, 0).

(|ΓP [1;P1]|, |ΓP [2;P1]|, |ΓP [3;P1]|, |ΓP [4;P1]|) = (0, 2, 3, 1),
(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 1, 3, 1), i = 2, 3,
(|ΓP [1;P4]|, |ΓP [2;P4]|, |ΓP [3;P4]|, |ΓP [4;P4]|) = (0, 0, 3, 1).

⇒ (Γ1

P)0 = {P1P2, P1P3, P2P3P4}
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(15) (ΓP)0 = {P1P2, P1P3P4, P2P3P4}

Ωα(ΓP) = α2 + 2α3 − 2α4,
Ωα(ΓP\{Pi}) = α3, i = 1, 2, Ωα(ΓP\{Pj}) = α2, j = 3, 4.

Iα(Pi,ΓP ) = α2 + α3 − 2α4, i = 1, 2, Iα(Pj ,ΓP) = 2α3 − 2α4, j = 3, 4.

(d1,i, d2,i, d3,i, d4,i) = (0, 1, 3, 0), i = 1, 2,
(d1,j , d2,j , d3,j , d4,j) = (0, 0, 2, 0), j = 3, 4.

(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 1, 3, 1), i = 1, 2,
(|ΓP [1;Pj ]|, |ΓP [2;Pj ]|, |ΓP [3;Pj ]|, |ΓP [4;Pj ]|) = (0, 0, 3, 1), j = 3, 4.

⇒ (Γ1

P)0 = {P1P2, P2P3P4, P1P3P4}

(16) (ΓP)0 = {P1P2, P1P3P4}

Ωα(ΓP) = α2 + α3 − α4,
Ωα(ΓP\{P1}) = 0, Ωα(ΓP\{P2}) = α3, Ωα(ΓP\{Pi}) = α2, i = 3, 4.

Iα(P1,ΓP) = α2 + α3 − α4, Iα(P2,ΓP) = α2 − α4, Iα(Pi,ΓP) = α3 − α4, i = 3, 4.

(d1,1, d2,1, d3,1, d4,1) = (0, 1, 3, 1), (d1,2, d2,2, d3,2, d4,2) = (0, 1, 2, 0),
(d1,i, d2,i, d3,i, d4,i) = (0, 0, 1, 0), i = 3, 4.

(|ΓP [1;P1]|, |ΓP [2;P1]|, |ΓP [3;P1]|, |ΓP [4;P1]|) = (0, 1, 3, 1),
(|ΓP [1;P2]|, |ΓP [2;P2]|, |ΓP [3;P2]|, |ΓP [4;P2]|) = (0, 1, 2, 1),
(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 0, 2, 1), i = 3, 4.

⇒ (Γ1

P)0 = {P1P2, P1P3P4}

(17) (ΓP)0 = {P1P2P3, P1P2P4, P1P3P4, P2P3P4}

Ωα(ΓP) = 4α3 − 3α4, Ωα(ΓP\{Pi}) = α3, i = 1, 2, 3, 4.

Iα(Pi,ΓP ) = 3α3 − 3α4, i = 1, 2, 3, 4.

(d1,i, d2,i, d3,i, d4,i) = (0, 0, 3, 0), i = 1, 2, 3, 4.

(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 0, 3, 1), i = 1, 2, 3, 4.

⇒ (Γ1

P)0 = {P1P2P3, P1P2P4, P1P3P4, P2P3P4}
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(18) (ΓP)0 = {P1P2P3, P1P2P4, P1P3P4}

Ωα(ΓP) = 3α3 − 2α4, Ωα(ΓP\{P1}) = 0, Ωα(ΓP\{Pi}) = α3, i = 2, 3, 4.

Iα(P1,ΓP) = 3α3 − 2α4, Iα(Pi,ΓP) = 2α3 − 2α4, i = 2, 3, 4.

(d1,1, d2,1, d3,1, d4,1) = (0, 0, 3, 1), (d1,i, d2,i, d3,i, d4,i) = (0, 0, 2, 0), i = 2, 3, 4.

(|ΓP [1;P1]|, |ΓP [2;P1]|, |ΓP [3;P1]|, |ΓP [4;P1]|) = (0, 0, 3, 1),
(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 0, 2, 1), i = 2, 3, 4.

⇒ (Γ1

P)0 = {P1P2P3, P1P2P4, P1P3P4}

(19) (ΓP)0 = {P1P2P3, P1P2P4}

Ωα(ΓP) = 2α3 − α4, Ωα(ΓP\{Pi}) = 0, i = 1, 2, Ωα(ΓP\{Pj}) = α3, j = 3, 4.

Iα(Pi,ΓP ) = 2α3 − α4, i = 1, 2, Iα(Pj ,ΓP ) = α3 − α4, j = 3, 4.

(d1,i, d2,i, d3,i, d4,i) = (0, 0, 2, 1), i = 1, 2, (d1,j , d2,j , d3,j , d4,j) = (0, 0, j, 0), j = 3, 4.

(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 0, 2, 1), i = 1, 2,
(|ΓP [1;Pj ]|, |ΓP [2;Pj ]|, |ΓP [3;Pj ]|, |ΓP [4;Pj ]|) = (0, 0, 1, 1), j = 3, 4.

⇒ (Γ1

P)0 = {P1P2P3, P1P2P4}

(20) (ΓP)0 = {P1P2P3P4}

Ωα(ΓP) = α4, Ωα(ΓP\{Pi}) = 0, i = 1, 2, 3, 4.

Iα(Pi,ΓP ) = α4, i = 1, 2, 3, 4.

(d1,i, d2,i, d3,i, d4,i) = (0, 0, 0, 1), i = 1, 2, 3, 4.

(|ΓP [1;Pi]|, |ΓP [2;Pi]|, |ΓP [3;Pi]|, |ΓP [4;Pi]|) = (0, 0, 0, 1), i = 1, 2, 3, 4.

⇒ (ΓP)0 = {P1P2P3P4}
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