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Abstract   
      Although the exact solution for the mean waiting time in the M/H2/s queue exists, it requires advanced 
programming skills and processing capacity. In most engineering problems the offered traffic and its features are 
known with a certain degree of uncertainty (e.g. traffic is predicted, traffic is not clearly Poisson, etc). In such 
environments where perfect accuracy is not required, approximations are often used to estimate the performance. 
For engineering applications, the easiness to compute the estimate is a key factor. The contribution of this paper is a 
new closed formula to estimate the mean waiting time in the M/H2

b/s queue. The formula is easy to compute and 
accurate. In contrast with the already existing approximations, the one presented here keeps its validity for medium-
high coefficients of variation. 
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1 Introduction  
The need for approximations 
In real world evaluation of telecommunications systems, the input data (e.g. offered traffic, mean call duration, etc.) 
are known within a certain error range, being this range wider for predicted than for measured data. Statistical 
properties of the arrival and service processes are seldom well known: sometimes they are inferred from traffic 
theory, others they are measured in the field. In this environment and for practical purposes, the Poisson arrival 
process is often used when the arrival process is not well known. A sample of this practice is the extensive use of 
the Poisson process to model the handoff traffic in cellular networks: handoff is clearly carried traffic (i.e. carried in 
the surrounding cells). The features of the service process are easier to be measured than those of the offered traffic. 
However, the features of a telecommunications service seldom fit those of a practical probability distribution. With 
the current trend to integrate several services in the same network, the service time characterization becomes more 
difficult and perfect matching between measured data and a known distribution (or even with a mix of distributions) 
is impossible in practice. 

In these environments, an exact solution [1] is not necessary, in particular if the cost of this “total accuracy” is high. 
Approximations can greatly reduce this cost (e.g. needed programming skills and/or time, CPU and memory needs, 
computing time, etc) while keeping the accuracy of the obtained results within a very narrow error range. In the 
scenario described above, one could state that a 5% relative error is excellent. Notice that measured traffic data use 
to have 20-40% relative error while predicted data with less than 50% relative error are difficult to obtain. The fact 
that most of the telecommunications services are newly launched or upcoming services obviously contributes to 
these wide error ranges. 

The H2 holding time 
Multiserver queues are widely used in telecommunications networks, in particular when those networks are circuit-
switched. The Erlang-C solution for the M/M/s queue is probably the most widely used traffic formula in 
telecommunications systems engineering. However, the statistical properties of new telecommunications services 
are changing and we currently witness the evolution from services with exponential holding time distribution to 
holding times with squared coefficient of variation (SCV) higher or much higher than unity. Some samples follow: 

- Bolotin showed how the current telephone service presents a lognormal holding time distribution with a SCV 
between 2.8 and 4.6 [2].  

- The connection time to a Base Station (BS) in cellular telephony is only a fraction of the overall call holding 
time and its SCV is between 1.7 and 4 [3, 4].  



- Voice at talk spurt level (e.g. to be used in speech interpolation systems) can be modelled as a H2 distribution 
according to the ITU-T [5, 6] with a SCV of 2.5. 

- The transmission time in Private Mobile Radio systems shows SCV around 2.8 [7]. 

- The size of Internet web pages or electronic mails has been modelled with SCV higher or much higher than 
unity. 

- There is a trend to integrate several services in the same network, which usually leads to holding times with 
medium or high (sometimes very high) SCV. The fact that many telephone calls finish in the voice-mail causes 
the holding time to be a mix of two distributions: regular calls with an average duration of some hundreds of 
seconds and voice-mail calls with a very short average duration of a few seconds. Dial-up connections to the 
Internet mixed with regular calls also cause high SCV in the access network. As a rough estimate, if 20% of 
calls are dial-up internet with average duration 30 minutes and 80% are regular calls with average 140 seconds, 
and assuming that each service is exponentially distributed, we have an overall service time with an H2 
distribution and SCV=4.95. Service mixes can be found in most current access networks and integration of 
services is expected to increase in the near future with upcoming technologies such as UMTS, MPLS, etc. 

Although most of the above-mentioned holding times are not H2
b distributed, they all show a SCV greater than 

unity. The H2
b distribution presents clear advantages to model the holding time in those scenarios. In most cases, the 

designer knows only the first one or two moments of the holding time distribution. The H2
b distribution is fully 

described by two parameters (e.g. the first two moments, see Section 2 for notation and difference between H2 and 
H2

b), it is simple to work with and very intuitive. The SCV of the H2
b is always greater than unity. This paper 

proposes to use a two-moment approximation in those cases in which the designer is aware of the fact that the 
service time presents a SCV greater than unity. 

The M/H2
b/s queue 

In the first section of this introduction, we showed how the Markov arrival process suits a wide variety of 
telecommunications services, even in cases where the Poisson nature of the arrival process has not been verified 
(e.g. handoff arrivals to a base station). In the second section, the H2

b distribution has been proposed for a two-
moment matching of holding time distributions when they are not accurately known. In addition, the queue 
investigated here is a Blocked Calls Delayed (BCD) one (i.e. blocked calls are placed in a queue with infinite 
capacity).  

Most telecommunications services can be modelled as BCD. An infinite queue is a very good approximation for 
systems in which the buffer capacity is high enough to keep loses low, even for medium or high blocking 
probability such as buffers in switches, queues in call centers, access to Intelligent Network (IN) services, access to 
database, signalling links, etc. BCD is also a good approximation for pure loss systems in which the customer 
retries after a short time when blocked: local telephony exchanges and PBX, cellular base stations, etc. 

2 Review of Existing Approximations 
Here some procedures to estimate the mean waiting time in the M/G/s queue are reviewed and particularized for the 
H2

b case (see Tijms [8] and Kimura [9] for details on approximations for the M/G/s queue). The balanced 
hyperexponential distribution (H2

b) is a particular case of the H2 distribution where the server spends 50% of the 
service time in each type of call. In the remaining of this paper the following notation is used: 
A = offered traffic, 
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W(M/G/s)= mean waiting time in the queue M/G/s, 
( )
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sW
RG MM
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= = relative mean waiting time, 

1µ
µ pr = time proportion spent in short-type calls ( 21 µµ ≥ ). (Notice that r=0.5 for the H2

b). 

The relative mean waiting time (RG) is the ratio of the waiting time in the considered queue with respect to the mean 
waiting time in a M/M/s queue with the same load. The H2 distribution is completely described by three parameters, 
here m1, c and r. 

 In [10], Boxma, Cohen and Huffles give an approximation to the mean waiting time in the M/G/s queue that can be 
applied to the H2

b holding time as follows: 
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Eq. (1) can be rewritten in a more compact form as: 
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where RD is the relative mean waiting time for the M/D/s queue. The dependency of the relative mean waiting time 
with r is explicit in the notation because not all the approximations include the influence of the third moment. 
Boxma's approximation considers the three parameters of the H2 distribution and is very accurate when the SCV is 
not large. The computing complexity of the approximation increases with the number of channels s according to 
Equation (2). 

The linear (with respect to ρ and k) approximation [8] is ( ) ( ) ksrRH ρµγρ +−= 12 1 . This approximation is not so 
accurate as Equation (3) while the computing complexity is almost the same. 

The approximation presented by Kimura [9] considers only two moments of the distribution: there is no dependence 
on r. In the notation RG, a G is used to reflect that given the first two moments the formula intends to be valid for 
any holding time distribution. The approximation is: 
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The simplest approximation was given by Cosmetatos in [11] as ( ) 221 cRcR DG +−= . This linear interpolation is 
exact for c=0 and c=1 and very inaccurate when c>2. 

The approximation given by Ma and Mark [12] is very precise for very high values of s and/or SCV, but these 
values are seldom found in actual wireless access systems. Ma and Mark suggest values of s around 200 and SCV 
higher than 20. On the other hand, the algorithm relies on exact figures for a lower number of servers and SCV. The 
approximation given in [12] is aimed to reduce the huge processing requirements of the exact solution for high s 
and/or SCV, but the authors assume that the initial solution for a lower s or SCV is an exact solution. This approach 
is far from being simple to compute. 

One problem shared by some of the above-mentioned approximations is the need of RD in order to compute RG. The 
need for an exact value, difficult to achieve, to compute an approximation does not seem very practical. Although 
tables with exact values of W(M/D/s) are available [13, 14] and the exact solution can be programmed, the 
following excellent approximation developed by Cosmetatos is helpful: 
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In the remaining of this paper the approximation of Equation (5) is always used instead of the exact value of RD. 
This substitution brings this work nearer to engineering applications, although it slightly reduces the accuracy of the 
approximations. 

3 Proposed approximation 
The proposed approximation is heuristic and based on numerical tests, thus a mathematical demonstration is not 
provided. The heuristics that led to this approximation are based on two concepts: a limiting bound for the M/H2/s 
queue and an intuitive symmetry concept between the H2

b and the deterministic holding time with respect to the 
exponential distribution. 

If the first two moments of the H2 distribution are given, a limiting case occurs when the shorter calls are extremely 
short ( ∞→1µ ). In this case r=0, and to maintain the two moments of the distribution: 

1
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µ
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The system does not see the shorter calls: only sees calls with a mean duration of k times the mean of the H2 
distribution with probability 1/k. This is in fact a M/M/s process with the same offered traffic A as the M/H2/s and 
with a mean duration ′ =m km1 1 . For this extreme case the upper bound when r=0 is:
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where C(ρ, s) represents the Erlang's delay formula. 

The symmetry between the deterministic and the balanced H2
b distribution (r=0.5), applied to the approximation for 

the mean waiting time, leads to the following proposed formula: 

( )( )( )
s

ssk
kRH

ρ
ρ

16
254111

)5.0(2
−+−−

+
=

     

(8) 

Note how the symmetry concept leads to the use of the Cosmetatos approximation for the M/D/s queue in a “reverse 
sense”: note the similarities between Equations (8) and (5). There is only one deterministic but infinite H2

b 
distributions with the same mean (depending on the SCV), thus the normalization factor k is needed. 

Unlike the others, the new approximation is not asymptotically exact when the SCV tends to one, giving 
inconsistent results: the approximated waiting time is higher for the H2 than for the exponential. Note that Eq. (5) on 
which our proposal is based also gives inconsistencies for very light loads. Hence, the proposed approximation 
should not be used with low SCV (i.e. near to unity) or light loads. If the SCV is close to one any other of the 
approximations mentioned in Section 2 can be used; we suggest Kimura’s for its accuracy and simplicity. Light load 
is not a frequent scenario of evaluation. 

4 Numerical results 
In Section 2, five approximations for the M/H2/s queue have been reviewed. The linear and Cosmetato’s 
approximations give less accurate results than Equations (3) and (4). In addition, the accuracy of those 
approximations is poor for SCV>2. Kimura’s approximation needs two parameters (e.g. two first moments) and is 
precise and simple to compute. Boxma’s approximation introduces a third parameter (r) at the cost increasing the 
required computing effort. For practical purposes, this is interesting when the designer knows more than two 
moments of the holding time distribution. When only two moments are known, the extra complexity is not 
compensated by extra accuracy in front of the Kimura and new approximation (as shown below). 

In Table I, exact values of the balanced RH2 [13, 14] are compared with Equations (3), (4) and (8) (i.e. Boxma’s, 
Kimura’s and proposed approximations respectively). Light and medium loads are considered and the most accurate 
result is highlighted in each case. Simplicity has been used as a second criterion when two or more results have the 



same accuracy. In all cases the mean holding time is one time unit, hence the mean waiting time is normalized to 
the mean holding time. Waiting times is lower than 0.01 have not been displayed since they are not interesting for 
practical engineering problems. Notice how Kimura`s approximation gives the best result for low SCV while the 
new approximation is better for medium and high SCV. Kimura and Boxma results are very similar when the 
blocking probability is medium-low (i.e. light-medium load and/or many servers). Since Boxma includes a third 
parameter (r) and Kimura does not (Kimura presents another excellent approximation for this last case in [9]), one 
should use Boxma’s when the first three moments of the holding time distribution are known (i.e. for improved 
accuracy) and Kimura’s or the new approximation when only two parameters are known (i.e. simpler to compute). 
Table II presents similar results for heavy load.  Notice how the most accurate result changes from Kimura’s to new 
approximation as the SCV increases. 

 

Table I. Comparative results for light and medium load. 

scv s Ex Box Kim New Ex Box Kim New Ex Box Kim New
2 0.412 0.417 0.415 0.399 1.209 1.217 1.215 1.195 2.254 2.263 2.261 2.239
4 0.103 0.105 0.095 0.104 0.440 0.444 0.444 0.426 0.932 0.939 0.938 0.915

1.563 8 0.017 0.017 0.017 0.014 0.135 0.137 0.137 0.127 0.351 0.355 0.355 0.339
15 0.036 0.037 0.037 0.033 0.128 0.130 0.130 0.121
25 0.049 0.050 0.050 0.045
2 0.738 0.766 0.722 0.734 2.261 2.312 2.248 2.270 4.285 4.345 4.272 4.298
4 0.167 0.166 0.160 0.162 0.781 0.783 0.767 0.780 1.718 1.719 1.697 1.718

4 8 0.024 0.023 0.023 0.023 0.223 0.219 0.218 0.222 0.620 0.609 0.607 0.617
15 0.055 0.055 0.054 0.055 0.213 0.209 0.209 0.213
25 0.013 0.013 0.013 0.013 0.077 0.076 0.076 0.077
2 1.381 1.465 1.180 1.310 4.365 4.529 4.063 4.302 8.387 8.582 8.027 8.323
4 0.285 0.262 0.259 0.222 1.447 1.369 1.240 1.383 3.283 3.154 2.952 3.186

9 8 0.036 0.029 0.033 0.028 0.388 0.324 0.316 0.365 1.142 0.986 0.969 1.086
15 0.088 0.073 0.072 0.084 0.374 0.309 0.308 0.354
25 0.019 0.017 0.017 0.019 0.128 0.106 0.105 0.123

ρ =0.5 ρ =0.7 ρ =0.8

 
 

5 Summary and Conclusion 
The M/G/s queue with SCV higher than one is often found in performance evaluation of telecommunications 
systems. In the design phase, most of the times the probability distribution of the channel holding time is not well 
known (e.g. only two or three moments are known). In such cases, the M/H2

b/s queue is a convenient model to 
obtain estimates of the mean waiting time. 

After the comparative results presented in this paper, it is recommended that when the SCV of the channel holding 
time is lower than 2, Kimura’s approximation should be used if only the first two moments of the holding time 
distribution are known. When the first three moments are known, Boxma’s approximation adds extra computing 
complexity and accuracy. For SCV greater than 2, the above-mentioned approximations loose accuracy and the 
approximation presented in this paper is recommended for simplicity and accuracy. 
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Table II. Comparative results for heavy load. 

scv s Ex Box Kim New Ex Box Kim New Ex Box Kim New
2 5.436 5.446 5.444 5.420 11.83 11.84 11.84 11.82 63.08 63.09 63.08 63.06
4 2.495 2.503 2.502 2.475 5.680 5.689 5.688 5.659 31.29 31.30 31.30 31.27

1.563 8 1.102 1.107 1.107 1.084 2.679 2.684 2.684 2.659 15.47 15.48 15.48 15.45
15 0.499 0.503 0.503 0.487 1.325 1.329 1.329 1.309 8.136 8.140 8.140 8.116
25 0.250 0.252 0.252 0.241 0.732 0.735 0.735 0.719 4.806 4.810 4.810 4.790
2 10.48 10.55 10.47 10.50 22.96 23.03 22.94 22.98 122.9 123.0 122.9 123.0
4 4.745 4.743 4.713 4.744 10.95 10.94 10.91 10.95 60.91 60.91 60.87 60.91

4 8 2.054 2.030 2.026 2.048 5.116 5.081 5.076 5.106 30.07 30.02 30.01 30.05
15 0.909 0.891 0.890 0.904 2.501 2.471 2.470 2.492 15.78 15.73 15.73 15.76
25 0.442 0.432 0.432 0.439 1.365 1.342 1.341 1.357 9.300 9.259 9.259 9.284
2 20.76 20.98 20.34 20.69 45.71 45.93 45.25 45.63 245.7 245.9 245.2 245.6
4 9.298 9.098 8.800 9.156 21.69 21.44 21.09 21.52 121.6 121.3 120.9 121.4

9 8 3.965 3.632 3.597 3.844 10.06 9.597 9.547 9.893 59.94 59.34 59.28 59.72
15 1.719 1.501 1.497 1.642 4.879 4.507 4.501 4.745 31.40 30.85 30.84 31.20
25 0.817 0.692 0.691 0.774 2.635 2.371 2.369 2.538 18.48 18.02 18.02 18.31

ρ =0.9 ρ =0.95 ρ =0.99
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