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ABSTRACT 

Acoustic events produced in controlled environments may carry information useful for perceptually aware 

interfaces. In this paper we focus on the problem of classifying 16 types of meeting-room acoustic events. 

First of all, we have defined the events and gathered a sound database. Then, several classifiers based on 

support vector machines (SVM) are developed using confusion matrix based clustering schemes to deal with 

the multi-class problem. Also, several sets of acoustic features are defined and used in the classification tests. 

In the experiments, the developed SVM-based classifiers are compared with an already reported binary tree 

scheme and with their correlative Gaussian mixture model (GMM) classifiers. The best results are obtained 

with a tree SVM-based classifier that may use a different feature set at each node. With it, a 31.5% relative 

average error reduction is obtained with respect to the best result from a conventional binary tree scheme. 
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1. INTRODUCTION 

Activity detection and description is a key functionality of perceptually aware interfaces working in 

collaborative human communication environments like meeting-rooms or classrooms. In such types of 

environments the human activity is reflected in a rich variety of acoustic events, either produced by the 

human body or by objects handled by humans, so auditory scene analysis [1] by computer may help to detect 

and describe human activity as well as to increase the robustness of automatic speech recognition systems. 

Acoustic event classification (AEC) is one of the problems considered by computational auditory scene 

analysis. Indeed, speech usually is the most informative acoustic event, but other kind of sounds may also 

carry useful information. For example: clapping or laughing inside a speech, a strong yawn in the middle of a 

lecture, a chair moving or door noise when the meeting has just started. When trying to deal with the 

problem of AEC in the framework of the CHIL project [2], we soon noticed that reported works are scarce. 

Actually, classification of sounds has usually been carried out so far to segment digital audio streams using a 

limited number of categories, like music/speech/silence/environmental sound (see e.g.[3]). Usually those 
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works are intended to indexing and retrieval of multimedia documents. Audio retrieval is also the objective 

in [4], using a relatively high number of sound classes (13) and without explicit segmentation, and also in 

[5], where animal sounds are retrieved using natural language sentences. On the other hand, several works 

have been devoted to the problem of detection of single sounds, like laughter detection in [6]; or [7], where 

the authors built systems for detecting/classifying several sounds independently from each other. The AEC 

problem has also been considered in the framework of speech recognition in [8]. Aiming to improve the 

robustness of the ASR system, the authors in [8] dealt with the problem of classifying 92 types of isolated 

sounds that had been collected in an anechoic room, the RWCP sound scene database [9]. Some more 

information about the history and the state of the art in the problem of audio classification can be found in 

[10]. 

In this paper we focus on acoustic events that may take place in meeting-rooms or classrooms and on the 

preliminary task of classifying isolated sounds. The number of sounds encountered in such environments 

may be large, but in this initial work we have chosen 16 different acoustic events, including speech and 

music, and a database has been defined for training and testing. While in [8] the authors looked at the 

problem from the point of view of speech recognition, applying the usual automatic speech recognition 

strategy (cepstral features, classifier based on Hidden Markov Models (HMM) and Gaussian Mixture Models 

(GMM)), in our work we consider, develop and compare several feature sets and classification techniques, 

aiming at finding the ones which are most appropriate for the problem we are dealing with. In this way, not 

only the parameters that are used in speech recognition to model the short-time spectral envelope of the 

signals and its time derivatives are considered, but also other perceptual features which may be more fitted to 

non-speech sounds. Moreover, HMMs require relatively large amount of data to accurately train the models, 

something that is not realistic in our task, since there are not many collections of meeting recordings and the 

number of samples of some type of sounds that can be found in them is small.  

Recently, the Support Vector Machine (SVM) paradigm has proved highly successful in a number of 

classification tasks. As a classifier that discriminates the data by creating boundaries between classes rather 

than estimating class conditional densities, it may need considerably less data to perform accurate 

classification. In fact, SVMs have already been used for audio classification [11] and segmentation [12]. In 

this work we use SVM classifiers and compare them with GMM classifiers.  

As SVMs are binary classifiers, some type of strategy must be employed to extend them to the multi-class 

problem. In [11], the authors used the binary tree classification scheme to cope with several classes. That 

approach requires a relatively high number of classifiers and classification steps, and the number of classes 

has to be a power of 2 to get the most benefit from the technique. There are other ways of applying SVMs to 

the multi-class problem; see [13] for a comparison of different methods of multi-class SVM classification. In 



our work, we propose and develop several variants of a tree clustering technique. Relying on a given set of 

confusion matrices, that technique chooses the most discriminative partition and feature set at each step of 

classification, and, unlike the binary tree, works for any number of classes. 

Comparative tests have been carried out using the two basic classifiers (GMM and SVM) and a number of 

classification schemes (binary tree and several clustering alternatives). The effects of using two different 

regularization parameters of the SVM classifiers to compensate data unbalance, and a confusion matrix 

based modification of those parameters are also investigated in this work.  

The paper is organized as follows. In Section 2 we present the database of gathered sounds. Section 3 

describes the features and explains the construction of feature sets. The basic theory of SVM and GMM 

classification techniques is reviewed in Section 4. The experiments and a discussion of the results are 

presented in Section 5. Finally, conclusions are given in Section 5. 

2. DATABASE 

The first problem we had to face when trying to develop a system for classifying acoustic events which take 

place in a meeting-room environment was the lack of data. As mentioned above, there exists a relatively 

large database of sounds, the RWCP sound scene database, but only a small part of the sounds included in 

that database can be considered as usual or at least possible in a meeting room.  

The second column of Table 1 shows the sixteen categories of sounds that were chosen. As can be seen in 

the third column, only four of them belong to the RWCP database. The other sounds have been found in a 

large number of websites, except the speech sounds, which were taken from the ShATR Multiple 

Simultaneous Speaker Corpus [14] and include short fragments from both close-talk and omnidirectional 

microphones. The number of samples is 100 or larger for the sounds taken from the RWCP database, but it is 

much smaller for a few classes. As shown in the fourth column of Table 1, chair moving and yawn events 

have only 12 samples in the database. The whole database amounts 53 min of audio (942 files). 



Event Source Number
1 Chair moving I 12
2 Clapping  RWCP + I 100+7 
3 Cough I 47 
4 Door slam I 80 
5 Keyboard I 45 
6 Laughter I 26 
7 Music I 38 
8 Paper crumple RWCP 100 
9 Paper tear RWCP 100 
10 Pen/pencil handwriting I 30 
11 Liquid pouring I 40 
12 Puncher/Stapler RWCP 200 
13 Sneeze I 40 
14 Sniffing I 13 
15 Speech ShATR 52 
16 Yawn I 12 

Table 1. The sixteen acoustical events 
considered in our database, including number of 
samples and their sources (I means Internet). 

Indeed both the diversity in the number of samples per class and the small number of samples for some 

sounds are a challenge for the classifier. And, the fact that sounds were taken from different sources makes 

the task even more complicated due to the presence of several (at times even unknown) environments and 

recording conditions. 

 

3. AUDIO FEATURES 

The signals from all the sounds in the database presented above were downsampled to 8kHz, normalized to 

be in the range [-1 1], and partitioned in frames using: frame length=128, overlapping of 50%, and a 

Hamming window. The silence portions of the signals were removed using an energy threshold.  

Three basic types of acoustic feature were considered in this work. Two of them are spectrum envelope 

representations used in speech/speaker recognition, namely the typical mel-frequency cepstral coefficients 

(MFCC) plus the frame energy [15], and the recently introduced frequency-filtered band energies (FFBE) 

[16]. Like in speech recognition, they will be considered either alone or together with their first and second 

time derivatives (the so-called delta and delta-delta features) [15]. We consider both types of features 

because we want to compare their discriminative capability in this application. The third type of features is a 

small set which includes perceptual features which are not considered in the above feature sets and may be 

more adequate for some kind of sounds (fundamental frequency and zero crossing rate), and also a reduced 

representation of the spectral envelope and its time evolution. We will call it perceptual feature set, since it 

has a more perceptually-oriented profile than the other two. 



 Feature set Content Size 
1 Perc Perceptual features spectral 11
2 Ceps+der E+MFCC+d+dd 39
3 Ceps E+MFCC 13
4 FF+der  FFBE+d+dd 39
5 FF FF 13
6 Perc+ceps+der “Perc”+“Ceps+der” 50
7 Perc+ceps “Perc” + “Ceps” 24
8 Perc+FF+der “Perc” + “FF+der” 50
9 Perc+FF “Perc” + “FF” 24

Table 2. . Feature sets that were used in this work, the 
way they were constructed from the basic acoustic 
features, and their size. d and dd denote first and second 
time derivatives, respectively, E means frame energy, 
and “+” means concatenation of features. 

Thus, the acoustic features considered in this work are defined in the following way: 

1. Perceptual features 

• Short time signal energy, computed frame-by-frame.  

• Sub-band energies: 4 subbands equally distributed along 20 mel-scaled logarithmic filter-bank 

energies (FBE) for each frame. 

• Spectral flux: difference of spectrum values between two adjacent frames, for each of the above-

defined 4 sub-bands. SF measures the changes of spectrum over time.  

• Zero-crossing rate, computed as the number of zero crossings within a frame.  

• Fundamental frequency: a simple cepstrum-based method was used to determine it for each frame in 

the range [70Hz, 500Hz] 

2. Cepstral coefficients 

12 mel-frequency cepstral coefficients (MFCC) were computed for each frame using 20 mel-scaled spectral 

bands. The zero-th cepstral coefficient was removed, but the frame energy was added to the set. 

3. FF-based spectral parameters 

Parameters based on filtering the frequency sequence of log FBEs (FFBE) [16]. We have used the usual 

second-order filter H(z)=z-z-1, which implies subtraction of the log FBEs of the two adjacent bands. Before 

filtering, the sequence of log FBEs along frequency is extended with one zero at each side. In this way, the 

first and last parameters actually are the energies of the second and the second last sub-bands. That is the 

reason why the frame energy was not used with these features.  



The three above defined types of acoustic features were combined to build the 9 different feature sets shown 

in Table 2 which are considered in the experiments reported in Section 5. The mean and standard deviation 

of those features, estimated by averaging over the whole acoustic event signal, were taken for classification, 

thus forming one final statistical feature vector per audio event with a number of elements which doubles the 

length of the acoustic feature set.  

4. CLASSIFICATION TECHNIQUES 

Two basic classification techniques are considered in this work: Support Vector Machine (SVM) and 

Gaussian Mixture Model (GMM). The former is based on decision surfaces, and the latter models data with 

probability distributions. In this section, we will present both approaches, along with the SVM variants that 

are used in the experiments. 

4.1. Support vector machines 

The SVM is a discriminative model classification technique that mainly relies on two assumptions. First, 

transforming data into a high-dimensional space may convert complex classification problems (with complex 

decision surfaces) into simpler problems that can use linear discriminant functions. Second, SVMs are based 

on using only those training patterns that are near the decision surface assuming they provide the most useful 

information for classification.  

4.1.1. Construction of a SVM 

Figure 1. Two-class linear classification. The support 

vectors are indicated with crosses 

 Let us assume a typical two-class problem in which the training patterns (vectors) n
ix ℜ∈ are linearly 

separable, as in [17], where the decision surface used to classify a pattern as belonging to one of the two 

classes is the hyperplane H0. If x is an arbitrary vector ( nx ℜ∈ ), we define 
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where nw ℜ∈  and )(⋅  denotes the dot product. H0 is the region of vectors x which verify the 

equation 0)( =xf  [18], and H1 and H-1 are two hyperplanes parallel to H0, and defined by 1)( =xf  and 

1)( −=xf , respectively. The distance separating the H1 and H-1 hyperplanes is  

w
2  (2) 

and it is called margin. The margin must be maximal in order to obtain a classifier that is not much adapted 

to the training data, i.e. with good generalization characteristics. As we will see, the decision hyperplane H0 

directly depends on vectors closest to the two parallel hyperplanes H1 and H2, which are called support 

vectors. 

Consider a set of training data vectors }{ ,,,...1
n

iL xxxX ℜ∈= and a set of corresponding labels 

}{ { }.1,1,,...1 −∈= iL yyyY  We consider that the vectors are optimally separated by the hyperplane H0 if 

they are classified without error and the margin is maximal. In order to be correctly classified, the vectors 

must verify  

11)( +=+≥ ii yforxf  
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Or, more concisely, 
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Thus the problem of finding the SVM classifying function H0 can be stated as follows: 

minimize 2

2
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This is called the primal optimization problem [17][18][19]. In order to solve it, we form the following 

Lagrange function 
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where the Lagrange multipliers αi verify 
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The Lagrangian L(w,b) must be minimized with respect to w and b, so its gradient must vanish, i.e. 
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From the two above equations, it follows, respectively, that  
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Substituting the conditions (9) and (10) into the Lagrangian (6), we arrive at the so-called dual optimization 

problem:  
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The dual optimization problem is a (convex) quadratic programming problem that can be efficiently solved 

with a number of mathematical algorithms [20]. In our work we use the decomposition method with 

conventional modifications [19]. 

Data observed in real conditions are frequently affected by outliers. Sometimes they are caused by noisy 

measurements. If the outliers are taken into account, the margin of separation decreases so the solution does 

not generalize so well, and the data patterns may no longer be linearly separable. To account for the presence 

of outliers, we can soften the decision boundaries by introducing a slack positive variable ξi for each training 

vector [18]. Thus, we can modify the equations (3) in the following way: 

11' +=−+≥+ iii yforbxw ξ    

 (12) 
11' −=+−≤+ iii yforbxw ξ    

Obviously, if we take ξi large enough, the constraints (12) will be met for all i. To avoid the trivial solution 

of large ξi , we introduce a penalization cost in the objective function in (5), and thus the primal optimization 



formulation becomes: 
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where C is a positive regularization constant which controls the degree of penalization of the slack variables 

ξi, so that, when C increases, fewer training errors are permitted, though the generalization capacity may 

degrade. The resulting classifier is usually called soft margin classifier. If C = ∞, no value for ξi except 0 is 

allowed; it is the so-called hard margin SVM case.  

The formulation (13) leads to the same dual problem as in (11) but changing the positivity constraints on iα  

by the constraints Ci ≤≤α0 . Thus, it can be shown that the optimal solution has to fulfill the following 

conditions (known as Karush-Kuhn-Tucker optimality conditions) [19]: 
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The above equations reveal one of the most important features of SVM: since most patterns lie outside the 

margin area, their optimal αi’s are zero (equation (14)). Only those training patterns xi which lie on the 

margin surface (equation (15)) or inside the margin area (equation (16)) have non-zero αi, and they are 

named support vectors. Consequently, the classification problem consists of assigning to any input vector x 

one of the two classes according to the sign of 
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being M the number of support vectors. The fact that the support vectors are a small part of the training data 

set makes the SVM implementation practical for large data sets [19]. 

In real situations, the distribution of the data among the classes is often not uniform, so some classes are 

statistically under-represented with respect to other classes. To cope with this problem in the two-class SVM 

formulation, we can introduce different cost functions for positively- and negatively-labeled points in order 

to have asymmetric soft margins, so that the class with smaller data size obtains a larger margin [21]. 

Consequently, the conventional soft margin approach can be generalized as 
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As the formulation (18) suggests, when C+ increases, the number of allowed training errors from positively-

labeled data decreases, but at the expenses of increasing the allowed number of training errors from the 

negatively-labeled data. And the opposite occurs when C- increases. 

The resulting dual problem has the same Lagrangian as in (11), but the positivity constraints on iα  now 

become: 

+≤≤ Ciα0  for 1+=iy  
 (19) 

−≤≤ Ciα0  for 1−=iy   

For a non-linearly separable classification problem we have first to map the data onto a higher dimensional 

(possibly infinite) feature space where the data are linearly separable. Accordingly, the Lagrangian of the 

dual optimization problem (11) must be changed to 
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Notice the input vectors are involved in the expression through a kernel function 
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which can be thought as a non-linear similarity measure between two data points. According to the Mercer’s 

theorem [22], any (semi) positive definite symmetric function can be regarded as a kernel function, that is, as 

a dot product in some space, so we will look for (semi) positive definite symmetric functions that imply a 

data transformation to a new space where the classes can be linearly separated. Note that there is not need to 

know the mapping function φ  explicitly, but only the kernel ),( ji xxK . 

The most often used kernel functions in SVM applications are the following two: 

Radial Basis Function (RBF):
σxx

exxK ji
ji

2/
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Polynomial: d
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Thus, from equation (17) and the kernel concept, it follows that the two-class classification process with a 

SVM consists of assigning a positive/negative label to each input vector x through the following equation: 

)),(sgn()(
1
∑
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being M the number of support vectors. 

As SVM is a binary classifier, we cannot employ it directly in our acoustic event classification problem, 

since we have a set of 16 classes. In the literature, several methods of extending from binary classifiers to 

multi-class classifiers can be found: one against all, one against one, DAGSVM, ECOC,… (see [13][23] for 

a comparison). In our experiments, we first use the scheme proposed in [11], namely a binary tree with a 

SVM at each node. A disadvantage of the binary tree approach is that the number of classes has to be a 

power of two, otherwise the tree is unbalanced and some classes are more likely to be chosen than others. 

The alternative we propose in Section 5 is based on a decision tree that uses a specific feature set at each 

node, and it is trained with a clustering technique from a given set of confusion matrices. In this way, it uses 

the most discriminative feature set at each step of classification and works for any number of classes. The 

effect of a confusion matrix based modification of the generalization parameters C+ and C- of the SVM 

classifier is also presented in Section 5. 

4.2. Gaussian Mixture Models 

Gaussian mixture models are quite popular in speech and speaker recognition. In the design step, we have to 

find the probability density functions that most likely have generated the training patterns of each of the 

classes, assuming that they can be modeled by mixtures of Gaussians. 

In the GMM, the likelihood function is defined as 
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where P is the number of Gaussians, the weights wi  verify 
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and ),;( ΣµxN denotes the multivariate Gaussian distribution 
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being µ the mean vector and Σ  the covariance matrix (often considered diagonal). As the goal is to 

maximize the likelihood (ML), the parameters of the GMM ( iiiw Σ and ,,µ ) are obtained via the 

Expectation-Maximization algorithm [15]. Unlike SVM, which is a two-class classifier, GMM-based 

classifiers can handle an arbitrary number of classes. The GMM-ML classifier belongs to the group of 

generative classifiers, unlike SVM, which is a discriminative classifier. Due to this different approach, GMM 

generally needs a larger training set than SVM and so it is usually considered more complex [24].  

In the next section, comparative tests are reported by using the two basic classifiers (GMM and SVM) and 

several classification schemes. 

5. EXPERIMENTS 

Several experiments were carried out to assess the classification performance of the selected feature sets and 

the classification systems, either based on SVM or GMM. To perform the evaluation, the acoustic event 

samples were randomly permuted within each class and indexed, so odd index numbers were assigned to 

training and even index numbers to testing. Also, 20 permutations were used in each experiment. Because of 

unevenness in the number of representatives of the various classes, the overall performance is computed as 

an average of the individual class performances.  

As preliminary tests with the SVM classifier showed a superiority of the RBF kernel over the polynomial 

one, only the former was used in the evaluation. There are two main parameters (hyperparameters) that are to 

be specified using SVMs: σ from the RBF kernel and the regularization parameter C presented in Section 

4.1.1. Regarding the setting of σ, 5-fold cross-validation [17] was applied. After that kernel parameter is 

found, the whole training set is used again to generate the final classifier.  

5.1.  Binary tree scheme  

First of all, a binary tree with a SVM at each node was applied to our acoustic event classification problem. 

Figure 2 illustrates how the classifier works. In our implementation, the classes in the bottom level are 

ordered randomly. In [11], each SVM was trained using C=200; in our work, we chose C=1, since this value 

yielded better results in the experiments, a fact that may indicate that our data are more noisy (contains more 

outliers) than data used in [11]. 



 

 

Figure 2. Binary tree structure for eight classes. Every test pattern enters 

each binary classifier, and the chosen class is tested in an upper level until 

the top of the tree is reached. The numbers 1–8 encode the classes. The 

figure shows a particular example, where class 1 is the class chosen by the 

classification scheme. 

 

This SVM-based classification system was compared with a GMM classifier. The latter has one model per 

class and, for every test pattern, the model with maximal likelihood is chosen. Both a fixed and a variable 

number of Gaussians per class were tried; the best accuracy was achieved by using a variable number that 

depends on the amount of data per class.  
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Figure 3. Percentage of classification rate for the SVM-based 
binary tree classifier and the GMM classifier on the defined 
feature sets 

Figure 3 shows results for both classifiers. The best feature set in combination with the GMM classifier was 

the set number 9 (Perc + FF), with recognition rate 78,9%, whereas for the SVM classifier was the set 

number 8 (Perc + FF + der), with 82,9% recognition rate. Note that, in our experiments, the SVM approach 
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shows a higher performance than the GMM one across all types of feature sets.  

5.2. Confusion matrix based clustering scheme  

We have developed a tree clustering algorithm which makes use of confusion matrices, one for each feature 

set. They are obtained from the experiments reported in the last section, by averaging over the 20 

permutations, and normalizing their elements so that each row adds up 1. Those confusion matrices are used 

to find the best way of splitting the classes at a given node into two clusters with the least mutual confusion. 

As we have a relatively small number of classes, we can perform exhaustive search and get the global 

minimum. For the sake of homogeneity, we use confusion matrices obtained by SVM classifiers for SVM 

clustering, and GMM matrices for GMM clustering. 

As our database contains a large variety of sounds, the feature set that gets the largest classification rate for a 

given class is not necessarily the best one for a different class. This fact is illustrated in Figure 4, where the 

three considered classes (liquid pouring, sneezing and sniffing) show their performance peaks at different 

feature sets and none of the sets is the 8th, the one that yields the best overall performance. Therefore, it is 

reasonable to assume that the performance can improve by using a specific feature set to discriminate within 

each pair of classes or groups of classes. 
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Figure 4. Dependence of performance of classifying 

“liquid_pouring”, “sneeze” and “sniff” upon the feature sets using 

SVMs. 
 

The clustering algorithm that selects a specific feature set for each tree node will be presented in the next 

section. The simpler case that uses the same feature set at every node is also considered in the experiments. 

We refer to them, respectively, as variable-feature-set and fixed-feature-set clustering schemes. In the 



following, we will present the former clustering algorithm since the latter is a particular case of it. 

5.2.1. The variable-feature-set clustering algorithm 

The algorithm for clustering with a variable-feature-set approach is formally described in Figure 5. At the 

first step, all possible combinations of grouping 16 classes into two clusters (i.e. grouping 6 and 10, 8 and 8, 

etc) are searched over the available 9 confusions matrices that correspond to the 9 considered feature sets. 

For example, for the SVM clustering, we found that the 16 classes were best separated choosing the clusters 

C1={9} and C2={1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16}, and the 6th feature set. That process is 

carried out until we have single event clusters. Note in the expression of mn
kS ,  from Figure 5 that the 

confusion measures k
ije  are normalized by the corresponding accuracies k

iie  to cope with the dispersion of 

performance rates among the classes. Regarding the GMM classifier, the algorithm also groups the classes 

into two clusters, but in this case two models are generated at each step, one for each cluster. 

The above clustering technique is intended for a relatively small number of classes, as in our acoustic event 

classification task. When the number of classes is large either agglomerative hierarchical clustering or 

divisive hierarchical clustering [25] can be used if they are modified to handle several feature sets while 

searching; however, they do not guarantee to reach the global minimum. 



5.2.2. Dealing with the data unbalance problem 

In our experiments, we have tried several ways of alleviating the problem of having a too much different 

amount of training data between the two clusters at a given tree node. A straightforward way of tackling that 

problem which has been considered in the experiments consists of restricting the exhaustive search in Figure 

5 to look for an equal number of classes at each cluster, i.e. having only the index value n=N/2 at step 2 of 

the algorithm. That solution is no longer optimal in terms of the tree structure, but the involved SVMs will 

work with more balanced data. Hereafter, we will refer to it as restricted clustering. Figure 6 shows the trees 

obtained by the normal (unrestricted) and restricted clustering algorithms in the SVM case. Note that the two 

trees show a very different structure, but they have the same number of nodes (N-1), that is the same number 

1. Initialize N=16. 

2. For  n=1…N/2 

a. Determine M combinations of grouping N classes into two clusters C1 and C2 
containing n and N-n classes, respectively. 

b. For m=1…M 

• Having the m-th grouping combination, look up at each confusion matrix and 
measure how much are C1 and C2 confused for each feature set k, by computing  
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where k
ije  denotes the i,j-th element of the k-th confusion matrix, and |C1| and 

|C2| are the  number of classes (cardinalities) of the two clusters. 

• Find the minimum confusion measure over all feature sets 

)( min mn,
k, SB

kmn =  

c. Find the minimum confusion measure over all grouping combinations for the current 
number of classes at each cluster 

)(B min mn,mnT =  

3. Find the minimum confusion measure over all possible numbers of classes at each cluster 

)( min nn
TR =  

4. Repeat steps 2-3 for each node of growing tree, initializing N with N-n for the right branch 
and N with n for the left one, until N=1 is reached. 

  

Figure 5. Clustering algorithm based on an exhaustive search and using a set of estimated confusion 
matrices. 



of trained SVM classifiers. Indeed, the restricted tree shows a balanced structure, whereas, as it can be 

observed in Figure 6, in the normal clustering case we mostly have only one class separated on each 

clustering step. Actually, there is only one case where there are two classes grouped in the smaller cluster, 

which corresponds to classes 11 and 12. We have observed that the amount of confusions between both 

classes is a large portion of the total error for class 11. Regarding the GMM-based techniques, since each 

class model is trained without using information about the other classes it is not so much influenced by the 

problem of data unbalance. However, we will also consider both clustering schemes for the GMM case. The 

resulting schemes are similar to those in Figure 6. 

The alternative way of coping with data unbalance used in our experiments (already mentioned in Section 

4.1.1) is to introduce different regularization parameters for positively- and negatively-labeled training 

samples. Additionally, since a measure of confusions at each tree node can be obtained as a byproduct of the 

clustering algorithm, we have used these estimated measures to adapt the regularization parameters. The 

greater the confusion is, the larger the error should be allowed during training, and so the smaller the 

regularization parameters should be. Consequently, we force those parameters to be inversely proportional to 

the confusion measures. Indeed, we have a ∞  value at the beginning for normal clustering since the 

confusion at this step is 0. Note from Figure 5 that if the performance of a class for a given feature set were 

0 ( 0=k
iie ), the value of mn

kS ,  would be ∞ . In order to decrease the contribution of that possible zeroth 

performance of a class to the computation of the confusion measures of the whole cluster, we substitute zero 

by a small value. In our algorithm, we use 0.001. 

Three different methods of using and computing the regularization parameters in the SVM-based classifiers 

are considered in this work, along with the baseline method that uses only a constant parameter C=K. They 

are defined in the following, denoting by nS  the confusion measure at the n-th classification step: 

1) Only one regularization parameter C computed as  

nS
KC 1

= . (27) 

2) Two different parameters C+ and C-, defined such that 

+

−
+ = A

AKC , 
−

+
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where A+ and A- are the number of positive and negative training samples, respectively. In this way, the 

training errors of the two classes contribute equally to the cost of misclassification.  



3) The effect of doing both adaptations simultaneously, namely, 

nn SA
AKC

SA
AKC 1   ,1

−

+
−

+

−
+ ==  (29) 

In our tests, K was set to value 10 since it gave the best performance for the baseline method with constant 

C.  

5.3.  Results and discussion 

Table 3 shows classification performance for GMM and SVM classifiers using either a variable- or a fixed-

feature-set approach, and either normal (N) or restricted (R) clustering. The table also shows the standard 

deviation for each experiment, estimated over the 20 repetitions. The first column of results corresponds to 

C=K=10, and the other 3 columns correspond, respectively, to the three above-mentioned methods of 

computing the regularization parameters in the SVM cases. Note that SVM performs consistently better than 

GMM, and with SVM the highest accuracies are obtained using the third method. 

The column C=K in Table 3 shows that, without any adaptation, SVM-based restricted clustering performs 

equally well as normal clustering (and better than the binary tree scheme). In that table, we can notice that 

SVM-N takes advantage of using different C values for each class according to the simple equation of 

proportionality (27), since the training set sizes are largely spread across classes in our database. And SVM-

R does not take any advantage due presumably to the balancing average implied by the half-to-half 

constraint. Additionally, as we can see from Table 3, introducing prior knowledge (about confusions) with 

the generalization parameter C (method 1) does not have a positive influence on the classification 

performance, while introducing it along with different C values for positive and negative classes (method 3) 

leads to an improvement for both types of clustering trees. The gain in performance, however, is not much 

significant, so there is a need to have a more sophisticated algorithm of introducing prior knowledge about 

confusions in the regularization parameters. In restricted clustering we can obtain only the global minimum 

of error within the constraint that is why the final performance of the SVM-R technique is worse than that of 

the normal one (Table 3, method 3). We can also observe that normal clustering seems to perform slightly 

better than restricted clustering for GMM. 

Notice in Table 3 how the results for SVM fixed-feature-set clustering show just a slightly worse 

performance with respect to the variable-feature-set ones. This can be explained in the following way. On the 

one hand, for fixed-feature-set clustering, the chosen feature set is the one which yielded the best results in 

the previous experiments with binary tree, i.e. the 8th, which includes all kind of features: perceptual, 

envelope representation and time derivatives. On the other hand, the SVM classifier has somehow a built-in 

feature selection process. In fact, as it implicitly works with features in a transformed domain, if the kernel 



and the hyperparameters are appropriately chosen (so that good results are obtained), its transformation may 

imply emphasizing those features that are crucial for a good classification. That is why for the SVM 

classifier no feature selection technique leads to a huge classification improvement [26]. Moreover, using 

real-world data, it was shown in [26] that the best feature set was the one that included all types of features. 

Additional evidence from our experiments is given by the fact that the difference in performance between 

fixed- and variable-feature-set is more noticeable for the GMM classifiers than for the SVM ones. 

Nevertheless, in spite of that implicit feature selection process in SVM classifiers, and the fact that a fixed-

feature-set scheme requires less computation, the variable-feature-set scheme may still be advantageous for 

the SVM case. In fact, apart from offering some information about the acoustical properties of the chosen 

classes, the variable-feature-set scheme obviously shows a smaller restriction bias than that of the fixed-

feature-set clustering, thus resulting in a smaller inductive bias and a presumable higher overall accuracy 

[27].  

Figure 6. Normal and restricted clustering schemes for SVM classifiers 

 

 C=K Method 1 Method 2 Method 3 
SVM-N variable 84.67± 2.5 84.05± 1.7 86.71± 1.4 88.29± 2.1 
SVM-R variable 84.72± 2.6 84.88± 2.7 84.95± 2.2 87.20± 1.5 
GMM-N variable 83.6± 2.2 
GMM-R variable 82.15± 2.3 
SVM-N fixed 84.6 ± 1.9 84.4± 1.6 86.6± 3.0 87.10± 1.8 
SVM-R fixed 84.6± 2.7 83.8± 1.2 84.4± 2.3 87.06± 1.8 
GMM-N fixed 81.2± 2.3 
GMM-R fixed 80.7± 2.4 

Table 3. Performances of variable-feature-set and fixed-feature-set classifiers using 
different adaptations of the regularization parameters for the SVM classifiers. -N and -R, 
denote normal and restricted clustering scheme, respectively. Standard deviations 
estimated over 20 repetitions are denoted with ± σ. 
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The proposed clustering schemes (both normal and restricted) show two computational advantages in front 

of the binary tree classifier. First, the required number of trained SVM is N-1, where N is the number of 

classes, while for the binary tree (N-1)N/2 trained SVM are needed. Second, the proposed schemes involve a 

smaller number of classification steps, 4 for restricted clustering, and between 1 and 14, depending on the 

input pattern, for normal clustering in our case (see Figure 6), whereas the binary tree requires 15. However, 

the proposed variable-feature-set scheme has an obvious disadvantage: with our choice of feature sets (see 

Table 2) up to 9 feature sets can be involved in testing, 7 in our case (numbers 3 4 5 6 7 8 9).  

 

 

 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Confusion 0 0.01 0.03 0.07 0.78 0.82 0.83 0.98 3.90 1.27 1.57 2.57 8.44 15.00 46.88 
Features 6 3 6 7 7 8 3 7 5 9 5 3 6 4 9 SVM-N 
Error 0.78 1.97 0 0 7.65 15.42 2.19 6.30 4.47 4.38 6.64 19.63 18.93 6.23 5.39 
Confusion 0.41 2.15 0.04 0.15 15.74 1.74 0 0 4.41 46.88 2.23 3.31 0 0 0 
Features 7 9 7 8 6 9 6 5 5 4 8 8 3 1 1 SVM-R 
Error 23.59 12.35 1.14 0.69 23.1 6.01 0.46 9.12 5.32 4.76 6.51 1.29 3.95 1.20 0.53 

 
Confusion 0.01 0.1 0.18 0.22 0.28 0.74 1.10 1.14 2.41 3.77 3.00 7.55 13.76 29.86 55.07 
Features 6 9 9 3 7 7 9 5 9 4 5 7 1 6 1 GMM-N 
Error 0.07 1.00 3.46 2.91 2.19 6.55 6.89 5.94 8.33 10.63 6.11 5.28 14.61 14.60 11.42 
Confusion 0.53 5.59 0.10 15.60 1.92 0.58 0 12.03 55.07 0.81 6.84 0.77 0.92 0 0.1 
Features 9 6 7 6 8 3 1 1 1 5 5 7 7 1 6 GMM-R 
Error 25.35 24.27 3.27 15.43 3.23 3.18 0 3.18 9.50 2.63 7.18 0.51 1.83 0.38 0.07 

Table 4. Confusion measure Sn (multiplied by 100), best separating feature set, and percentage distribution of the 
classification error (for the best results in Table 3) along the 15 nodes (depicted in Figure 6 for SVM) for both 
normal and restricted clustering, and for the variable-features-set SVM classifier and the GMM classifier. 



 

Figure 7. Distribution of the errors along the tree path 
for SVM-N, GMM-N, SVM-R and GMM-R. A darker 
cell means a larger error. 

From Table 4 we can extract some observations concerning the feature sets. Looking at bold numbers in the 

SVM case of Table 4, which correspond to a confusion measure larger than 10, it seems that the best 

separating feature sets for the most confused classes mostly are FFBE-based features (sets 4,5,8,9), while 

observing the italic numbers, which correspond to a confusion measure smaller than 1, it appears that the for 

the least confused classes the best separating feature sets are MFCC-based (sets 2,3,6,7). This fact may 

indicate that the FFBE-based features are more discriminative than the MFCC features for highly overlapped 

data distributions, while MFCC features appear to show the best performance when there is a clearer 

separation between classes. However, for the most confused classes in the GMM case (see bold numbers in 

the GMM part of Table 4) the average best feature set is the one we have called perceptual set. This may be 

due to the relatively low size of that feature set, which facilitates the estimation problem. 

Note in Table 4 that for normal clustering the largest errors are more located towards the end of the tree path 

while for restricted clustering they are towards the beginning. This effect, that is also illustrated in Figure 7, 

can be expected for the normal clustering technique, due to the way the clustering algorithm in Figure 5 

works. Apparently, the restrictions applied by restricted clustering make the largest errors are placed at the 

beginning. That information can be useful to improve classification by boosting, since the most erroneous  



Table 5. Confusion matrix corresponding to the best results (88.29 %) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 96.67 0 0 0 0 1.67 0 0 0 0 0 0 0 0 0 1.67 
2 0 96.79 0 0.19 0.57 0.19 0 0 0.57 0 0 0.38 1.13 0.19 0 0 
3 0 0.43 88.70 2.61 0 5.22 0 0 0 0 0 0.43 2.61 0 0 0 
4 0 0.75 0.50 96.50 0 0.75 0 0 0.50 0 0.50 0 0.50 0 0 0 
5 0 0 0 2.27 87.73 3.64 0 0 0 0 2.27 3.18 0.91 0 0 0 
6 0.77 0 26.92 3.85 0 48.46 0 0 0 9.23 0 0 10.00 0.77 0 0 
7 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 
8 0 0.20 0 0.40 0 0 0 98.8 0.20 0 0 0.2 0.20 0 0 0 
9 0 0 0 0 0 0 0 0.2 99.80 0 0 0 0 0 0 0 
10 0 0 1.33 1.33 0 3.33 0 0 0 92.67 0 0 1.33 0 0 0 
11 0 0 0 2.00 1.50 1.00 0 2.5 0 3.50 77.00 10.0 2.50 0 0 0 
12 0 1.30 0 0 0 0.60 0 0.2 0 0 0.10 97.2 0.60 0 0 0 
13 0 0.50 14.50 0 0 8.00 0 0 0 0.50 2.50 0 74 0 0 0 
14 0 5.00 5.00 0 0 0 0 0 0 6.67 0 0 6.67 76.67 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 
16 0 0 11.67 0 0 3.33 0 0 0 1.67 0 0 1.67 0 0 81.67 

steps generally contain rare class data and boosting the SVM that deal with rare categories has been shown to 

improve general performance in [27]. 

Table 5 shows the confusion matrix corresponding to the best results. The resulting classification rates for 

the various types of sounds are diverse due to both the acoustic nature of sounds and the unevenness of the 

number of samples in the database. Notice that the sounds we could name human vocal-tract non-speech 

(HVTNS) sounds (numbers 3, 6, 13, 14, and 16) account for a large relative amount of confusions, since they 

only are 5/16 of the total number of classes and contribute with 69.7% of the total error. The only other 

sound with more than 10% error is number 11. In average, the HVTNS classes have a small number of 

samples in the database, but there are other sounds with similar number of samples (like chair moving), 

which do not show such a high error. Furthermore, the HVTNS sounds are mainly confused among 

themselves (the average for the 5 classes is 73.96%). Actually, although the proposed clustering schemes are 

based on acoustic features, some clusters can be interpreted from a semantic point of view, that is according 

to their source identity; e.g. the shaded cluster in Figure 8 contains “cough”, “laughter”, “sneeze”, and 

“yawn”, sounds which belong to that HVTNS set. 

 



6. CONCLUSION 

This paper is a preliminary attempt to deal with the problem of classifying acoustic events that occur in a 

meeting-room environment. A database has been defined, and several feature sets and classification 

techniques have been tested with it. In our tests, the SVM-based techniques show a higher classification 

capability than the GMM-based techniques, and the best results were consistently obtained with a confusion 

matrix based variable-feature-set clustering scheme, arriving with SVM to a 88,29 % classification rate, 

which implies a 31.5% relative average error reduction with respect to the best result from the conventional 

binary tree scheme. That good performance is mostly attributable to the presented clustering technique, and 

to the fact that SVM provides the user with the ability to introduce knowledge about data unbalance and 

class confusions. 
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