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Abstract

For k-symplectic Hamiltonian field theories, we study infinitesimal trans-
formations generated by certain kinds of vector fields whichare not Noether
symmetries, but which allow us to obtain conservation laws by means of a suit-
able generalization of the Noether theorem.
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1 Introduction

The k-symplectic formalism [1, 4, 6] is the simplest generalization to field theories
of the standard symplectic formalism in autonomous Mechanics. It allows usto give
a geometric description of certain kinds of field theories: in a local description, those
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theories whose Lagrangian or Hamiltonian functions dependonly on the field coor-
dinates and on the partial derivatives of the fields, or on thecorresponding moments,
but not on the base coordinates. This formalism is based on the polysymplectic for-
malism developed by Günther [3].

In a previous paper [11] we introduced the notion ofCartan or Noether sym-
metry, and we stated Noether’s theorem for Hamiltonian and Lagrangian systems in
k-symplectic field theories. Noether’s theorem associates conservation laws to Cartan
or Noether symmetries. However, these kinds of symmetries do not exhaust the set
of (general) symmetries. As is known, in mechanics there aredynamical symmetries
which are not of Noether type, but which also generate conserved quantities (see [5],
[8], [9], for some examples). These are the so-calledhidden symmetries. Different
attempts have been made to extend Noether’s theorem in orderto include these sym-
metries and the corresponding conserved quantities for mechanical systems (see for
instance [12]) and multisymplectic field theories (see [2]).

In this paper we present a generalization of the Noether theorem fork-symplectic
Hamiltonian field theories, which is based in the approach ofreference [12] for me-
chanical systems. This generalization allows us to obtain conservation laws associ-
ated to infinitesimal transformations generated by certainkinds of vector fields which
are not Noether symmetries.

All manifolds are real, paracompact, connected andC∞. All maps areC∞. Sum
over crossed repeated indices is understood.

2 k-symplectic Hamiltonian systems

(See [6], [10], [11] for details).

Let (T1
k )∗Q= T∗Q⊕ k. . .⊕T∗Qbe thebundle of k1 covelocitiesof ann-dimensional

differentiable manifoldQ, with projectionτ∗ : (T1
k )∗Q→ Q. Natural coordinates on

(T1
k )∗Q are(qi , pA

i ); 1≤ i ≤ n, 1≤ A≤ k.

The canonical k-symplectic structurein (T1
k )∗Q is (ωA,V), whereV = ker(τ∗)∗,

andωA = (τ∗
A)∗ω = −d(τ∗

A)∗θ = −dθA; ω = −dθ being the canonical symplectic
structure inT∗Q (θ ∈ Ω1(T∗Q) is the Liouville 1-form), andτ∗

A : (T1
k )∗Q→ T∗Q the

projection on theAth-copyT∗Q of (T1
k )∗Q. Locally

ωA = −dθA = −d(pA
i dqi) = dqi ∧dpA

i .

Given a diffeomorphismϕ : Q→ Q, its canonical prolongationto (T1
k )∗Q is the

map(T1
k )∗ϕ : (T1

k )∗Q→ (T1
k )∗Q, which is defined by

(T1
k )∗ϕ(α1q, . . . ,αkq)= (T∗ϕ(α1q), . . . ,T

∗ϕ(αkq)) , (α1q, . . . ,αkq)∈ (T1
k )∗qQ, q∈Q.
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If Z ∈ X(Q) hashs: Q → Q as local 1-parametric group; thecanonical lift of Z
to (T1

k )∗qQ is the vector fieldZC∗ ∈ X((T1
k )∗Q) whose local 1-parametric group is

(T1
k )∗(hs) : (T1

k )∗Q→ (T1
k )∗Q. Locally, if Z = Zi ∂

∂qi thenZC∗ = Zi ∂
∂qi − pA

j
∂Z j

∂qk

∂
∂ pA

k

.

Definition 1 Let T1
k M = TM⊕ k. . . ⊕TM be thebundle ofk1 velocitiesof a mani-

fold M. Let us denote byτ : T1
k M → M the canonical projection.

• A k-vector fieldon M is a sectionX : M −→ T1
k M of τ .

A k-vector fieldX defines a family of vector fields X1, . . . ,Xk ∈ X(M) by XA =
τA◦X, whereτA : T1

k M → TM is the projection on the Ath-copy TM of T1
k M.

• An integral sectionof X at a point q∈ M, is a mapψ : U0 ⊂ R
k → M, with 0∈

U0, such thatψ(0) = q, ψ∗(t)

(
∂

∂ tA

∣
∣
∣
t

)

= XA(ψ(t)), for every t∈U0; or what

is equivalent,ψ satisfies thatX ◦ψ = ψ(1), whereψ(1) is the first prolongation
of ψ to T1

k M defined by

ψ(1) : U0 ⊂ R
k −→ T1

k M

t −→ ψ(1)(t) =
(

ψ∗(t)
(

∂
∂ t1

∣
∣
∣
t

)

, . . . ,ψ∗(t)
(

∂
∂ tk

∣
∣
∣
t

))

.

A k-vector field isintegrableif there is an integral section at every point of M.

The set ofk-vector fields onM are denoted byXk(M).

Now takeM = (T1
k )∗Q. Let H : (T1

k )∗Q → R be a Hamiltonian function. The
family ((T1

k )∗Q,ωA,H) is a k-symplectic Hamiltonian system. The Hamilton-de
Donder-Weyl (HDW) equationsassociated to this system are

∂H

∂qi

∣
∣
∣
ψ(t)

= −
k

∑
A=1

∂ψA
i

∂ tA

∣
∣
∣
t

,
∂H

∂ pA
i

∣
∣
∣
ψ(t)

=
∂ψ i

∂ tA

∣
∣
∣
t
, (1)

whereψ : R
k → (T1

k )∗Q, ψ(t) = (ψ i(t),ψA
i (t)), is a solution.

We denote byXk
H((T1

k )∗Q) the set ofk-vector fields on(T1
k )∗Q solutions to

k

∑
A=1

i(XA)ωA = dH .

In a local system of canonical coordinates, eachXA is locally given byXA = (XA)i ∂
∂qi +

(XA)B
i

∂
∂ pB

i
, and we obtain that the equation (2) is equivalent to the equations

∂H
∂qi = −

k

∑
A=1

(XA)A
i ,

∂H

∂ pA
i

= (XA)i . (2)
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If X = (X1, . . . ,Xk) is an integrablek-vector field in(T1
k )∗Q, andψ : R

k → (T1
k )∗Q

an integral section ofX, we have thatψ(t) = (ψ i(t),ψA
i (t)) is a solution to the HDW-

equations (1) if, and only if,X ∈ X
k
H((T1

k )∗Q). In fact, if ψ(t) = (ψ i(t),ψA
i (t)) is an

integral section ofX, then

∂ψ i

∂ tB
= (XB)i ,

∂ψA
i

∂ tB
= (XB)A

i . (3)

and therefore (2) are the HDW-equations (1).

Remark 1 We can define the vector bundle morphism

ω♯ : T1
k ((T1

k )∗Q) → T∗((T1
k )∗Q)

(vp1, , . . . ,vpk) 7→
k

∑
A=1

i(vpA)ω
A
p

,

and we denote with the same symbol its natural extension

ω♯ : X
k((T1

k )∗Q) → Ω1((T1
k )∗Q)

X = (X1, . . . ,Xk) 7→
k

∑
A=1

i(XA)ωA .

Then, the solutions to (2) are given byX +kerω♯, whereX is a particular solution.

The equations (1) and (2) are not equivalent because not every solution to the
HDW-equations (1) is an integral section of some integrablek-vector field belonging
to X

k
H((T1

k )∗Q), unless some additional conditions are required. Thus, we assume the
following condition (which holds for a large class of mathematical applications and
physical field theories):

Definition 2 A mapψ : R
k → (T1

k )∗Q, solution to the equations (1), is said to be
an admissible solutionto the HDW-equations for a k-symplectic Hamiltonian system
((T1

k )∗Q,H), if Imψ is an embedded submanifold of(T1
k )∗Q.

We say that((T1
k )∗Q,H) is anadmissiblek-symplectic Hamiltonian systemwhen

only admissible solutions to its HDW-equations are considered.

Proposition 1 Every admissible solution to the HDW-equations (1) is an integral
section of an integrable k-vector fieldX ∈ X

k
H((T1

k )∗Q).

(Proof) Let ψ : R
k → (T1

k )∗Q be an admissible solution to the HDW-equations (1).
By hypothesis, Imψ is ak-dimensional submanifold of(T1

k )∗Q. As ψ is an embed-
ding, we can define ak-vector fieldX|Imψ (at support on Imψ), tangent to Imψ , by

XA(ψ(t)) = (ψ)∗(t)

(
∂

∂ tA

∣
∣
∣
t

)

,
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which is a solution to (2) on the points of Imψ , since (2) holds on these points
as a consequence of (1) and (3). Furthermore, Imψ is a submanifold of(T1

k )∗Q;
therefore we can extend thisk-vector fieldX|Imψ to an integrablek-vector fieldX ∈
X

k
H((T1

k )∗Q) in such a way that this extension is a solution to the equations (2) (note
that these equations have solutions everywhere on(T1

k )∗Q), and which obviously has
ψ as an integral section. This extension is made at least locally, and then the global
k-vector field is constructed using partitions of unity.

In this way, for admissiblek-symplectic Hamiltonian systems, the field equations
(2) are a geometric version of the HDW-equations (1).

3 Symmetries and conservation laws

Definition 3 (Olver [7])Aconservation lawor aconserved quantityof a k-symplectic
Hamiltonian system((T1

k )∗Q,ωA,H) is a mapF = (F1, . . . ,Fk) : (T1
k )∗Q → R

k

such that the divergence ofF ◦ψ = (F1◦ψ , . . . ,Fk ◦ψ) : R
k →R

k is zero for every
ψ : R

k → (T1
k )∗Q solution to the Hamilton-de Donder-Weyl equations (1); that is,

k

∑
A=1

∂ (FA ◦ψ)

∂ tA = 0.

For admissiblek-symplectic Hamiltonian systems, conserved quantities can be
characterized as follows:

Proposition 2 Let ((T1
k )∗Q,H) be an admissible k-symplectic Hamiltonian system.

A mapF = (F1, . . . ,Fk) : (T1
k )∗Q→ R

k is a conservation law of an admissible
k-symplectic Hamiltonian system if, and only if, for every integrable k-vector field

X = (X1, . . . ,Xk) ∈ X
k
H((T1

k )∗Q), we have that
k

∑
A=1

L(XA)FA = 0.

(Proof) LetF = (F 1, . . . ,F k) be a conservation law andX = (X1, . . . ,Xk)∈X
k
H((T1

k )∗Q)
an integrablek-vector field. Ifψ : R

k → (T1
k )∗Q is an integral section ofX then:

1. We have thatψ is a solution to the Hamilton-de Donder-Weyl equation (1).

2. By definition of integral section, we haveXA(ψ(t)) = ψ∗(t)
(

∂
∂ tA

∣
∣
∣
t

)

.

Therefore

k

∑
A=1

L(XA)FA =
k

∑
A=1

ψ∗(t)

(
∂

∂ tA

∣
∣
∣
t

)

(FA) =
k

∑
A=1

∂ (FA ◦ψ)

∂ tA

∣
∣
∣
t
= 0 .
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Conversely, let us suppose that every integrablek-vector fieldX = (X1, . . . ,Xk) in

X
k
H((T1

k )∗Q) satisfies
k

∑
A=1

L(XA)FA = 0, and letψ : R
k → (T1

k )∗Q be an admissible

solution to the HDW-equations (1). By Proposition 1 there exists ak-vector field
X ∈ X

k
H((T1

k )∗Q) such that

XA(ψ(t)) = (ψ)∗(t)

(
∂

∂ tA

∣
∣
∣
t

)

Thus, since
k

∑
A=1

L(XA)FA = 0, from the above identity we obtain that

k

∑
A=1

∂ (FA ◦ψ)

∂ tA

∣
∣
∣
t
= 0 .

Definition 4 Let ((T1
k )∗Q,ωA,H) be a k-symplectic Hamiltonian system.

1. A symmetryis a diffeomorphismΦ : (T1
k )∗Q → (T1

k )∗Q such that for every
solutionψ to the HDW equations (1), we have thatΦ◦ψ is also a solution.

If Φ = (T1
k )∗ϕ for someϕ : Q→ Q, the symmetryΦ is said to benatural.

2. An infinitesimal symmetryis a vector field Y∈ X((T1
k )∗Q) whose local flows

are local symmetries.

If Y = ZC∗ for Z ∈ X(Q), the infinitesimal symmetry Y is said to benatural.

Proposition 3 Let ((T1
k )∗Q,ωA,H) be an admissible k-symplectic Hamiltonian sys-

tem. A diffeomorphismΦ : (T1
k )∗Q → (T1

k )∗Q is a symmetry if, and only if, for ev-
ery integrable k-vector fieldX = (X1, . . . ,Xk) ∈ X

k
H((T1

k )∗Q) we have thatΦ∗X =
(Φ∗X1, . . . ,Φ∗Xk) ∈X

k
H((T1

k )∗Q), it is integrable, and its integral sections areΦ◦ψ ,
for any integral sectionψ of X.

(Proof) Let Φ : (T1
k )∗Q → (T1

k )∗Q be a diffeomorphism andX = (X1, . . . ,Xk) an
integrablek-vector field inX

k
H((T1

k )∗Q). Then every integral sectionψ of X is a
solution to theHDW-equations (1) and satisfyXA(ψ(t)) = ψ∗(t)(∂/∂ tA). From this
we haveΦ∗(ψ(t))XA(ψ(t)) = (Φ ◦ψ)∗(∂/∂ tA), thusΦ ◦ψ is an integral section of
Φ∗X, and soΦ∗X is integrable.

Now, sinceΦ is a symmetry, thenΦ ◦ψ is a solution to theHDW-equations (1)
and as it is an integral section ofΦ∗X we deduce thatΦ∗X ∈ X

k
H((T1

k )∗Q).
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Let ψ be an admisible solution to the HDW-equations (1), then by Proposition 1,
there existsX ∈ X

k
H((T1

k )∗Q) such thatψ is an integral section ofX. ThenΦ ◦ψ is
an integral section ofΦ∗X ∈ X

k
H((T1

k )∗Q), and thusΦ◦ψ is a solution to the HDW-
equations (1) .

As a consequence of this, ifΦ is a symmetry we have thatΦ∗X −X ∈ kerω♯.

Proposition 4 Let ((T1
k )∗Q,ωA,H) be an admissible k-symplectic Hamiltonian sys-

tem. If Y∈X((T1
k )∗Q) is an infinitesimal symmetry, then for every integrable k-vector

field X = (X1, . . . ,Xk) ∈ X
k
H((T1

k )∗Q) we have that[Y,X] = ([Y,X1], . . . , [Y,Xk]) ∈
kerω♯.

(Proof) As Y is an infinitesimal symmetry, denoting byFt the local 1-parameter
groups of diffeomorphisms generated byY, we have thatFt∗X −X ∈ kerω♯. Then,
if {Z1, . . . ,Zr} = {(Z1

1, . . . ,Z
1
k), . . . ,(Z

r
1, . . . ,Z

r
k)} is a local basis of kerω♯, we have

thatFt∗X −X = gαZα , α = 1, . . . , r, with gα : R× (T1
k )∗Q→ R (they are functions

that depend ont); that is

Ft∗X −X = (Ft∗X1−X1, . . . ,Ft∗Xk−Xk) = (gαZα
1 , . . . ,gαZα

k ) = gαZα .

Therefore

[Y,X] = L(Y)X = (L(Y)X1, . . .L(Y)Xk) =

(

lim
t→0

Ft∗X1−X1

t
, . . . , lim

t→0

Ft∗Xk−Xk

t

)

=

(

lim
t→0

gα

t
Zα

1 , . . . , lim
t→0

gα

t
Zα

k

)

= ( fαZα
1 , . . . , fαZα

k ) = fαZα ∈ kerω♯ ,

where fα : (T1
k )∗Q→ R.

Proposition 5 Let ((T1
k )∗Q,ωA,H) be an admissible k-symplectic Hamiltonian sys-

tem. If Y∈ X((T1
k )∗Q) is an infinitesimal symmetry, then for everyZ ∈ kerω♯, we

have that[Y,Z] ∈ kerω♯.

(Proof) For everyZ ∈ kerω♯, there exist integrablek-vector fieldsX,X′ ∈X
k
H((T1

k )∗Q)
such thatX′−X = Z; therefore[Y,Z] = [Y,X′]− [Y,X]∈ kerω♯, since[Y,X′], [Y,X]∈
kerω♯, by Proposition 4.

4 Higher-order Cartan symmetries. Noether’s theorem

Noether’s theorem allows us to associate conservation lawsto certain kinds of sym-
metries: the so-calledinfinitesimal Cartanor Noether symmetries, which are vector
fieldsY ∈ X((T1

k )∗Q) such that: (i)L(Y)ωA = 0, and (ii)L(Y)H = 0 (see [11]).
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Now we introduce new kinds of generators of conservation laws which are not of
this type (we restrict ourselves to the infinitesimal case).

Definition 5 Let ((T1
k )∗Q,ωA,H) be a k-symplectic Hamiltonian system. A vector

field Y∈ X((T1
k )∗Q) is said to be aninfinitesimal Cartanor Noether symmetry of

ordern if:

1. Y is an infinitesimal symmetry.

2. Ln(Y)ωA :=

n
︷ ︸︸ ︷

L(Y) . . .L(Y)ωA = 0, butLm(Y)ωA 6= 0, for m< n.

3. L(Y)H = 0.

In the particular case that Y= ZC∗ for some Z∈ X(Q), the infinitesimal Cartan
(Noether) symmetry of order n is said to benatural.

For n = 1 we recover the definition of infinitesimal Cartan (Noether)symmetry.
Observe that infinitesimal Cartan symmetries of ordern > 1 are not infinitesimal
Cartan symmetries.

Proposition 6 If Y ∈ X((T1
k )∗Q) is a infinitesimal Cartan symmetry of order n of a

k-symplectic Hamiltonian system, then the formsLn−1(Y) i(Y)ωA ∈ Ω1((T1
k )∗Q) are

closed.

(Proof) From the definition 5, we obtain

0 = Ln(Y)ωA = Ln−1(Y)L(Y)ωA = Ln−1(Y)di(Y)ωA = dLn−1(Y) i(Y)ωA .

Proposition 7 Let Y∈ X((T1
k )∗Q) be an infinitesimal Cartan symmetry of order n

of a k-symplectic Hamiltonian system((T1
k )∗Q,ωA,H). Then, for every p∈ (T1

k )∗Q,
there is an open neighbourhood Up ∋ p, such that:

1. There exist gA ∈ C∞(Up), which are unique up to constant functions, such that

Ln−1(Y) i(Y)ωA = dgA, (onUp) . (4)

2. There existξ A ∈ C∞(Up), verifying thatLn(Y)θA = dξ A, on Up; and then

gA = i(Y)θA−ξ A, (up to a constant function, onUp) (5)
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(Proof)

1. It is an immediate consequence of Proposition 6 and the Poincaré Lemma.

2. We have that

dLn(Y)θA = Ln(Y)dθA = −Ln(Y)ωA = 0

and henceLn(Y)θA are closed forms. Therefore, by the Poincaré Lemma, there
existξ A ∈ C∞(Up), verifying thatLn(Y)θA = dξ A, onUp. Furthermore, as (4)
holds inUp, we obtain that

dξ A = Ln(Y)θA = Ln−1(Y)L(Y)θA = Ln−1(Y){di(Y)θA + i(Y)dθA}

= dLn−1(Y) i(Y)θA−Ln−1(Y) i(Y)ωA = d{i(Y)θA−gA}

and thus (5) holds.

Finally, Noether’s theorem can be generalized for these higher-order Cartan sym-
metries and admissiblek-symplectic Hamiltonian systems as follows:

Theorem 1 (Noether):If Y ∈ X((T1
k )∗Q) is an infinitesimal Cartan symmetry of or-

der n of an admissible k-symplectic Hamiltonian system((T1
k )∗Q,ωA,H), then

g = (g1, . . . ,gk) = (i(Y)θ1−ξ 1, . . . , i(Y)θk−ξ k)

is a conserved quantity; that is, for every integrable k-vector field X = (X1, . . . ,Xk) ∈

X
k
H((T1

k )∗Q), we have that
k

∑
A=1

L(XA)gA = 0 (on Up).

(Proof) If X = (X1, . . . ,Xk) ∈ X
k
H((T1

k )∗Q), taking (4) into account we have

k

∑
A=1

L(XA)gA =
k

∑
A=1

i(XA)dgA =
k

∑
A=1

i(XA)Ln−1(Y) i(Y)ωA .

Then, ifn = 2, we have

k

∑
A=1

L(XA)gA =
k

∑
A=1

i(XA)L(Y) i(Y)ωA =
k

∑
A=1

{L(Y) i(XA)− i([Y,XA])} i(Y)ωA

=
k

∑
A=1

{−L(Y) i(Y) i(XA)+ i(Y) i([Y,XA])}ωA

= −L(Y) i(Y)dH = −L2(Y)H = 0 ,
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since asY is an infinitesimal Cartan symmetry of ordern, it is a symmetry; then

L(Y)H = 0 and, by Proposition 4,[Y,X] ∈ kerω♯, and hence
k

∑
A=1

i([Y,XA])ωA = 0.

If n = 3, by an analogous reasoning, we obtain
k

∑
A=1

L(XA)gA =
k

∑
A=1

i(XA)L2(Y) i(Y)ωA =
k

∑
A=1

i(XA)L(Y)L(Y) i(Y)ωA

=
k

∑
A=1

{L(Y) i(XA)− i([Y,XA])}L(Y) i(Y)ωA

=
k

∑
A=1

{L(Y) i(XA)L(Y)− i([Y,XA])L(Y)} i(Y)ωA

=
k

∑
A=1

{L2(Y) i(XA)−2L(Y) i([Y,XA])+ i([Y, [Y,XA]])} i(Y)ωA

=
k

∑
A=1

L2(Y) i(XA)ωA = L2(Y)H = 0 ,

since, by Proposition 4,[Y,X]∈ kerω♯ and, by Proposition 5,
k

∑
A=1

i([Y, [Y,XA]])ωA = 0.

For n > 3, we arrive at the same result by repeating the above procedure n− 2
times. Thus, taking into account Proposition 2, we have proved thatg = (g1, . . . ,gk)
is a conservation law.

Remark: k-symplectic Lagrangian systemscan be defined inT1
k Q = TQ⊕ k. . .

⊕TQ, starting from a Lagrangian functionL ∈ C∞(T1
k Q), and using the canonical

structures of thisk-tangent bundle for defining a family ofk Lagrangian formsωA
L ∈

Ω2(T1
k Q), and theEnergy Lagrangian functionEL ∈ C∞(T1

k Q) (see [6], [11]). Then,
if the Lagrangian is regular,(T1

k Q,ωA
L ,EL) is ak-symplectic Hamiltonian system with

Hamiltonian functionEL, and all the definitions and results in Sections 3 and 4 are
applied to this case.
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