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Abstract

For k-symplectic Hamiltonian field theories, we study infiniteail trans-
formations generated by certain kinds of vector fields wisioh not Noether
symmetries, but which allow us to obtain conservation lawmleans of a suit-
able generalization of the Noether theorem.
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1 Introduction

The k-symplectic formalism[[d, 14,]6] is the simplest generalmatto field theories
of the standard symplectic formalism in autonomous Medsarit allows usto give
a geometric description of certain kinds of field theori@sa iocal description, those
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theories whose Lagrangian or Hamiltonian functions depmrig on the field coor-
dinates and on the partial derivatives of the fields, or orctreesponding moments,
but not on the base coordinates. This formalism is basedepdlysymplectic for-
malism developed by Ginther [3].

In a previous paper [11] we introduced the notionCdrtan or Noether sym-
metry, and we stated Noether's theorem for Hamiltonian and Lagaansystems in
k-symplectic field theories. Noether’s theorem associataservation laws to Cartan
or Noether symmetries. However, these kinds of symmetiasad exhaust the set
of (general) symmetries. As is known, in mechanics there@namical symmetries
which are not of Noether type, but which also generate condeaguantities (see 5],
[8], [9], for some examples). These are the so-caliéttlen symmetriesDifferent
attempts have been made to extend Noether’s theorem intordeude these sym-
metries and the corresponding conserved quantities fohamecal systems (see for
instance([12]) and multisymplectic field theories (s€e.[2])

In this paper we present a generalization of the Noetherdnedork-symplectic
Hamiltonian field theories, which is based in the approactefdrence[[12] for me-
chanical systems. This generalization allows us to obtaiservation laws associ-
ated to infinitesimal transformations generated by cekimids of vector fields which
are not Noether symmetries.

All manifolds are real, paracompact, connected @fid All maps areC*. Sum
over crossed repeated indices is understood.

2 k-symplectic Hamiltonian systems

(Seel[6], [10],[11] for details).

Let(TH)*Q=T*Qa .k. @T*Qbe thebundle of k covelocitiesof ann-dimensional
differentiable manifoldQ, with projectiont*: (Tkl)*Q — Q. Natural coordinates on
(TH*Qare(d,pt);1<i<n 1<A<k

The canonical k-symplectic structuie (T,})*Qis (w?,V), whereV = ker(1*).,
and w” = (13)*w = —d(1%)*6 = —dB”; w = —d6 being the canonical symplectic
structure inT*Q (6 € QY(T*Q) is the Liouville 1-form), andt;: (T1)*Q — T*Qthe
projection on the\"-copy T*Q of (T.})*Q. Locally

Wt = —d6* = —d(pi*dd') = dg' Adpf.

Given a diffeomorphismg : Q — Q, its canonical prolongationo (Tkl)*Q is the
map(T1)*¢: (T1)*Q — (T1)*Q, which is defined by

(Tkl)*d)(alq? .. '7akq) = (T*¢(alq)7 s 7T*¢(akq)) ) (alqv .- -»akq) € (Tkl):;Q7 qe Q
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If Z € X(Q) hashs: Q — Q as local 1-parametric group; theanonical lift of Z
to (TH);Q is the vector fieldZ® € X((T)*Q) whose local 1-parametric group is
(TH*(hs): (TH*Q— (TH)*Q. Locally, le:Z'a—qithenZ :Zlﬁ_qi — pﬁﬁ—qkm_

Definition 1 Let T!M = TM® .. &TM be thebundle ofk! velocitiesof a mani-
fold M. Let us denote by : TklM — M the canonical projection.

e Ak-vector fieldon M is a sectiork: M — TM of 1.

A k-vector fieldX defines a family of vector fieldg X.., Xk € X(M) by Xa =
Tao X, whereta: TIM — TM is the projection on theAcopy TM of EM.

e Anintegral sectiorof X at a point ge M, is a mapy: Ug € RK — M, with0 ¢
Uo, such thatip(0) = q, (. (t) <%‘t> = Xa(y(t)), for every te Up; or what
is equivalenty satisfies thaX o ¢ = ¢V, wherey™ is the first prolongation
of ¢ to TIM defined by

YW UpcRE — TIM
o 0= (00 () w0 (H]).

A k-vector field isntegrableif there is an integral section at every point of M.

The set ok-vector fields orMl are denoted byck(M).

Now takeM = (T1)*Q. LetH: (T})*Q — R be a Hamiltonian function The
family ((T1)*Q,w? H) is a k-symplectic Hamiltonian systenThe Hamilton-de
Donder-Weyl (HDW) equatiorsssociated to this system are

oH K oyt oH oy
— = — wA ‘ ‘ = _wA 7 (1)
a9 lw) L, ottt opitluw  othle
whereg: RX — (T1)*Q, ¢(t) = (Y (t), yA(t)), is a solution.
We denote byxk ((T1)*Q) the set ok-vector fields on(T.})*Q solutions to
K

AZ i(Xa) ™ = dH .
=1
In alocal system of canonical coordinates, e4gfs locally given by X, = (XA)i c?iq' +
(XA)inipB, and we obtain that the equatidn (2) is equivalent to the temesa
i
oH & oH i
b o= )
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If X = (X1,..., %) is an integrablé-vector field in(T})*Q, andy: RX — (T.1)*Q
an integral section ok, we have thatp(t) = (¢/'(t), ¢A(t)) is a solution to the HDW-
equations[{t) if, and only itX € XK ((T1)*Q). In fact, if ¢(t) = (¢'(t), PA(t)) is an
integral section oK, then

oY i oyt
o ) 0 e

and therefore[(2) are the HDW-equatiobk (1).

= (Xe){. @A)

Remark 1 We can define the vector bundle morphism
o @ TUTHQ - Tk*((Tkl)*Q)
(VpussoVp) = Y i(Vp)wp
A=1

and we denote with the same symbol its natural extension
A *THQ - le((Tkl)*Q)
X =(Xg,....%) + AZ i(Xa) ™
=

Then, the solutions td{2) are given My+ ker w?, whereX is a particular solution.

The equations {1) and](2) are not equivalent because noy seéition to the
HDW-equations[({1) is an integral section of some integr&blector field belonging
to Xk ((T1)*Q), unless some additional conditions are required. Thusssenae the
following condition (which holds for a large class of matheioal applications and
physical field theories):

Definition 2 A mapy: Rk — (TH*Q, solution to the equation§](1), is said to be
an admissible solutiomo the HDW-equations for a k-symplectic Hamiltonian system
(TH*Q,H), if Imy is an embedded submanifold @f)* Q.

We say that(T,})*Q,H) is anadmissiblek-symplectic Hamiltonian systemhen
only admissible solutions to its HDW-equations are considie

Proposition 1 Every admissible solution to the HDW-equatiobk (1) is aegrdl
section of an integrable k-vector fiec Xk ((T1) Q).

(Proof) Lety: RX — (TH)*Q be an admissible solution to the HDW-equatidds (1).
By hypothesis, Iny is ak-dimensional submanifold qﬂ'kl)*Q. As ¢ is an embed-
ding, we can define k-vector fieldX|imy (at support on In), tangent to Imy, by

Xa(w(0) = .0 (502 )
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which is a solution to[{2) on the points of ln since [2) holds on these points
as a consequence 6fi (1) afd (3). Furthermoreylim a submanifold of T})*Q;
therefore we can extend thisvector fieldX|imy to an integrablé-vector fieldX
%ﬁ (TH*Q) in such a way that this extension is a solution to the equst@h(note
that these equations have solutions everywher@gir Q), and which obviously has
Y as an integral section. This extension is made at leastypeald then the global
k-vector field is constructed using partitions of unity. [ |

In this way, for admissibl&-symplectic Hamiltonian systems, the field equations
(2) are a geometric version of the HDW-equatidds (1).

3 Symmetries and conservation laws

Definition 3 (Olver [7]) Aconservation laver a conserved quantitgf a k-symplectic
Hamiltonian systen{(T})*Q,w”,H) is a map.# = (Z1,...,%): (TH)*Q — RX
such that the divergence &f oy = (F1o 1, ..., Fo): RK— RKis zero for every
Y: Rk — (T)*Q solution to the Hamilton-de Donder-Weyl equations (Lpttis,
% o(Fnoy)

P

A=1

For admissiblek-symplectic Hamiltonian systems, conserved quantities b=
characterized as follows:

Proposition 2 Let((T,})*Q,H) be an admissible k-symplectic Hamiltonian system.
AmapZ = (Z1,...,. %) (T})*Q — RKis a conservation law of an admissible
k-symplectic Hamiltonian system if, and only if, for evariegrable k-vector field
k

X = (Xg,..., %) € X5 ((TH*Q), we have that§ L (Xa)-Fa = 0.

(Proof) Let.# = (F1,...,.7X) be a conservation law antl= (Xy, ..., %) € XK ((T1)*Q)
an integrablé-vector field. Ify: RX — (Tkl)*Q is an integral section of then:

1. We have thatp is a solution to the Hamilton-de Donder-Weyl equatian (1).

J

2. By definition of integral section, we hae (g (t)) = ¢ (t) (%

Therefore

AiL(XA)é?A = A; . () (W D (FA) = élw ‘t _0.
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Conversely, let us suppose that every integréblector fieldX = (Xg,...,Xx) in
k

2K (TH*Q) satisfiesz L(Xa)Za = 0, and lety: R¥ — (T,})*Q be an admissible
A=1

solution to the HDW-equation§1(1). By Propositioh 1 theréstsxak-vector field

X € 2K ((TH*Q) such that

0
Xa(w(t) = (). (],
k
Thus, sincez L(Xa)-Z" =0, from the above identity we obtain that
A=1

K 9(Fhoy

& oA )‘tzo'

Definition 4 Let((T})*Q, w*,H) be a k-symplectic Hamiltonian system.

1. Asymmetryis a diffeomorphisn®: (T})*Q — (T.})*Q such that for every
solutiony to the HDW equation${1), we have thib ¢ is also a solution.

If ® = (T,})*¢ for somep: Q — Q, the symmetrgp is said to benatural

2. Aninfinitesimal symmetryis a vector field Ye X((T,})*Q) whose local flows
are local symmetries.

If Y = Z% for Z € %(Q), the infinitesimal symmetry Y is said to tetural

Proposition 3 Let ((T,})*Q, w?,H) be an admissible k-symplectic Hamiltonian sys-
tem. A diffeomorphisn®: (T})*Q — (T,1)*Q is a symmetry if, and only if, for ev-
ery integrable k-vector fielk = (Xq,...,X) € XK((T1)*Q) we have tha.X =
(DX, ..., P X) € XK ((TH*Q), itis integrable, and its integral sections afieo

for any integral sectiony of X.

(Proofy Let ®: (T1)*Q — (T})*Q be a diffeomorphism anX = (Xg,...,X) an
integrablek-vector field in%ﬁ((Tkl)*Q). Then every integral sectiog of X is a
solution to theHDW-equation§](1) and satisty(((t)) = (. (t)(d/dt"). From this
we haved, (Y(t))Xa(P(t)) = (Po ). (d/0th), thusd o is an integral section of
@, X, and sod,. X is integrable.

Now, since® is a symmetry, the® o ¢ is a solution to theHDW-equationsl (1)
and as it is an integral section ®.X we deduce thab.X € Xk ((T})*Q).
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Let ¢ be an admisible solution to the HDW-equationis (1), then mpBsition’1,
there existX € XK ((T})*Q) such thatp is an integral section ok. Then®o s is
an integral section ob,X € XK ((T})*Q), and thusbo ¢ is a solution to the HDW-
equations[(1) . [

As a consequence of this,df is a symmetry we have thdt, X — X € ker w?.

Proposition 4 Let ((T,})*Q,w?,H) be an admissible k-symplectic Hamiltonian sys-
tem. If Ye X((T})*Q) is an infinitesimal symmetry, then for every integrable &toe
field X = (Xg,...,%) € XK((TH*Q) we have thafY,X] = ([Y,X1],...,[Y,X]) €

ker w?.

(Proofy AsY is an infinitesimal symmetry, denoting By the local 1-parameter
groups of diffeomorphisms generated Yywe have thai. X — X € ker wf. Then,
if {2%,...,2"} ={(Z},...,Z}),...,(Z},...,Z})} is a local basis of kesw*, we have
thatR. X — X = gqZ%, a = 1,...,r, with go: R x (T})*Q — R (they are functions
that depend ot); that is

RX =X = (RaXe = X1, X = Xe) = (QaZf s -, 9aZy ) = GaZ”

Therefore

Y.X] = L(Y)X:(L(Y)Xl,...L(Y)Xk):(!mw,.. fim X Xk)

t~>0 t

- <t|ir%9—“zl, lim g—“zk> — (faZ8,..., f4Z0) = f42% € ker o,

wherefy: (TH*Q— R. |

Proposition 5 Let ((T,})*Q, w?,H) be an admissible k-symplectic Hamiltonian sys-
tem. If Ye X((T})*Q) is an infinitesimal symmetry, then for evetye ker w*, we
have thatY,Z] € ker w*.

(Proof) For everyZ € ker *, there exist integrablevector fieldsX, X’ € Xk ((T2)*Q)
such thaiX’ — X = Z; therefore]Y, Z] = [Y, X'] - [Y, X] € ker o, smce[Y X] IY,X] e
ker o*, by Propositiof 4. [

4 Higher-order Cartan symmetries. Noether’s theorem

Noether’s theorem allows us to associate conservation tawsrtain kinds of sym-
metries: the so-calleihfinitesimal Cartaror Noether symmetriesvhich are vector
fieldsY € X((T})*Q) such that: ()L(Y)w" =0, and (ii)L(Y)H = 0 (seel[1L]).
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Now we introduce new kinds of generators of conservatiors lavich are not of
this type (we restrict ourselves to the infinitesimal case).

Definition 5 Let ((T})*Q,w*,H) be a k-symplectic Hamiltonian system. A vector
field Y € X((T})*Q) is said to be arinfinitesimal Cartaror Noether symmetry of
ordern if:

1. Y is an infinitesimal symmetry.

n

2. L") :=L(Y)...L(Y)w" =0, but L™(Y)w" # 0, for m< n.
3. L(Y)H =0.

In the particular case that Y= Z&* for some Zc X(Q), the infinitesimal Cartan
(Noether) symmetry of order n is said to tatural

Forn =1 we recover the definition of infinitesimal Cartan (Noetr®mnmetry.
Observe that infinitesimal Cartan symmetries of order 1 are not infinitesimal
Cartan symmetries.

Proposition 6 If Y € X((T})*Q) is a infinitesimal Cartan symmetry of order n of a
k-symplectic Hamiltonian system, then the fotrfis'(Y)i(Y)w* € Q1((T2)*Q) are
closed.

(Proof) From the definition 5, we obtain
0=L")a=L"YY)L(Y) o = L") di(Y) o =dL" L(Y)i(Y) .

Proposition 7 Let Y € X((T})*Q) be an infinitesimal Cartan symmetry of order n
of a k-symplectic Hamiltonian syste(fT,})*Q, w”,H). Then, for every g (T})*Q,
there is an open neighbourhood,d p, such that:

1. There existfye C*(Up), which are unique up to constant functions, such that
LY Y)i(Y)wt =dg®,  (onUy). (4)
2. There exis€” € C*(Up), verifying that."(Y)6” = dé*, on Uy; and then

g =i(Y)0*— &~  (upto aconstant function, dy) (5)
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(Proof)

1. Itis an immediate consequence of Proposition 6 and thecBid@ Lemma.
2. We have that
dL"(Y)e* = L"(Y)de” = —L"(Y)w* =0

and hence."(Y)6” are closed forms. Therefore, by the Poincaré Lemma, there
existéA € C(Up), verifying thatL"(Y)6” = d&*, onUp,. Furthermore, ag]4)
holds inUp, we obtain that

deA = L"(Y)0A =L""HY)L(Y)0” = LX) {di(Y)0” +i(Y)de"}
dL™HY)i(Y) A — L™ (Y)i(Y) ot = dfi(Y) 6" — o}
and thus[(b) holds. [

Finally, Noether's theorem can be generalized for thesedrigrder Cartan sym-
metries and admissiblesymplectic Hamiltonian systems as follows:

Theorem 1 (Noether):If Y € X((T})*Q) is an infinitesimal Cartan symmetry of or-
der n of an admissible k-symplectic Hamiltonian systéfit)*Q, w*,H), then

g=(g%....,d) =(i(Y)8r = &L, . i(Y)ok - &K)
is a conserved quantity; that is, for every integrable ktoetield X = (Xy,...,Xx) €

K
2K (TH*Q), we have thatAZ L(Xa)g™ =0 (on Up).
=

(Proof) If X = (Xy,...,%) € XK ((T})*Q), taking [3) into account we have

k

k k
< < n—1nvy;
A;L(XA)QA—AZlI(XA)dQA—gll(XA)L )i(Y)w*.

Then, ifn= 2, we have

k k k
AzuxA)gA = AzmxA)L(Y)i(Y)w’*: {L(Y)i(Xa) =i([Y. Xa) }i(Y)
=1 —1 —
k
= 7{—L(Y)i(Y)i(xA)+i<Y>i<[Y,xA])}wA
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since asy is an infinitesimal Cartan symmetry of ordey it is a symmetry; then
k

L(Y)H = 0 and, by Propositionl 4Y, X] € ker w*, and henciz i([Y, Xa)) ™ =
=
If n= 3, by an analogous reasoning, we obtain
k k

k
A;MXA)gA = AZli(XA)Lz(Y)i(Y)‘UA:Azli(XA)L(Y)L(Y)i(Y)‘*’A

- Z{L () = (Y XA T LYY

= z{L(Y)i(xA)uY)—i([Y7><A]>L<Y>}i(Y)wA

- AZ{L = 2L(Y)i([Y,Xa]) +i([Y, [, Xa] D i (Y)
- AZL )i(Xa)w = L3(Y)H =0,

since, by Propositioll 4Y, X] € ker w* and, by Proposmolﬁ]SAZ Y, Y, Xa]) 0 = 0.

Forn > 3, we arrive at the same result by repeating the above proeedu?2
times. Thus, taking into account Propositidn 2, we have guidhatg = (g*, ..., g%
is a conservation law. [

Remark: k-symplectic Lagrangian systerean be defined iﬁ'le =TQa .k
&TQ, starting from a Lagrangian functidn e C*(T,Q), and using the canonical
structures of thik-tangent bundle for defining a family &fLagrangian formsy* €
Q?(TQ), and theEnergy Lagrangian functioB, € C*(T1Q) (see 6], [11]). Then,
if the Lagrangian is regula(,Tle, o, E ) is ak-symplectic Hamiltonian system with
Hamiltonian functionE, , and all the definitions and results in Sectibhs 3[@nd 4 are
applied to this case.
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