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Abstract-- In this paper different probability density functions
are fitted to the inter-arrival time in a channel of a Cellular
Mobile Telephony system. The approach is entirely
experimental: the data set to be fitted has been obtained on an
actual system in operation. The Kolmogorov-Smirnov (K-S)
goodness-of-fit test is used in order to establish a ranking of the
best fitting probability density functions. From this study it can
be concluded that the arrivals to a channel in a cell are
according to a smooth process.

Index terms-- Traffic modelling, cellular telephony, mobile
telephony, voice modelling.

I. INTRODUCTION

The design and performance evaluation of Mobile
Telephony Networks is usually carried out by using some
basic concepts of Queuing Theory as well as  assuming
certain  statistical distributions for the inter-arrival time and
the channel occupancy time processes. A poor knowledge
of these distributions contributes to an inefficient  design of
the network resources because the engineer must be
conservative to cope with the possible error margin. On the
other hand, the accurate knowledge of the distributions
allows an accurate design of the resources. This shows up in
a better use of the radio resources used in this kind of
networks and makes it possible the development of new
services offered through cellular networks such as data
services.

Some cellular networks make use of the excess of capacity
in their cells in order to transmit data or short data messages
during the periods in which the channels are not being used
for voice traffic (voice idle periods). As public cellular
networks must achieve a very low Grade of Service (GoS)
measured as blocking probability, the channel load should
be kept low and idle periods are significant. To effectively
design this kind of networks a better understanding of the
duration and frequency of these idle periods is needed.
Because of this, voice traffic statistics in these networks
need to be better understood.

In the past, it has been widely used the negative exponential
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distribution to model the call and channel holding time.
However different studies showed that the call duration is
better fitted by other distributions in fix telephony [1],
public cellular mobile [2] and private mobile radio (PMR)
[3]. The channel holding time has been also showed to fit
lognormal distributions better than the exponential [4, 5, 6].

The arrival processes have usually been considered to be
Poissonian. But the particularities found in  Cellular Mobile
Telephony Systems make this assumption very suspicious.
This task has been entered upon  in other studies from a
theoretical point of view: in [7] it is concluded that the
arrival traffic is Poissonian while in [8] the same traffic
appears to be smooth traffic. In [6] a field study of the inter-
arrival time to the channel is presented showing a good fit
with the exponential distribution which agrees with the
Posissonian assumption. In [9] an experimental approach to
the inter-arrival time in PAMR systems proves that the
arrival traffic is smooth, but the measured systems are not
cellular and have some very specific particularities.

In our study we deal with the statistical modelling of the
inter-arrival time process in Cellular Mobile Telephony
systems. An experimental approach is proposed, based on
the analysis of real traffic data. In Section II a review of
some previous results is presented along with the theoretical
model of the system. Section III describes the main details
of the empirical procedure followed in our study and the
statistical procedure selected to analyse the collected data.
In Section IV the fitting distributions are presented along
with the reasons to select some distributions while
disregarding others. The fitting of the selected distributions
is presented in Section V for different channel loads. In
Section VI  other statistical results over the inter-arrival and
idle time processes are presented. The obtained results and
conclusions of Section VII tend to confirm that the arrival
traffic to a channel in cellular telephony is smooth in
agreement with some results reached by analytical  models
like the one developed in [8].

II.  THEORETICAL MODEL AND PREVIOUS RESEARCH

A. A simple theoretical model

In every cell of a Cellular Mobile Telephony network the
offered traffic is the result of two traffic streams of different
sources:
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• On one hand we have “fresh” traffic due to the calls
which are originated inside the limits of the cell (T1).
T1 is entirely caused by new calls. The infinite
population hypothesis could be accepted for the T1
stream if the number of terminals which are able to
start a new call inside the tacked cell is large (much
larger than the number of available channels). This
happens very often in public telephony environments.
In this case the number of call attempts due to T1 can
be assumed to follow a Poisson distribution

• On the other hand,  the “hand-off” traffic is due to the
calls handed-off from surrounding cells (T2). It is
more difficult to accept that the traffic created by T2
attempts is Poissonian. This is because T2 is a traffic
stream that has already been carried by channels in the
neighbouring cells and therefore coming from a
population of no more than the total number of
channels of all the surrounding cells together. As T2 is
originated by a finite population it should be modelled
as smooth traffic.

a) Urban network scenario

b) Highway scenario

Fig. 1 Different traffic streams in a cellular network

This can be observed in  Figure 1.a, where a typical urban
scenario scheme of a cellular network is shown.  It can be
seen how the central cell receives hand-off traffic from just
six neighbouring cells if an hexagonal pattern is used. If all
cells are assumed to have the same number of channels, the
number of traffic sources able to originate hand-off traffic
T2 is six times the number of channels in the tacked cell. As
the number of sources is not much larger than the number
of channels in the Base Station (BS), this traffic should
never be considered to be Poissonian. This is even more
obvious in a highway scenario as the one shown in Figure
1.b.  In this particular case hand-off traffic arrives from only
two neighbouring cells. Therefore, even if the number of
channels assigned to the BS is higher due to the higher
mobility of the mobile terminals in this scenario,  the
maximum number of incoming hand-off calls will still be
low (twice the number of channels per cell).  Theoretically,
the handed-off traffic in this latter case should be very
smooth, specially if the number of channels per BS is not
very high.

Following the former discussion, as the overall traffic is the
result of adding T1 and T2 streams - this is adding a
Poisson traffic and a smooth one - this overall traffic should
be better modelled as smooth traffic. The smoothness
obviously depends on factors such as cell shape and size (a
larger size reduces the hand-off and the share of T2), speed
and mobility of terminals (higher speed means more hand-
off and then higher T2), traffic intensity, etc.

B. Analytical studies

In [7] a theoretical model of the cellular network is
proposed in order to model the overall traffic. Traffics, both
fresh and hand-off, are characterised by its first moment
only (average time between attempts to size a channel). The
Poisson assumption is accepted because the analytical
results agree with those reached through simulations. That
is to say, offered traffic is handled like if it was Poisson and
as the results obtained in such a way agree with those
obtained from simulations the conclusion is that hand-off
traffic can be handled like Poisson traffic.

In [8] handed-off traffic is modelled by the first two
moments and it is shown that this traffic is in fact a smooth
traffic process (with coefficient of variation of the inter-
arrival time lower than one). The two moments
representation of the hand-off traffic is superior to the
single moment representation. The overall traffic in this
case is showed be smooth for the case of hexagonal cell
shape. Peakedness as low as 0.85 are obtained, and it can be
easily concluded that much lower peakedness would be
obtained for the highway scenario.

C. Field studies

The main problem found in field studies is that while
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analytical research can deal with the attempts of sizing a
channel, field studies can only see the actual seizures.
Attempts which happen during blocking periods are lost in
the field research, so arrivals and attempts are more
different the higher is the blocking probability. Note that
public cellular systems should achieve a very low blocking
probability to give acceptable GoS.

In [6] the arrivals to the set of resources in a cell are
studied, and the negative exponential distribution is fitted to
the inter-arrival time distribution with a significance better
than 15%. This agrees with the Poisson arrival hypothesis.

III.  DATA ACQUISITION, PRE-PROCESSING AND STATISTICAL

TOOLS

A. Data Acquisition

The real traffic data used in this study were obtained
through a scanning receiver controlled by a Personal
Computer (PC). The program that controls the scanner
generates .log report of activity files. Each line of these files
describes the time of the beginning of the activity,
modulation and strength of the signal and duration of the
activity. A scheme of the working station is shown in
Figure 2.

The system monitored is a public cellular system in
Barcelona based on the TACS standard (very similar to
AMPS). Frequency Modulation (FM) is used, so the
detection of the carrier in the down-link is sufficient for the
knowledge of the channel occupancy. The advantage of
detecting the down-link is the higher and more stable power
level which helps to reduce the annoying effects of noise
and interference.

      PC                           Scanner Collected Data

Fig. 2 Working Station

Twenty three frequencies belonging to different cells were
scanned during a period of one month. Because of the co-
channel and adjacent-channel interference present in
cellular networks, we had to select the appropriate
frequencies to be scanned. This was done by doing an aural
survey of the channels in order to select frequencies free of
interference that could distort the collected data.

In a first stage the frequencies were scanned during whole
day periods in order to determine the busy hours. As the
investigated system provides three different rate periods, the
daily occupancy shows three spikes along the day (see

Figure 3); the busy hour was taken from the high rate busy
period around ten hours which has the higher interest for
traffic studies. Note that this first spike is more natural.
Spikes at 16 and 20 hours are coincident with the beginning
of the lower rate period and are in fact delayed traffic
(traffic that waits to get economical advantage but which
would have appeared before if the rate was kept).
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Fig. 3 Load along the time of the day (relative to the
maximum load).

Among all the collected data three samples were selected
for our study. We will refer to these samples as Heavy,
Medium and Light Load. The Heavy Load sample
corresponds to calls made in channels of average channel
load around 0.6 Erlangs. In the same way, the Medium and
Light Load samples correspond to calls in channels of
average channel load around 0.5 Erlangs and 0.4 Erlangs
respectively. To build up the three samples we have
considered data in the 0.1 Erlang intervals [0.35,0.44],
[0.45,0.54] and [0.55,0.64].

All these three samples where built up by the aggregation of
the data collected at different scanned frequencies. This
could be done so because all the scanned channels belong to
the same cell and therefore present the same statistical
properties.

We haven’t considered heavier loads in order to avoid
masking arrivals that may occur  during active periods of
the scanned channel. Anyway, loads heavier than 0.65
Erlangs represented less than a 1% of all the amount of data
(4 out of 450 hours ), so we think that the results obtained
from the selected data accurately represent the nature of the
inter-arrival process. Note that in order to keep a low
blocking probability, loads can never be very heavy in a
system for public voice service.

B. Pre-processing

Although the scanned channels are suppose to be free of
interference, some short interference and cuts may still
occur and distort the samples. Therefore the samples were
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filtered in order to eliminate interference, short transmission
cuts and other undesired effects.

This was basically done in two ways by a simple program
written in C language. Short cuts that often occur due to
fading were eliminated by merging registered activities
separated by idle periods of less than 2 seconds. And
interference was stripped  by eliminating activities of less
than 1 second. These bounds of 2 and 1 second respectively
were checked by aural monitoring to give very good results
for the desired purpose: more than 95% of the rejected data
were actual cuts or interference and more than 95% of cuts
and interference were rejected. The pre-processing is the
same used in [4, 9] where further information can be found.

C. Statistical Tools

For our statistical analysis we have to follow these three
steps:

-choose the probability density function to be fitted.
-fit the chosen function to the sample data.
-test the goodness of the fit.

In Section IV we describe the probability density functions
chosen and we briefly explain the reasons for our choice.

The parameters of the different probability density
functions fitted are calculated by making use of the
Maximum Likelihood  Estimation (MLE) [10]. We have
chosen this method instead of Minimum Error or Moments
method. This was motivated by the better results obtained
when we compared the fitted distribution with the sample
data used for the fit (goodness-of-fit test). Moreover we
have seen that the MLE follows the shape of the empirical
histogram better than the Moments Estimation (ME). The
reason for this is that the ME uses the moments of the
sample but not the sample itself to calculate the parameters
of the fitted distribution, as the MLE does.

Once we have the parameters, we test the suitability of the
fitting distributions by making use of the Kolmogorov-
Smirnov (K-S) goodness-of-fit test. This is achieved by
using Matlab programs that select, for every distribution
tested, the parameters of the best fit from the K-S goodness
of fit test point of view. The K-S is very simple to apply
and has been widely used to fit telecommunications traffic
[1]. The K-S test avoids the problems related with the bin
size present in the chi-squared [6] and the Anderson-
Darling [2]. This latter is more powerful than the K-S and
chi-squared but the nature of the measured data makes the
extra complexity not worthy.

The K-S test provides two figures of statistical interest, the
modified K-S distance D  and the level of significance α .
The lower (higher) D  (α ) is, the better the fit will be. This
is what will allow us to establish a ranking among those
fitting distributions that pass the K-S test with a certain

level of significance (5% in our study). The level of
significance α can be easily obtained from D and the size of
the sample n with these two formulas [11]:

D
D

n
n

n =
+ +012

011
.

.
(1)

α = −
10

2 2 2(log )nDn (2)

We have seen that the results of the K-S test depend on the
size of the sample. For sizes of less than 1000 the best fit
was not clearly distinguishable from the other fitted
distributions. As the size of the sample was closer to 1000
the best fit was easily distinguished. If the size of the
sample was over 2000, the fitting began getting worse for
all the distributions tested. The reason for this is that the
sample data is not really originated from the fitted
distribution, and as the sample grows it becomes more and
more random. This is why the three samples used in our
study have sizes around 1000.

It is important to stand out that we use the K-S test just to
establish a ranking among the different theoretical
distributions, according to the significance resulting from
the K-S test. We don’t try to find out the actual distribution
behind the inter-arrival process. Once we have this ranking,
the choice of the distribution used in any application will be
a compromise between the level of significance and
particular features that may be of our interest. Some of
these features could be, for example, the simplicity of
implementation in a computer program, the shape of the
p.d.f. or that it takes into account a particular aspect of the
system. The last one is the reason why we tried the Erlang-
1-k distribution, as we will explain in section IV.

IV.  FITTING DISTRIBUTIONS

In this Section the set of p.d. functions selected as
candidates to fit the empirical distribution is introduced.
Not every possible p.d.f. is an acceptable candidate to fit the
underlying data. Two basic concepts have been taken into
account to choose the candidates, obtaining the two
following classes of distributions.

A. Markovian stages

Statistical distributions based on Markovian stages allow to
identify some memory-less properties of the source which
generates the sample. Some p.d.f. of this type which are
more complex than the exponential allow also to identify
different streams or populations generating arrivals, and this
is the case introduced in Section II.

• Exponential: Is the most common distribution used for
modelling the inter-arrival time process in Mobile
Telephony Systems due to its memory-less properties.
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For this reason we use it as a reference, although we
show that it doesn’t fit well the data.

f t e

t
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β
β (3)

where β (the mean time) is a scale parameter.

• Erlang-k : This distribution has a simple interpretation
as the sum of k independent exponential random
variables, i.e., it is the result of a succession of
memory-less exponential stages. Its coefficient of
variation (cv)is always lower than one, so it will be a
good candidate for our smooth samples.
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where β is a scale parameter and k  a shape parameter.

• Erlang-n,k: Displays a great versatility, fitting random
variables of coefficient of variation  lower or greater
than one. Note that we expect smooth traffic and hence
coefficients lower than one as stated in Section II.
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where n and k  are shape parameters, andβ is a scale
parameter.  p and 1− p are the probability parameters
of the  Erlang-n and Erlang-k components respectively.

• HyperErlang-k-2: A combination of two Erlang-k. Is
an alternative to the Lognormal-2 (see next paragraph)
with the advantage that it can be represented as a
combination of memory-less stages.
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where the parameters have the same interpretation that
for the Erlang-n,k.

• Erlang-1-k : This is a particular case of the Erlang-n-k
with n=1. We have chosen this distribution because of
it’s theoretical interest. If this distribution  would be the
best fit of  the sample or at least be a reasonably good
fit, then  the incoming traffic of a cell could be
described as a result of two flows, one Poissonian (the
one corresponding to n=1) and the other Erlang-k. The
Poissonian flow could be identified with the fresh
traffic originated inside the limits of the cell, and the
Erlang-k would be identified with the non-Poissonian
(smooth) hand-off traffic. Here, the probability
parameter will be interpreted as the share of the T1

traffic stream and 1− p as the share of the T2 traffic
stream.

B. Lognormal based distributions

The skew shown by the empirical distribution does not
allow the normal distribution as a candidate. In such a case
the lognormal and combinations represent a good choice. In
addition, these p.d. functions give the best fit in previous
research on the channel holding time [1,5].

• Lognormal: Displays a long tail with an initial spike,
and suits very well with the shape of the filtered sample
histogram.
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where σ is a shape parameter and µ a scale parameter.

• Lognormal-k: Provides with a great power to fit
difficult empirical distributions, with big initial spikes
that can’t be followed by other distributions.

( ) ( )[ ]f t p p d f normali i i
i

k

=
=
∑ . . .log ,σ µ

1

(8)

where σ i  and µ i  have the same interpretation that for
the Lognormal distribution and the pi  are probability
parameters of the different Lognormal components.

V. STUDY OF THE INTER-ARRIVAL TIME

In this Section the numerical results of our study are shown.
We classify these results according to the nominal  load of
the sample used in every case as mentioned in Section III:
heavy (0.6), medium (0.5) and light (0.4) load. We call
nominal load ρn to the center of the considered interval. It
is important to stand out that the nominal load ρn is not
necessarily equal to the average load ρ . Note that the latter
is the average load of the whole set of studied channels
along the observation interval.

In all three cases, we have found that the coefficient of
variation of the inter-arrival time process is lower than one.
This fact tends to corroborate that the arrival process is
smooth as conjectured in Section II.

A. Heavy Load Sample (ρn = 0 6. Erlangs)

The Heavy Load Sample consists of 1223 inter-arrival
times collected among 10 different scanned channels



Proceedings of 5th Intl. Workshop on Mobile Multimedia Communication MoMuc’98, October 12-14 1998, Berlin

250

belonging to the same cell. All the scanned channels have a
load in the range [0.55, 0.64] with average load (actual
load) of  0.58 Erlangs.

Fig. 4 Instantaneous load over a channel

In Figure 4 it can be seen that  the inter-arrival time is the
sum of the channel holding time and the idle time.
Therefore, as the average load of the channel is the average
amount of time that the channel is being used in relation to
the total time, it can be found by calculating the ratio
between the average channel holding time and the average
inter-arrival time:

ρ =
+

=
T

T T

T

T

ch

ch id

ch

int

                                                       (9)

where Tch  is the average channel holding time, Tid the

average idle time and Tint  the average inter-arrival time.

Obviously Equation (9) can also be directly applied to the
whole set of studied channels by adding all the collected
data for the channel holding time and inter-arrival or idle
time from all the considered channels.

In Table I it can be seen that the lowest value of the
statistical distance D  (and then the best significance and fit)
is obtained for the Erlang-3,8 distribution. It is followed by
a Lognormal-2, an Hyper-Erlang-3-2 and a Lognormal. It
can also be seen that the Exponential  distribution is far
from fitting the sample data.

Table I: Moments and fitting for inter-arrival time.

Fitting Moments:m1 64 77= . , cv
2

0 49= .      ρn = 0 6.

Exponential D : 6.02 β :64.77
Erlang-3,8 D :0.59 β :17.84 p: 0.875

Lognormal D : 1.13 µ : 3.94 σ : 0.69
µ1: 4.02 σ1:0.63 p1:0.9Lognormal-2 D :0.61

µ2: 3.28 σ 2:0.8

H-Erlang-3-2 D : 0.67 β1: 16.3 β 2 : 33 p1: 0.7

Erlang-2 D : 1.31 β : 32.4
Erlang-1,3 D : 1.94 β :20.27 1− p:0.99

In Figure 5 we can see the histogram of the filtered sample
and the probability density function (p.d.f.) of the best fit.
Although it is not a good fit, in Figure 6 we show the
histogram of the filtered sample along with its exponential
fit.

The value of the modified distance (D ) for the best fit is
0.59. For this value of D , the level of significance (α )  is
40.6%. This is a very good result, considering that in
telecommunications it is normal to work with levels of
significance from 5 [1] to 15% [6].

It is interesting to see that for this case we find the smallest
inter-arrival time average and biggest coefficient of
variation among the three studied samples. The smallest
average of the inter-arrival time can be easily explained by
the heavier load over the scanned channel. Note that the
average channel holding time is always the same under all
loads as the samples are all taken at the same time of the
day and cells are very similar.
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Fig. 5 Histogram of the Heavy Load sample along with the
best fit pdf.

The explanation for the high coefficient of variation is not
so simple. The inter-arrival time can be split in two
components, the channel holding time and the idle time (see
Figure 4):

• As the load increases, the idle periods are shorter and
the inter-arrival takes statistical properties from the
channel holding time. In [4] it is shown that the channel
holding time in cellular systems has a coefficient of
variation bigger than one. So as the load grows, the
inter-arrival time becomes more similar to the channel
holding time and therefore its coefficient of variation is
bigger.

• When the load decreases the correlation between the
inter-arrival and idle times is higher. The coefficient of
variation of the idle time measured in this work is
lower for lighter loads as shown in Section VI.

Then both effects tend to increase the coefficient of
variation when the load grows and decrease it for lighter
loads.

Tch
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Tid
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Fig. 6 Histogram of the Heavy Load sample and its
exponential fit.

B. Medium Load Sample (ρn = 0 5.  Erlangs)

This sample consists of 1185 inter-arrival times collected
among 10 different scanned channels of the same cell. All
the scanned channels have a load in the range [0.45,0.54]
with average (actual) load of 0.48 Erlangs obtained
according to Equation  (9).

Table II : Moments and fitting for inter-arrival time.

Fitting Moments:m1 84 25= . , cv
2

0 38= .      ρn = 0 5.

Exponential D : 6.52 β :84.25
Erlang-3,6 D :0.6 β :21.97 p: 0.722

Lognormal D : 1.25 µ : 4.24 σ : 0.64
µ1: 4.61 σ1:0.462 p1: 0.5Lognormal-2 D :0.64

µ2: 3.88 σ 2:0.586

H-Erlang-4-2 D : 0.57 β1: 12.8 β 2 : 26.6 p1: 0.4

Erlang-3 D :1.41 β : 20
Erlang-1,3 D : 1.17 β :29.52 1− p:0.927

In Table II we see how that the best fit is an Hyper-Erlang-
4-2 distribution with a level of significance of 45.6%. It is
followed by an Erlang-3,6 with a level of significance of
37%. It can also be seen that functions such as the
Lognormal-2 or the Erlang-1,3 fit the inter-arrival time
sample quite well.

Here we can see how the average is bigger and the
coefficient of variation smaller than in the previous case.
The explanation is the same given for the heavy load case.

In Figure 7 the empirical histogram of the Medium Load
sample along with the p.d.f. of the best fit - the Hyper-
Erlang-2-4 - are represented.

Fig. 7 Histogram of the Medium Load sample along with
the best fit p.d.f.

C. Light Load Sample (ρn = 0 4.  Erlangs)

This sample consists of 1027 inter-arrival times collected
among 10 different scanned channels of the same cell. All
the scanned channels have a load in the range [0.45,0.44]
with average 0.397 Erlangs obtained from Equation  (9).

In Table III we see how the Lognormal-2 has become the
best fit, with a level of significance of 28%. In Figure 8 we
can see the histogram of the Light Load sample depicted
along with the pdf of the best fit.

In this case the square coefficient of variation is lower than
in the first two cases. It is 0.33 and both the Erlang-3,5 and
the Erlang-1,3 are good fits. In fact, if we look at the fitting
of the Erlang-n,k along the three cases we see that n is
always a 3. And when we force n=1 (Erlang-1,k) then k for
the best fitting happens to be 3. Moreover the Erlang-3
parts of this distributions are much better weighted than the
other so it can be said that they are almost  Erlang-3

functions that have cv
2

0 33= . .

Table III : Moments and fitting for inter-arrival time.

Fitting Moments:m1 90 59= . , cv
2

0 33= .      ρn = 0 4.

Exponential D : 6.24 β :90.59
Erlang-3,5 D :0.68 β :27.99 p: 0.882

Lognormal D : 1.86 µ : 4.32 σ : 0.63
µ1: 4.6 σ1:0.44 p1: 0.5Lognormal-2 D :0.65

µ2: 3.94 σ 2:0.63

H-Erlang-3-2 D : 0.69 β1: 30.9 β 2 : 14 p1: 0.9

Erlang-3 D :0.8 β :30.19
Erlang-1,3 D :0.79 β :30.75 1− p:0.973

As we explained in Section  III it could be interesting to
watch the sample data as the result of the addition of two
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traffic streams. A Poissonian fresh traffic flow and a non-
Poissonian  smooth hand-off traffic flow.

Fig. 8 Histogram of the Light Load sample along with the
best fit p.d.f.

In Figure 9 we show how the Erlang-1,3 function follows
quite well the shape of the sample histogram. Although its
level of significance of 11.6% is not the best one, it is  quite
good and worth to be considered due to the theoretical
aspects involved. Even though, we leave this result pendent
for further studies where the share of the traffic flows T2
and T1 might be studied. The reason for this is that, as we
have explained in Section IV.A , the share of the fresh
traffic T1 would be equal to p (Table III) that in this case is
much smaller (0.027) than the share of the handed-off
traffic T2 (0.973). This result doesn’t seem to be realistic.

Fig. 9 Histogram of the Light Load sample along with the
Erlang-1,3 fit pdf.

VI.  OTHER STATISTICAL RESULTS

In this Section some additional statistical results are
presented in order to reinforce the thesis of the non-
exponential nature of the inter-arrival time. We will classify
these results in two groups: Inter-arrival time statistics and
Idle time statistics.

A. Inter-arrival time statistics

In Figure 10 the best fits for the different average channel
loads are described, according to the level of significance
resulting from the K-S test. We include the Erlang-1,k
because of its theoretical interest explained in Section IV.
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Fig. 10 Ranking of the different fitted distribution
depending on the average channel load.

It can be seen that the Erlang-3,k is the most stable fit  for
the three loads studied in this paper. Moreover it is a very
good fit with levels of significance among 25 and 40%.

Finally, in Figure 11 we show the average remaining time
against the elapsed time. With this we try to probe in
another way, that the inter-arrival time is not exponential.
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Fig. 11 Average remaining time vs elapsed time

We can see that the average remaining time clearly depends
on the elapsed time. It has a decreasing dependence on it as
opposite as it occurs for the call holding time [1] and the
channel holding time [4, 5]. This means that as the time
without new calls increases the average remaining time  for
a call to happen decreases.

If the inter-arrival time would be exponential, then this
average remaining time would be constant and equal to its
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β  parameter due to the memory-less property of this
distribution. As we show that this is far from being true we
have one more reason, apart from the ones based on
statistical fitting , to think that inter-arrival time in Mobile
Telephony Systems is not exponentially distributed.

This curve was obtained as it is done in [1] for fixed
Telephony circuit holding times. Each point of the curve is
calculated by subtracting the elapsed time to all the values
of the sample and then doing the average of the non-
negative resulting values. This curves result much less
scattered than in [4] for the channel holding time, the reason
for this is that as it is shown in the mentioned paper, the
channel holding time in cellular systems is hyper-
exponential and therefore much more random that the hypo-
exponential inter-arrival time.

B. Idle time statistics

As we have seen in Section V.A, the inter-arrival time is the
result of the sum of the channel holding time and the idle
time. Therefore, if we show that this idle time is not
exponential then the inter-arrival time could never be
considered exponential independently of the nature of the
channel holding time.

We will try to show this in three different ways: by studying
the second order statistics of the idle time of the studied
samples, by studying the best fittings of the idle time and
finally by studying the average remaining time as a function
of the elapsed time.

1) Best fittings

Among all the candidate distributions, the exponential is far
from being the best fit. In Figure 12 we show a ranking of
the best fittings along the three different channel loads.

Fig. 12 Ranking of the best idle time fittings as a function
of the channel load.

2) Average remaining time

As it was done above for the inter-arrival time, we try to
show that the idle time is not exponential by showing that
the average remaining time as a function of the elapsed time
is not constant. In Figure 13 we can see that the average
remaining time decreases as the elapsed time increases.

Fig. 13 Average remaining time vs. Elapsed time for the
idle time process.

3) Second order statistics

For the three studied samples the coefficient of variation is
lower than one. Actually, the values of this parameter are
0.8, 0.63 and 0.58  for the heavy, medium and light load
samples respectively. It can be seen that the idle time is
non-exponential.

VII.  CONCLUSION

The coefficient of variation is cv<1, i.e., the offered traffic
is smooth. This tends to confirm of the results shown in [8]
from an analytical point of view.  Although the above
mentioned study deals only with the hand-off traffic (T2),
the fact that this traffic is smooth implies that the total
offered traffic (T2+T1) cannot be, in any case, exponential.
On the measured data we conclude that the inter-arrival
time process is not exponential.

Although this would imply that the design and performance
evaluation of these networks based on the assumption of an
exponential inter-arrival time process overestimates the
blocking probability, further studies over greater samples
would be needed to confirm this in an experimental way.

The results presented in this paper differ from that
presented in [6] where the exponential distribution agrees
with the measured data. The difference must not cause
surprise to the reader, because many factors influence on
the inter-arrival time. Among them we can mention the
mobility pattern, cell shape and size, mobile speed and
others. The main conclusion of this paper is that all these
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matters must be taken into account and measures are needed
to effectively design the number of channels and save radio
spectrum.
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