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Heuristic Algorithms for Power
Amplifier Behavioral Modeling

P. L. Gilabert, D. D. Silveira, G. Montoro, M. E. Gadringer, and E. Bertran, Senior Member, IEEE

Abstract—This letter presents the use of two heuristic search al-
gorithms, named simulated annealing and genetic algorithms, for
the extraction of power amplifier (PA) behavioral model param-
eters. Their application in this letter consists in determining the
memory length and the most significant delays of the considered
model structure. Two PA behavioral models have been considered:
an augmented nonlinear moving average model and a nonlinear
auto-regressive moving average model. By using WCDMA signals
measured from a three-stage LDMOS class AB PA, both PA models
were extracted. Finally, results presenting the advantages of using
these heuristic search algorithms are provided.

Index Terms—Behavioral models, genetic algorithm, heuristic
search, power amplifier (PA), simulated annealing.

1. INTRODUCTION

LACK-BOX or behavioral models describe the power am-

plifier (PA) input—output sampled signals relation which
characterizes its nonlinear dynamics. These models are used in
digital predistortion (DPD) linearization applications to identify
the inverse of the PA nonlinear function and also its frequency
dependence or memory effects [1]. When designing DPD at
least three major issues have to be taken into account: the need
for accurate PA behavioral modeling capable to achieve the de-
manded requirements (in terms of BW, PAPR, and memory ef-
fects reproduction), an efficient model inversion procedure and
an efficient implementation in the digital processing devices
[digital signal processors (DSPs) or field-programmable gate ar-
rays (FPGAs)] without an excessive computational cost.

Often used behavioral models reported in literature are the
neural networks and simplified versions of the general Volterra
series. Several of these behavioral models were theoretically
and practically described and compared in [2] and [3] respec-
tively. Neural networks algorithms perform cross combinations
of the input data within the hidden layers. As no optimization
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on the importance of these input data cross combinations in
hidden layers is performed, neural networks are often ineffi-
cient. Volterra models have the disadvantage of using a huge
number of parameters when considering higher order kernel
extractions which can lead to an inaccurate identification. A
common strategy is to use reduced versions of the general
Volterra series consisting in structures of linear time-invariant
filters and memoryless nonlinearities (Hammerstein, Wiener
and its three-box modeling variants). In order to minimize these
behavioral models complexity (searching computationally
efficient behavioral models) some studies have been aimed at
determining the minimum memory length needed to accurately
characterize the PA behavioral model, as in [4].

This letter presents the use of two heuristic search algo-
rithms, the simulated annealing and the genetic algorithms, to
deal with the trade-off between behavioral models complexity
(memory length and significant sparse delays) and accuracy.
Two behavioral models have been considered to prove the use-
fulness of these algorithms: an augmented nonlinear moving
average (NMA) model and a nonlinear auto-regressive moving
average (NARMA) model.

II. POWER AMPLIFIER BEHAVIORAL MODELS

In this section, the considered behavioral models will be
briefly explained. From now on, x(k) and y(k) represent the
complex envelope (low-pass equivalent) input and output sig-
nals of the considered PA; and 7’s are the most suitable delays
for describing the PA model.

A. Augmented Nonlinear Moving Average Models

The augmented NMA PA behavioral model is an extension of
the NMA model (or also called memory polynomial model, [3])
which introduces pairs of delayed samples of the input (z(k —
7;),¢(k — 7;)) up to pth-order, to improve nonlinear memory
modeling.

The augmented NMA model structure is depicted in Fig. 1
and its input-output relation can be expressed as

N N

Jawgva(k) =Y fij (@(k = m),2(k —73)) (D)
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where f;;(-) are static nonlinear functions implemented using
polynomials

fij (@b = 7),2(k = 75)) =Y apij -k — ) [o(k — 75)I”-
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Fig. 1. Augmented nonlinear moving average model structure.
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Fig. 2. Nonlinear auto-regressive moving average model structure.
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The cost function to be minimized in order to extract the PA
model parameters is the normalized square error (NSE). Due
to its quadratic nature, this function is also referred as energy
function

T(k) = [6(k)|* = [(y(k) = drtoaer (k) /y(R)[* . (3)

B. Nonlinear Auto-Regressive Moving Average Models

The nonlinear auto-regressive moving average (NARMA)
model takes into account both PA’s input and output delayed
samples (z(k — 7),y(k — 75)). This kind of structure can
reduce the number of coefficients needed to represent short
and long term memory effects, but it can also become instable
due to the nonlinear (g;) infinite impulse response (IIR) terms.
Therefore, a prior stability test, explained in [1], must be carried
out in order to assure its inherent stability.

The general structure of a NARMA model is shown in Fig. 2
and its output signal can be expressed as

Inarma (k) = Z fi (x(k — 7)) — Zgj (y(k—7;)) @

where f;(-), g;(-) are nonlinear functions that can be imple-
mented using polynomial series

P
fialk = 7)) = 3 i -l = ) la(k — )P
p=0

95 Wk =7)) = Bpj -yl — ) ly(k — 7,)I” . (5)

As presented before, the cost function to be minimized in order
to extract the parameters of the PA models is described in (3).

III. HEURISTIC ALGORITHMS

A. Simulated Annealing

Simulated annealing is a quite straightforward random-search
technique based on the Metropolis Monte Carlo (MMC) method
and has been proven to be very useful when dealing with non-
linear problems [5]. One of the major advantages of this tech-
nique over other methods is its ability to avoid becoming trapped
in local minima. The simulated annealing algorithm not only
accepts changes that decrease the cost (or energy) function, but
also some changes that increase it, accepted with a probability

(»

p=e BT ©)

where 0 F is the increase in the energy function and 7 is a con-
trol parameter called temperature.

Focusing in our particular minimization problem it is neces-

sary to define:

1) a representation of possible solutions, e.g., values of the
delays considered (7 C N) from 1 to “M” delays;

2) arandom generator of NV or N 4 D [depending on the PA
model, see (1) and (4)] array of possible delays (7’s);

3) an energy function (£) that evaluates the normalized mean
square error (NMSE, mean value of the NSE) achieved
with a particular solution;

4) an annealing schedule, that is, the initial temperature (7")
and rules for lowering it as the search progresses.

Once these considerations have been taken into account, the
simulated annealing algorithm is ready to run and search for the
optimal combinations of delays that minimize the cost or energy
function. Further details on the simulated annealing principles
are perfectly explained in [5].

B. Genetic Algorithms

Genetic Algorithms search procedures are based on the mech-
anisms of natural selection and natural genetics. A basic ge-
netic algorithm is composed by three operators: reproduction,
crossover, and mutation, extensively explained in [6]. By means
of these three operators a cost function is iteratively minimized.
After several steps the best combination of delays survives and
results in a global minimization of the considered cost function.

The search process to find the best delays that contribute at
minimizing the NMSE using genetic algorithms differ from the
one used in simulated annealing. By using the simulated an-
nealing algorithm it is possible to search for the best N or N+ D
delays at once. On the other hand, when applying the genetic
algorithms no more than one delay can be evaluated at once.
Therefore, we first search for the best delay for a particular PA
model, and later, fixing this delay as a good solution, we run the
genetic algorithms to find the second best delay that contributes,
together with the first delay already found, at minimizing the
cost function of the PA models.

IV. RESULTS

In order to extract PA behavioral models a WCDMA ex-
citation signal with a PAPR of 10 dB was used. The signal
bandwidth and the channels frequency spacing were BW =
3.84 MHz and fpacing = 5 MHz. The DUT was measured at the
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Fig. 3. NMSE (dB) versus number of considered delays.

TABLE 1
RESULTS OF POWER AMPLIFIER BEHAVIORAL MODELS

0O N°Delays | NMSE (dB) | ACEPR (dB)

models Y
Augmented . ’ Lower: -48.67
NMA 5 input delays -34.80 Upper: -46.37
3 (1 input and 2 Lower: -48.64
WAL output delays) -33.62 Upper: -46.27

mildly nonlinear region (IBO ~5 dB). The PA used for measure-
ments is a LDMOS class AB main amplifier: frequency range
of 1.93...1.99 GHz, maximum output power of +48 dBm and
38 dB Gain. The PA’s output signal was measured at a center
frequency of 1.96 GHz using an Agilent Performance Spectrum
Analyzer (PSA) and an Agilent 89611 Vector Signal Analyzer
(VSA). The measurement results were processed by the use of
the Agilent 89604 distortion test suit.

Fig. 3 shows the NMSE achieved in PA behavioral model
identification versus the number of delays considered for both
NARMA and augmented NMA models when using three types
of delay arrays: consecutive delays, delays obtained from a ge-
netic algorithm and from a simulated annealing search, respec-
tively. For this comparison only 1% of samples of the measured
normalized WCDMA modulated data have been used. It was
shown that it is possible to obtain better NMSE for both PA
models using a few proper chosen delays provided by the sim-
ulated annealing algorithm.

Table I shows the NMSE and the adjacent channel error power
ratio (ACEPR, described in [3]), for both PA behavioral models.
For the extraction and validation processes two different sets of
measured data (10° samples each set) were used, respectively.
These figures of merit (FOMs) have been obtained considering
the first significant minimum number of delays in the simu-
lated annealing search shown in Fig. 3. In Fig. 4 we can see
an excellent match between the PA measured output spectrum
and the output spectra of the augmented NMA and NARMA
models respectively. Fig. 5 shows the limiting curves of the
AM/AM-conversion of the reference and both modeled output
signals. These limiting curves represent the upper and lower
boundary covering the AM/AM-conversion plot, and thus it is
possible to compare the amount of memory effects introduced
by both models.
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Fig. 5. AM/AM-conversion limiting curves.

V. CONCLUSION

Simulated annealing performance has shown better results
than genetic algorithms. The reason can be related to our par-
ticular configuration of the genetic algorithms search process.
The simulated annealing algorithm has shown to be a powerful
heuristic search technique that permits to find the minimum and
best sparse delays. This contributes to reduce the PA behavioral
models complexity, permitting more efficient digital predistor-
tion. Finally, the augmented NMA and the NARMA models pro-
vide good FOM results and can be seriously considered for dig-
ital predistortion.
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