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RESEARCH ARTICLE

Changes in Spatial Patterns of Caragana
stenophylla along a Climatic Drought
Gradient on the Inner Mongolian Plateau
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1 Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal
University, Tianjin, P.R. China, 2 Department of Biology and Biochemistry, University of Houston, Houston,
Texas, United States of America 77204

* machengcang@163.com

Abstract
Few studies have investigated the influence of water availability on plant population spatial

patterns. We studied changes in the spatial patterns ofCaragana stenophylla along a climatic

drought gradient within the Inner Mongolian Plateau, China. We examined spatial patterns,

seed density, “nurse effects” of shrubs on seedlings, transpiration rates and water use effi-

ciency (WUE) ofC. stenophylla across semi-arid, arid, and intensively arid zones. Our results

showed that patches ofC. stenophylla populations shifted from a random to a clumped spa-

tial pattern towards drier environments. Seed density and seedling survival rate ofC. steno-
phylla decreased from the semi-arid zone to the intensively arid zone. Across the three

zones, there were more C. stenophylla seeds and seedlings underneath shrub canopies

than outside shrub canopies; and in the intensively arid zone, there were almost no seeds or

seedlings outside shrub canopies. Transpiration rates of outer-canopy leaves andWUE of

both outer-canopy and inner-canopy leaves increased from the semi-arid zone to the inten-

sively arid zone. In the intensively arid zone, transpiration rates andWUE of inner-canopy

leaves were significantly lower and higher, respectively, than those of outer-canopy leaves.

We conclude that, as drought stress increased, seed density decreased, seed proportions

inside shrubs increased, and “nurse effects” of shrubs on seedlings becamemore important.

These factors, combined with water-saving characteristics associated with clumped spatial

patterns, are likely driving the changes inC. stenophylla spatial patterns.

Introduction
Population spatial patterns of plants can vary with environmental conditions. Studies have
shown that facilitation from nurse plants in stressful environments [1], seasonality, drought
[2], human disturbance [3], presence or absence of competitors [4, 5], frugivore diversity and
behavior [6], and life history stages [7] could be related to changes in the type of spatial pat-
terns (i.e., random, regular or clumped) exhibited by plant populations. Climatic drought stress
is one of the important factors affecting plant growth, development and distribution, but few
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studies have investigated the influence of a climatic drought gradient on plant population spa-
tial patterns along that gradient. Sun et al (1994)[8] studied the woody plant Betula piany-
phylla, and found that its population spatial patterns changed from concentrated to random
type as humidity decreased or temperature increased. Malkinson & Jeltsch (2007) [9] found
that the shrub Sarcopoterium spinosum exhibited clumped spatial patterns in moist fields, but
had random spatial patterns in arid sites where precipitation was lower. Li et al. (2009) [10] re-
ported that spatial patterns of the sub-shrub Artemisia ordosica changed from random to
clumped types as precipitation decreased. However, development of a more general and mech-
anistic understanding of how climate, especially drought, influences plant population spatial
patterns requires studies on more species in different ecosystems.

The climate on the Inner Mongolian Plateau is characterized by a gradual increase in solar
radiation and air temperature, and a gradual decrease in precipitation, from the northeast to
the southwest. Decreased precipitation together with increased evaporation results in a strong
climatic drought gradient from the northeast to the southwest. Seven moisture zones are de-
fined within the Inner Mongolian Plateau and include, in order from northeast to southwest:
humid, sub-humid, semi-arid, arid, very arid, intensively arid and extremely arid zones [11].
Vegetation coverage decreases gradually and desertification becomes more severe along the
same northeast to southwest gradient. Seven vegetation types are associated with these seven
moisture zones: forest, meadow steppe, typical steppe, desertification steppe, steppe desert, typ-
ical desert and extremely dry desert. With its strong climatic drought gradient, the Inner Mon-
golian Plateau provides an ideal system for studying plant adaptations to drought stress.

Caragana species are deciduous shrubs widely distributed in grassland and desert ecosys-
tems in semiarid and arid areas in Asia and Europe. There are more than 100 species in the
genus of Caragana, and there are 62 Caragana species in China. Caragana species are well
known for their drought resistance; they can survive under severe drought conditions and are
called “life-saving plants” for livestock [12]. There are 16 Caragana species distributed on the
Inner Mongolian Plateau, and Caragana stenophylla is one of the Caragana species with im-
portant ecological functions in the region [13, 14]. C. stenophylla is distributed across a large
geographic range on the Inner Mongolian Plateau, predominately from the semi-arid zone to
the intensively arid zone.

We previously reported the geographic distribution of C. stenophylla and its morphological,
physio-ecological and reproductive adaptations to drought in the region [14–19], but little is
known about the spatial patterns of C. stenophylla along the drought gradient of the Inner
Mongolian Plateau, or the factors driving these patterns. We hypothesized that drought stress
promotes clumped spatial patterns within C. stenophylla populations over random spatial pat-
terns, which are favored in wetter environments. Further, we hypothesized that changes in re-
cruitment strategies and adaptations to local environments might be the main factors driving
changes in the spatial patterns of C. stenophylla.

To test our hypotheses, we investigated C. stenophylla populations across the climatic
drought gradient represented by the semi-arid, arid and intensively arid zones on the Inner
Mongolian Plateau. Specifically, we examined and compared the spatial patterns, seed densi-
ties, “nurse effects” of shrubs on seedlings, transpiration rates and water use efficiency (WUE)
of C. stenophylla populations within these focal climate zones.

Methods

Study sites
We conducted the field study in Xilinhaote (with permission from Xilinhaote City Grassland
Work Station) in the semi-arid zone, Suniteyou (with permission from Suniteyou Banner
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[county equivalent] Grassland Work Station) in the arid zone, and Alashanzuo (with permis-
sion from Alashanzuo Banner Grassland Work Station) in the intensively arid zone of the
Inner Mongolia Plateau. Environmental data for the study sites are shown in Table 1. Field sur-
veys and experiments were conducted in 2012, 2013 and 2014. Within each site, we identified
three study plots that were 20–40 km apart for field surveys and experiments (Table 1). C. ste-
nophylla is not an endangered or threatened species at the study sites.

Table Field surveys and experiments
Point pattern analysis. At each site, we randomly selected one of the three plots for point

pattern analysis. Within these plots, we set up a 40 m×40 m quadrat and divided it into 1600
sub-quadrats (1m×1m). We then quantified and further investigated the C. stenophylla individ-
uals in each sub-quadrat. First, for each C. stenophylla shrub (or shrub cluster) in a sub-quad-
rat, we carefully removed the sand dune and excavated 20–30 cm below the soil surface in
order to expose the belowground structures of the shrub (or shrub cluster) and identify all indi-
viduals (Arising from either sexual reproduction or asexual reproduction (ramets)). Second,
we recorded the coordinate position of each C. stenophylla individual and analyzed the position
data for each 40 m×40 m quadrat using point pattern analyses, based on the linearized form of
Ripley's K-function. Point pattern analyses were performed using the software Programita
(2008) [20, 21]. Spatial scale was 0–20 m, and scale point size was 0.5 m. For each 40 m×40 m
quadrat, we calculated approximate 99% confidence envelopes (confidence intervals) using a
Monte-Carlo simulation test with 99 randomizations. If the spatial pattern of shrubs within a
quadrat is random, calculated K(t) values would be within the confidence envelope; however, if
the spatial pattern is clumped or uniform, K(t) values would be either above the upper bound
or below the lower bound of the envelope, respectively [22].

To complement our point-pattern analysis, we sampled ten C. stenophylla shrubs (or shrub
clusters) in each plot at each site (n = 30 shrubs or shrub clusters per site) to quantify the aggre-
gation extent using the line transect method. For each shrub (or shrub cluster), we removed the
sand dune and excavated 20–30 cm of belowground structures of the shrub (or shrub cluster)
to determine whether it was a single individual (accompanied by no other individuals from ei-
ther sexual or asexual reproduction), a homologous cluster (consisted of asexually reproduced
individuals (ramets) of the same clone, ramets were connected by horizontal roots), or a

Table 1. Environmental data of the study sites.

Site Plot longitude and
latitude

Altitude
(m)

Annual Average
precipitation
(mm)

Annual average
temperature (°
C)

Sunshine
duration (h)

Moisture
type

Vegetation
type

Vegetation
coverage (%)

Xilinhaote N43°55020" E115°
32042", N44°28031"
E115°55019", N44°
15019" E115°53039"

990 281 2.35 2932 Semi-arid Steppe 25–50%

Suniteyou N42°20059" E112°
56043", N42°27058"
E112°48040", N42°
47018" E112°32010"

1151 211 4.93 3167 Arid Desertification
steppe

10–35%

Alashanzuo N38°23039" E105°
38011", N38°19047"
E105°41034", N38°
30038" E105°42012"

1561 110 7.80 3200 Intensively
arid

Desert 1–20%

Climate data are the mean values over 40 years.

doi:10.1371/journal.pone.0121234.t001
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heterologous cluster (consisted of individuals either sexually or asexually reproduced of differ-
ent clones). For each study site, we recorded the number of single individuals, homologous
clusters and heterologous clusters, and calculated the proportion of each type. For each plot
within the sites, we also recorded the number of individuals from sexual reproduction, the
number of individuals from asexual reproduction (ramets), and the total number of individuals
within each shrub cluster, and we calculated the average values of these variables for each plot.
We used the number of individuals per cluster and the proportions of single individuals, ho-
mologous clusters and heterologous clusters to quantify population aggregation extent at each
study site.

Seed distribution. In each study plot, we randomly sampled five C. stenophylla shrubs (or
shrub clusters) and quantified the distributions of seeds inside and outside the shrub canopies
(n = 15 shrubs or shrub clusters per site). For each shrub (or shrub cluster), we collected soil
samples (50 cm long × 50 cm wide × 5 cm deep) both below the shrub canopy (inside-shrub)
and 2 m away from the edge of the shrub canopy (outside-shrub). We collected C. stenophylla
seeds by sieving (mesh size 1.25 mm) soil samples, and we recorded the number of C. steno-
phylla seeds and calculated seed density for each soil sample.

Survival rate of seedlings. During June-July, 2012, we collected healthy C. stenophylla
seeds from plants in a single location at each of the three study sites respectively, allowed these
seeds to germinate and grow in sand media for 40 days in a light incubator (12 hr light/12 hr
dark; 25°C/15°C). At the beginning of the 2013 growing season (Caragana budding), we trans-
planted the seedlings back into the plots at the sites where the seeds were collected. The timing
of the growing season varies significantly among our study sites, so we transplanted the seed-
lings accordingly on different dates for different sites. The transplant dates were May 1 at Ala-
shanzuo, May 15 at Suniteyou, and May 25 at Xilinhaote. At ten shrubs (or shrub clusters) in
each study plot, we transplanted 20 seedlings inside and 20 seedlings outside each shrub cano-
py (n = 400 seedlings per plot, 1200 seedlings per site). In September 2013 (the end of the grow-
ing season, i.e. when Caragana leaves turned yellow), we quantified seedling survival both
inside and outside the shrub canopies for each plot at each study site.

Transpiration rate and water use efficiency. In August 2013, we sampled ten shrubs (or
shrub clusters) in each plot (n = 30 shrubs or shrub clusters per site), using the line transect
method, to quantify net photosynthetic rate and transpiration rate with a LI-6400 Portable
Photosynthesis System (LI-COR Co., USA). For each shrub, we conducted two measurements
(one on inner-canopy leaves and one on outer-canopy leaves) every 2 hours from 7:00–19:00
during a sunny day (3 sunny days at each study site). We used these measurements to calculate
daily average net photosynthesis and transpiration rates for inner- and outer-canopy leaves for
each plot. Daily transpiration values were calculated using the formula: Daily transpiration
value = daily average transpiration rate (mol H2O�m-2�s-1) × 3600 (s/hr) × 12 (hr). Water use
efficiency (WUE) was calculated according to the formula: WUE = daily average net photosyn-
thesis rate / daily average transpiration rate.

Data analysis
Data analyses were performed with SPSS 16.0 (SPSS Inc). We used Chi-square (χ2) tests to ex-
amine the differences in the numbers of single individuals, homologous clusters and heterolo-
gous clusters among the three different zones. We performed one-way ANOVAs and Tukey
HSD tests to examine the differences in the abundance of individuals from sexual reproduc-
tion, abundance of individuals from asexual reproduction, seed density, seedling survival rate,
transpiration rate andWUE among the three different zones (n = 3 (averages for each plot) in
each zone). Within each zone, we used t-tests to compare the means of seed density and

Changes in Spatial Patterns of Caragana stenophylla

PLOSONE | DOI:10.1371/journal.pone.0121234 March 18, 2015 4 / 11



seedling survival rates inside versus outside shrubs, and to compare the means of transpiration
rates and WUE for inner-canopy versus outer-canopy leaves.

Results

Spatial patterns
The spatial patterns of C. stenophylla differed among the three zones. In the semi-arid zone,
C. stenophylla exhibited random spatial patterns at all scales except for the 1 m scale, where it
was clumped (S1a Fig.). In the arid zone, C. stenophylla exhibited clumped spatial patterns at
the 1–2 m and 5–9 m scales (S1b Fig.). In the intensively arid zone, C. stenophylla exhibited
clumped spatial patterns in the 1–12 m scale ranges (S1c Fig.).

In the semi-arid zone, 76.7% of C. stenophylla plants grew as single individuals, 10.0%
formed homologous clusters, and 13.3% formed heterologous clusters. In the arid zone, the
proportions of single individuals, homologous clusters and heterologous clusters were 50.0%,
33.3% and 16.7%, respectively. In the intensively arid zone, these proportions were 0.0%, 40.0%
and 60.0%, respectively. From the semi-arid zone to the intensively arid zone, the proportions
of shrubs present individually decreased and the proportions of shrubs present in either cluster
type increased (Table 2). The total number of individuals per shrub cluster and abundances of
individuals arising both sexually and asexually per cluster increased from the semi-arid zone to
the intensively arid zone (Fig. 1). These results demonstrate that aggregation of C. stenophylla
populations increased from the semi-arid zone to the intensively arid zone.

Seed distribution
Seed density of C. stenophylla decreased from the semi-arid to the intensively arid zone. Inside
shrub canopies, the seed density in the semi-arid zone was 1.41 and 4.23 times higher than in
the arid zone and intensively arid zone, respectively. Outside shrub canopies, the seed density
in the semi-arid zone was 2.61 time higher than in the arid zone. For all three climate zones,
seed density was higher inside shrub canopies than outside shrub canopies. In the semi-arid
and arid zones, seed densities were 1.31 and 2.41 times higher inside shrub canopies than out-
side shrub canopies, respectively. In the intensively arid zone, seeds were only observed inside
shrub canopies (Fig. 2).

Nurse effects of shrubs on seedlings
Survival rates of C. stenophylla seedlings decreased from the semi-arid zone to the intensively
arid zone. In all three climate zones, seedling survival rates were higher inside shrub canopies
than outside shrub canopies (P< 0.05). In the semi-arid and arid zones, seedling survival rates
were 2.00 and 2.55 times higher inside shrub canopies versus outside shrub canopies, respec-
tively (P< 0.05). In the intensively arid zone, no seedlings survived outside shrub canopies
(Fig. 3).

Table 2. Abundances and proportions (in parentheses) of single individuals, homologous clusters and heterologous clusters of C. stenophylla
in the semi-arid, arid and intensively arid zones.

Shrub composition Semi-arid zone Arid zone Intensively arid zone

Single individual 23 (76.7%) 15(50.0%) 0 (0%)

Homologous clusters 3 (10.0%) 10 (33.3%) 12 (40%)

Heterologous clusters 4 (13.3%) 5 (16.7%) 18 (60%)

χ2 test results χ24 = 40.442 P<0.01

doi:10.1371/journal.pone.0121234.t002
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Water consumption
The daily transpiration of inner-canopy leaves did not significantly differ among the focal cli-
mate zones. However, the daily transpiration of outer-canopy leaves increased from the semi-
arid zone to the intensively arid zone. In the semi-arid zone, the daily transpiration did not dif-
fer between inner- and outer-canopy leaves. However, the daily transpiration of inner-canopy
leaves tended to be lower than that of outer-canopy leaves in the arid zone, and was significant-
ly lower than that of outer-canopy leaves in the intensively arid zone (Table 3).

Water use efficiency (WUE) of C. stenophylla increased from the semi-arid zone to the in-
tensively arid zone. In the semi-arid zone, WUE did not significantly differ between inner-can-
opy leaves and outer-canopy leaves. In the arid zone, WUE tended to be higher among inner-
canopy leaves than for outer-canopy leaves. In the intensively arid zone, WUE of inner-canopy
leaves was significantly higher than that of outer-canopy leaves (Table 3).

Discussion
Climate is one of the primary factors governing plant spatial patterns. Results of point pattern
analyses showed that C. stenophylla individuals were distributed randomly in the semi-arid
zone, but had clumped spatial patterns at some scales in the arid zone, and at an even broader
range of scales in the intensively arid zone. We also found that aggregation within C. steno-
phylla populations increased from the semi-arid zone to the intensively arid zone. These find-
ings suggest that the spatial patterns of C. stenophylla transition from random to clumped

Fig 1. Average abundances of individuals arising from sexual or asexual reproduction and average total numbers of individuals forC. stenophylla
shrub clusters in the semi-arid, arid and intensively arid zones (mean ± SE, n = 3). For variables in the same category, different letters (asexual
reproduction individual: greek letter; sexual reproduction individual: lowercase; total number of individual: uppercase) indicate significant differences in the
means between zones (Tukey HSD tests, P< 0.05).

doi:10.1371/journal.pone.0121234.g001
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types as climatic drought stress increases. Similar changes in spatial patterns were documented
in Artemisia ordosica populations [10]. In the semi-arid zone, random spatial patterns within
C. stenophylla populations were associated with relatively small shrub (or shrub cluster) sizes
(average canopy area: 0.204 m2), whereas, in the intensively arid zone, clumped spatial patterns
were associated with considerably larger shrub cluster sizes (average canopy area: 2.979 m2)
[14].

Several studies on other plant species have found that seed density and seedling survival be-
neath canopies are much higher than in open patches [23–30]. Our results showed that C. ste-
nophylla seed density was much higher inside shrub canopies than outside shrub canopies, and
the proportion of seeds outside shrub canopies decreased as drought stress increased. In the
semi-arid zone, C. stenophylla seeds were common, seeds could germinate, and seedlings were
able to survive both inside and outside of shrub canopies. This permitted establishment of a
large number of scattered single individuals. As drought stress increased, both the number of
C. stenophylla seeds and seedling survival rates decreased. In the intensively arid zone, C. steno-
phylla seeds were only observed inside shrub canopies and no transplanted seedlings survived
outside shrub canopies. This may be because physical conditions (e.g., wind speed, humidity,
temperature, soil moisture, soil fertility, etc.) were relatively favorable for seedlings inside
shrub canopies in the intensively arid zone compared to outside shrub canopies [25, 31–33].
Shrub canopies may also protect seedlings from access by herbivores. In the intensively arid
zone, seedlings likely experienced relatively large benefits from protection by the structure of
established shrubs [34]. This would result in much higher seedling survival rates inside shrub

Fig 2. Seed densities inside and outside shrub canopies ofC. stenophylla in the semi-arid, arid and
intensively arid zones (mean ± SE, n = 3). For variables in the same category, different letters (inside-
shrub: lowercase; outside-shrub: uppercase) indicate significant differences in the means between zones
(Tukey HSD tests, P< 0.05). Within each zone, asterisks indicate significant differences in the means
between inside-shrub and outside-shrub (t-test, P< 0.05).

doi:10.1371/journal.pone.0121234.g002
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canopies versus outside, and this is indeed what we observed [14]. Thus recruitment only ap-
pears possible inside canopies of established shrubs in this zone. These recruitment patterns re-
flect important mechanisms likely driving both the random spatial pattern of C. stenophylla in
the semi-arid zone and its clumped spatial patterns in the arid and intensively arid zones.

Water availability is one of the main limiting factors for plant establishment and growth in
arid environments. Water-saving strategies are key characteristics for plants growing in arid
conditions. Transpiration rates of outer-canopy leaves were higher in the intensively arid zone

Fig 3. Seedling survival rates inside and outside shrub canopies of C. stenophylla in the semi-arid,
arid and intensively arid zones (mean ± SE, n = 3). For variables in the same category, different letters
(inside-shrub: lowercase; outside-shrub: uppercase) indicate significant differences in the means between
zones (Tukey HSD tests, P< 0.05). Within each zone, asterisks indicate significant differences in the means
between inside-shrub and outside-shrub (t-test, P< 0.05).

doi:10.1371/journal.pone.0121234.g003

Table 3. Transpiration rates and water use efficiency (WUE) of inner-canopy and outer-canopy leaves of C. stenophylla in the semi-arid, arid and
intensively arid zones (n = 3).

Semi-arid zone Arid zone Intensively arid zone

Daily transpiration Outer-canopy leaves (molH2O�m-2�d-1) 244.2b 251.4ab 265.0a

Inner-canopy leaves (molH2O�m-2�d-1) 243.8A 245.6A 248.7A*

Differences between inner-canopy and outer-canopy leaves (%) 0.2 2.3 6.2

WUE Outer-canopy leaves (mmolCO2� mol-1 H2O) 1.48b 1.51b 1.71a

Inner-canopy leaves (mmolCO2� mol-1 H2O) 1.48B 1.55B 1.81A*

Differences between inner-canopy and outer-canopy leaves (%) 0.3 2.6 5.8

For the same variable, different letters (outer-canopy leaves: lowercase; inner-canopy leaves: uppercase) indicate significant differences in the means

between zones (Tukey HSD tests, P < 0.05). Within each zone, asterisks indicate significant differences in the means between inner-canopy leaves and

outer-canopy leaves (t-test, P < 0.05).

doi:10.1371/journal.pone.0121234.t003
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than in the semi-arid zone, probably due to the high temperature, strong solar radiation and se-
vere water deficit of air in the intensively arid zone. Water use efficiency (WUE) of C. steno-
phylla was higher in the intensively arid zone than in the semi-arid zone, which reflects a
water-saving strategy of C. stenophylla in highly arid environments.

In the semi-arid zone, C. stenophylla were present as relatively small shrubs (or shrub clus-
ters) with random spatial patterns, so C. stenophylla transpiration rates and WUE did not differ
significantly between inner-canopy and outer-canopy leaves. In contrast, in the intensively arid
zone, C. stenophylla occurred as relatively large shrub clusters with clumped spatial patterns,
which are known to reduce interior wind speed and air temperature, and increased interior hu-
midity [35, 36]. Thus transpiration rates of inner-canopy leaves were significantly lower than
outer-canopy leaves, and WUE of inner-canopy leaves was significantly higher than outer-
canopy leaves in the intensively zone. Higher transpiration rates among outer-canopy leaves
versus inner-canopy leaves have been observed previously in other plant species [37]. Thus
clumped spatial patterns may enable C. stenophylla to reduce water consumption and increase
WUE significantly, and it likely enhances C. stenophylla survival under drought stress. Overall,
aggregation of individuals within populations appears to be an effective and important ecologi-
cal strategy that allows C. stenophylla to survive and reproduce in highly arid environments.

Conclusions
We show that drought stress plays an important role in mediating changes in spatial patterns
of C. stenophylla from random to clumped arrangements along the climatic drought gradient
that spans the semi-arid to intensively arid zones within the Inner Mongolian Plateau. The
main factors driving these changes in C. stenophylla spatial patterns are likely: (1) Seed density
decreases and seed proportions inside shrub canopies increase as drought stress intensifies. (2)
“Nurse effects” of C. stenophylla shrubs on conspecific seedlings become more important as
drought stress increases. (3) Water-saving characteristics associated with clumped spatial pat-
terns likely enhance survival and reproductive success of C. stenophylla in arid environments.

Supporting Information
S1 Fig. Point pattern analyses of C. stenophylla populations on the Inner Mongolian Pla-
teau.
(DOC)
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