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Universitat Politècnica de Catalunya

Empirical Gramians and Model Reduction for Nonlinear Systems



Lecture description
Gramians, controllability and observability

Model reduction
Model reduction of nonlinear controlled systems

Computation
References

Lecture goals

To review the basic notions of controllability and observability.

To introduce the technique of model reduction for nonlinear
control systems through empirical gramians and balancing.

To present the computational skills of this technique.
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Outline

Gramians, controllability and observability.

Model reduction.

Model reduction of nonlinear controlled systems: empirical
gramians, balanced model and reduced model.

Computation.

References.
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Controllability (1)

Consider a SISO linear, time-invariant system

ẋ(t) = Ax(t) + B u(t)
y(t) = C x(t)

(1)

where A, B, C and D are matrices, u(t) is the input (the control) and
y(t) is the output.

Assume that A has n distinct eigenvalues, λ1, ..., λn and let V be a
eigenvectors matrix so that the transformation V −1 diagonalizes A :

˙̂x(t) :=
˙︷ ︸︸ ︷

V −1
x(t) = V −1AV x̂(t) + V −1B u(t)

y(t) = CV x̂(t) + D u(t)

and now V −1AV = diagonal(λ1, ..., λn).
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Controllability (2)

If some coefficient k of V −1B is null, the corresponding state x̂k is
uncontrollable, since its time behavior x̂k = eλkt x̂k(0) does not depend
on the control u(t).
In order to discover such a problem without computing the eigenvalues of
A, the controllability matrix is introduced:

C := [B, AB, A2B, ..., An−1B].

Then, the lack of controllability of one state corresponds to a fall in the
rang of C.
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Controllability (3)

Definition

A linear system like (1) is said to be controllable if its controllability
matrix has full rank.

There are some equivalent alternatives for establishing controllability.
One such alternatives is through the controllability gramian ([K 96]):

Definition

The controllability gramian for initial time t0 and final time tf is the
matrix

GC(t0, tf ) :=

∫ tf

t0

eA (t−t0) B BT eAT (t−t0) dt.
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Controllability (4)

Then:

Proposition

The system is controllable ⇔
The controllability grammian is nonsingular for all tf > t0

When a system is controllable, there is a control input which transfers
any initial state x(t0) to any arbitrary final state x(tf ). Such an input
may be evaluated in terms of the gramian as

u(t) = BT eAT (t−t0) G−1
C (t0, tf )

[
eA (tf−t0) x(tf ) − x(t0)

]
.
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Observability (1)

In an analogous way, in order to check when initial states may be
determined from the output, the observability matrix is introduced:

O := [C, CA, ..., CAn−1]T

Definition

The observability gramian for initial time t0 and final time tf is the matrix

GO(t0, tf ) :=

∫ tf

t0

eAT (t−t0) CT C eA (t−t0) dt.

Then
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Observability (2)

Proposition

The following statements are equivalent:

The observability matrix has full rank n

Observability gramian is nonsingular for all tf > t0

Then, system is said to be observable.

When a system is observable, its initial state may be determined from the
output in terms of the observability gramian as

x(t0) = G−1
O (t0, tf )

∫ tf

t0

eAT (t−t0) CT y(t) dt,
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Outline

The central idea in model reduction is to find a low-dimensional affine

subspace of the state space, in which the dynamics of interest of

the original system are contained.

Model reduction includes:

The definition of an appropriate measure in the space of trajectories

The search of the best approximating subspace with respect to this
measure: the Karhunen-Loève decomposition

The projection of the dynamics onto this subspace, where original
system will be approximated by a small number of equations: the
Galerkin projection
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Definition of the best approximation

The method is similar to regression or principal component analysis in
Statistics. First of all, one should collect empirical data (either form
experiment or from simulation), consisting in sampled values
{x(1), ..., x(N)} of the trajectory x(t). Let S be a subspace and let

Q : R
n −→ S

be the projection operator. As ||x(i) −Q(x(i)) || is the distance from x(i)

to its orthogonal projection Q(x(i)), the best approximation for the
sampled solution is obtained minimizing the squared sum

d(Q) :=

N∑

i=1

||x(i) − Q(x(i)) ||2,

where the norm refers to a measure defined in the state space, selected
according to physical meaning.
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Minimum of the error

Let n be the number of states and let N be the number of collected
points. The correlation matrix R of the sampled trajectory data
{x(1), ..., x(N)} is defined as

Rrs :=
N∑

i=1

x(i)
r · x(i)

s , for 1 ≤ r, s ≤ n

Theorem

Let λ1 ≥ λ2 ≥ .. ≥ λn be the (ordered) eigenvalues of the correlation
matrix R. Then, the minimum of d(Q) for all projections Q on subspaces
of dimension k is n∑

j=k+1

λj .

1
1The formula in [Hall et al. (2002)] has a misprint (?)

Empirical Gramians and Model Reduction for Nonlinear Systems



Lecture description
Gramians, controllability and observability

Model reduction
Model reduction of nonlinear controlled systems

Computation
References

Introduction
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Best approximating subspace (1)

Let X be the n × N matrix whose columns are {x(1), ..., x(N)}. Let
{v1, ..., vn} be orthonormal eigenvectors of R and denote by Vk the
matrix whose columns are the first k eigenvectors.

Then D:=diagonal(λ1, ..., λn) = V −1
n RVn = V T

n XXT Vn; the projection
Q on the subspace Sk spanned by {v1, ..., vk} is given by VkV T

k and
V T

k x(i) gives the coordinates of Q
(
x(i)

)
with respect to the selected

basis on Sk.

Denote by Dk the matrix constructed by the k-th principal minor of D.

Thus Dk = V T
k XXT Vk, that is, the product of the matrix whose

columns are Q
(
x(i)

)
by its transpose. Then
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Best approximating subspace (2)

∑N

i=1 ||Q(x(i)) ||2 =
∑N

i=1

(∑k

j=1

{(
Q(x(i))

)
j

}2
)

=

∑k

j=1

(∑N

i=1

{(
Q(x(i))

)
j

}2
)

=
∑k

j=1(Dk)jj =
∑k

j=1 λj .

and

d(Q) =
∑N

i=1 ||x
(i) ||2−∑N

i=1 ||
(
Q(x(i))

)
j
||2 =

∑n

j=1 λj −
∑k

j=1 λj =∑n

j=k+1 λj

x(i)

Q (x(i))
S

d(Q)

x(i)

Q (x(i))
S

d(Q)

which is the minimum of d(Q) over all rank k projections.
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Affine correction

In order to obtain the optimal affine subspace, one should proceed with
the covariance matrix C instead of R:

Crs :=
N∑

i=1

(
x(i)

r − xr

)
·
(
x(i)

s −−xs

)

Finally, one should decide the rank of the projection subspace. The goal
is to choose k such that the quotient of the sum of selected
C-eigenvalues with respect to the total sum,

∑k
j=1 λj∑n
j=1 λj

(that is, the proportion of the “energy” in the subspace) is close to one,
yet k is sufficiently small.
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Galerkin projection

We use Galerkin projection to construct lower-order models for a given
dynamical system

ẋ(t) = f (x(t)) .

First of all we should subtract the mean: x̃(t) := x(t) − x. Thus,

˙̃x(t) = f (x̃(t) + x)

Then, if y are the coordinates in the subspace S, (that is,
y(t) = V T

k x̃(t)), the reduced-order approximation is given by

ẏ(t) = V T
k

˙̃x(t) = V T
k f (V y(t) + x) .

One can expect such a procedure to work well within some region of
state space, where the data should be collected. The principal advantage
of this method is that it requires only matrix computations, despite its
application to nonlinear systems.
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Introduction (1)

Let us consider a nonlinear controlled dynamical system

ẋ(t) = f
(
x(t), u(t)

)

z(t) = h
(
x(t)

)

where x(t) are the states, u(t) the input(s) and z(t) the output(s).

In [L 02], authors define a new resolution technique for such systems
which rely on classical model reduction, but introduces a balancing
algorithm in order to deal with nonlinearities.

Definition

Balancing means to apply a kind of linear transformations to two
different matrices (here, the gramians) to obtain in booth cases the same
diagonal matrix.
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Introduction (2)

This technique includes several steps:

To evaluate the (discrete) empirical gramians

To balance booth empirical gramians and to evaluate the squared
eigenvalues of the common diagonal matrix (Hankel singular values)

According to the magnitudes of the eigenvalues, to choose the rang
of the projection subspace.

To solve the reduced model obtained by Galerkin projection onto a
suitable subspace
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Definition of the empirical gramians (1)

Empirical gramians are a sort of “covariance matrix”, where covariance
stands for the relation between steady state and perturbated solutions of
the dynamical system.

The construction of empirical gramians depends on some parameters:

n, the number of states; and p, the number of inputs;

T r = {T1, ..., Tr}, a set of orthogonal n × n matrices that will
span the perturbation directions;

M = {c1, ..., cs}, a set of s positive constants (the different sizes
of the perturbations); and

Ep, the set of standard unit vectors in R
p.
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Definition of the empirical gramians (2)

Let xilm(t) be te state corresponding to the impulsive input
u(t) = cmTleiδ(t).

Recall the definition of the temporal mean of any function g(t) :

g(t) := lim
T→∞

1

T

∫ T

0

g(t) dt.

From a theoretical point of view 2, empirical gramians have the following

definition:

2that is, to ensure that in the linear case classical gramians are obtained
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Definition of the empirical gramians (3)

Definition

Controllability empirical grammian

Gc :=

p∑

i=1

r∑

l=1

s∑

m=1

1

rsc2
m

∫
∞

0

(
xilm(t) − xilm

) (
xilm(t) − xilm

)T

Observability empirical grammian

Go :=

r∑

l=1

s∑

m=1

1

rsc2
m

∫
∞

0

TlΨ
lm T T

l dt,

where Ψlm is the n × n matrix given by

(
Ψlm

)
ij

=
(
zilm(t) − zilm

)T (
zjlm(t) − zjlm

)
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Definition of the empirical gramians (4)

For practical applications 3, one should use a finite sum of a sampled
trajectory instead an infinite integral. Also, temporal means are replaced
by steady states. The later implies that one should know an input

reference uss, (probably suggested by physical meaning of the
underlying problem).

Then, the steady state xss is obtained from f
(
xss(t), uss(t)

)
= 0 and

the corresponding output is denoted by zss.

Discrete empirical gramians are calculated as follows: Let ∆t be the
sampling interval and let q be the number of points in the sample
(usually, q ∼ 2000). One should to be aware that the system will

have reached equilibrium for some time tf < q · ∆t.

3see [H 02]
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Definition of the empirical gramians (5)

Put

xilm
k := xilm(k ∆t), zilm

k := zilm(k ∆t)(
Ψlm

k

)
ij

:=
(
zilm

k − zilm
ss

)T
(
z

jlm
k − zjlm

ss

)

Definition

Discrete controllability empirical grammian

Wc :=

p∑

i=1

r∑

l=1

s∑

m=1

1

rsc2
m

q∑

k=0

(
xilm

k − xilm
ss

) (
xilm

k − xilm
ss

)T
∆t

Discrete observability empirical grammian

Wo :=

r∑

l=1

s∑

m=1

1

rsc2
m

q∑

k=0

TlΨ
lm
k T T

l ∆t.
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Balancing

Definition

To balance the model, one should find a linear transformation L such

that L Wc LT =
(
L−1

)T
Wo

(
L−1

)
= Σ, where Σ is a diagonal matrix.

Well know numerical techniques (Schur singular values decomposition)
are applied to find the change of coordinates L. If gramians do not are
full rank, only a decomposition of the following kind is obtained:

LWcL
T =




Σ1 0 0 0
0 Id 0 0
0 0 0 0
0 0 0 0




(
L−1

)T
Wo

(
L−1

)
=




Σ1 0 0 0
0 0 0 0
0 0 Σ2 0
0 0 0 0




and one proceeds with Σ1 instead of Σ.
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Hankel singular values

Definition

Hankel singular values are the eigenvalues of Go Gc.

Hankel singular values indicate the importance of the corresponding
states in the transfer of energy from past inputs to future outputs. Then,
the procedure will be to truncate states corresponding to small Hankel
singular values, i.e., states that contribute very little to the input-output
system behavior.

To find which state correspond to some Hankel singular values one
should obtain the balanced realization of the system, because Hankel
singular values are exactly its squared eigenvalues.

In the linear case, changes of coordinates don’t affect Hankel singular
values (even though the gramians are not invariant). For nonlinear
systems, this result no longer holds.
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Projection

The reduced model is then obtained in the usual way, but now the
projection matrix V T

k is a product of the transformation matrix L that
balances gramians and a projection matrix P = [Idk 0] where k is the
number of preserved states. The reduced system reads

ẏ(t) = PL f
(
L−1PT y(t), u(t)

)

z(t) = h
(
L−1PT y(t)

)

Empirical Gramians and Model Reduction for Nonlinear Systems



Lecture description
Gramians, controllability and observability

Model reduction
Model reduction of nonlinear controlled systems

Computation
References

Empirical Gramians
Balanced model
Reduced model

Modified algorithm

In [H 02] an improvement is proposed for the case where steady states
are different from zero. The modified system includes new equations and
substitutes the eliminated states by its equilibrium value:

Let y1 be the states in the reduced model and let y2 be the states
truncated by the projection. Put ŷ := (y1, y2)

T
and solve

ẏ1(t) = PL f
(
L−1 ŷ(t), u(t)

)
4

y2(t) = (y2)ss

z(t) = h
(
L−1 ŷ(t)

)

4Notice that, instead a true projection, truncated states have been replaced
with their steady state value
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Preliminary remarks

J. Hahn and co-workers have write some MATLAB algorithms to solve
nonlinear controlled systems using the procedure presented in [L 02] and
developed for computational purposes in [H 02]. All these m-files are
collected in the URL

http://cheweb.tamu.edu/orgs/groups/Hahn/Model Reduction

Some demo-examples and a short user-guide are also available.

Prior to describe the routines, we shall consider two aspects:

The necessary changes when system is not control-affine.

The convenience of scaling in the control-affine case.

Empirical Gramians and Model Reduction for Nonlinear Systems
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Non control-affine systems

Following [H 02], empirical gramians are suitable only for control-affine
systems, because general nonlinear operations are not defined for
impulses: remember the formulæ of gramians, where the inputs include a
Dirac’s delta.

Otherwise, one should take u(t) = cmTleiv(t) where v(t) is a series of
steps. Yet Wc(t) and Wo(t) do not correspond to empirical gramians but
a so-called controllability and observability covariance matrices.

For the rest, the method follows as usual. Only minor changes in the
syntaxis of routines are needed.
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Scaling systems (1)

The set of routines in Hahn’s web is complete only for the “scaled” case.
Otherwise, routines for model reduction and comparison should be
adapted. The reason to impose scaled form seems rather eccentric and
remains unknown to us5.

Definition

Scaling simply means to apply a linear transformation such that all
non-null coordinates of reference input and steady states became 1.

5That the condition should hold only for non-null steady states is only a
personal assumption
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Scaling systems (2)

More precisely, put

Tu := diagonal ( (uss)1, ..., (uss)p) , 6

Tx := diagonal ( (xss)1, ..., (xss)n)

then, the scaled system is given by

˙̃x(t) = (Tx)
−1

f (Tx x̃(t), Tu ũ(t))
z(t) = h (Tx x̃(t))

6(if some term vanishes, it should be replaced by 1)
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Description of routines (1)

ctrl gram cov(a,[b],[c],d,e)

Parameters:

1 a refers to a MATLAB m-file with the scaled dynamical system
(Syntaxis: Function dx=a(t,x))

2 [b] = [start time, end time, sampling time interval]
3 [c] = [number of inputs, number of states, number of outputs,

2, sample length]
4 d = the set of constants M
5 e = 0, for gramian; 6= 0, for covariance matrix

Answer: Wc, the empirical controllability gramian (or covariance
matrix)

This routine should be modified if some steady state vanishes.
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Description of routines (2)

obsv gram cov(a,[b],[c],d,[f],g,e)

Parameters:

1 a to e like the preceding case
2 [f] = the index of the states that are the output of the system

(The routine assumes that output are some states)
3 g = the steady state xss

Answer: Wo, the empirical observability gramian (or covariance
matrix)

This routine should be modified if some steady state vanishes.

Remark: Notice that gramians are evaluated assuming T r = {Id} (see
[L 02]).
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Description of routines (3)

bal realization(h,i,j)

Parameters:

1 h = Wc

2 i = Wo

3 j = number of states

Answer:

1 Trans = the transformation matrix for balancing and invTrans,
its inverse

2 Wc, Wo = balanced controllability and observability gramians
3 svd Wc, svd Wo = the Hankel singular values (as eigenvalues7

of either Wc or Wo)

7In fact, the routine should be modified, because Hankel s.v. really are the
squared eigenvalues
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Description of routines (4)

Running the m-file nonlinear test2 is a shortcut for all 3 previous
routines. File should include the steady state xss and the reference input
uss. As a result, it saves the output of bal realization in a file.

Next, one can run the m-file nonlinear test2 comparison that gives a
figure showing (one selected) output booth for the full-order and the
truncated system.

This file should also include the value of xss and uss, together with
red n, the number of remaining states in the reduced system.

Remark This file calls two ode function m-files, corresponding to full and
reduced-order system.
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Description of routines (5)

Remarks on the ode m-file for the scaled system

To introduce the previously explained scaling change of coordinates,
some changes should be introduced on the m-file corresponding to
the dynamical system:

1 Before to write system equations, one should apply matrices
Tx and Tu :

u = diag(uss)*ud; x = diag(xss)*x;

2 and file should end with the inverse transformation

dx = diag(1./xss)*dx;

Of course, one should be aware of the remark in footnote 6.
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Description of routines (6)

Remarks on the ode m-file for the reduced (scaled) system

To embody balancing transform L and model reduction, the m-file
for the scaled system should include some modifications:

1 States are transformed now according to Tx, and L

x=diag(xss)*invTrans*x;

2 Inverse transformation and reduction enter at the end of the
file 8:

dx(1:red n,1) = Trans(1:red n,:)*dx;
(inverse transform for the conserved states)

dx(red n+1:n,1) = zeros(n - red n,1);
(steady state holds in truncated states)

8It seems to me that this procedure neither reduce CPU time nor takes
advantage of the reduction in the number of equations
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