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Abstract—In numerical linear algebra, students encounter early
the iterative power method, which finds eigenvectors of a matrix
from an arbitrary starting point through repeated normalization
and multiplications by the matrix itself. In practice, more sophisti-
cated methods are used nowadays, threatening to make the power
method a historical and pedagogic footnote. However, in the con-
text of communication over a time-division duplex (TDD) multiple-
input multiple-output (MIMO) channel, the power method takes a
special position. It can be viewed as an intrinsic part of the up-
link and downlink communication switching, enabling estimation
of the eigenmodes of the channel without extra overhead. Gen-
eralizing the method to vector subspaces, communication in the
subspaces with the best receive and transmit signal-to-noise ratio
(SNR) is made possible. In exploring this intrinsic subspace conver-
gence (ISC), we show that several published and new schemes can
be cast into a common framework where all members benefit from
the ISC.

Index Terms—Channel identification, eigenmodes, mul-
tiple-input multiple-output (MIMO) systems, singular modes,
singular value decomposition (SVD).

1. INTRODUCTION

VER the last few years, a number of papers have been
Opublished on communication in time-division duplex
(TDD) multiple-input multiple-output (MIMO) systems using
the top singular modes of the channel [4], [5], [15], [21],
[11]. These techniques are potentially very useful—they
are blind and computationally tractable and offer maximum
signal-to-noise ratio (SNR) for independent data streams when
successful. Combined with an optimization of the number of
streams and water-filling algorithms, singular-vector-based
methods can realize an interesting tradeoff between rate and
diversity maximization.

However, these methods may also enjoy another feature that
has been little highlighted in the literature: the intrinsic sub-
space convergence (ISC) of the MIMO channel. As a first ex-
ample, Andersen [1] noted that transmitting a vector repeat-
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edly forth and back through a MIMO channel led to conver-
gence towards the top singular mode (i.e., with largest singular
value). This procedure is almost identical to the algebraic power
method, an iterative method for finding eigenvalues and eigen-
vectors of a matrix [9]. It also has strong connections with time-
reversal mirrors [8], now gaining popularity in communication
[12], [6]. The power method is based on the observation that for
a Hermitian matrix H € CN*¥ and an arbitrary starting point
vector x € OV, the following sequence:
y(n)=HH.---Hx =H"x (1)

n

has the property that y/||y|| converges towards the unit-norm
eigenvector of H with the largest associated eigenvalue A\; of
H, assuming A; to be strictly larger than the other eigenvalues.
The power method can be modified to become a method for
finding left and right singular vectors of a non-Hermitian matrix
H € CV*M | through the following iterations:

y (i) = Hx(i)
x(i+1) = Hy(i). 2
Here, x(i) € C™ and y (i) € C¥ converge towards scalar mul-
tiples of the top right and left singular vectors of H, respectively,
and subsequent normalizations at each step yield unit-norm sin-
gular vector estimates. Successive singular modes can be es-
timated by a QR-like procedure [9], which will be described
below. H will denote the channel matrix used in TDD MIMO
communication.

In [4] and [5], we proposed a technique [Blind Iterative
MIMO Algorithm (BIMA), see below] based on this principle,
where feedback through transmission and retransmission of the
channel is exploited: A set of top singular modes is estimated
directly, without estimating the channel matrix itself, and while
simultaneously using them for communication. Expanding
on this idea, we now present a more general framework for
utilizing the ISC effect. Independently of our work, Poon et
al. [15] and Wen et al. [21] suggested related blind methods
for directly estimating and utilizing the channel eigenstructure.
Their approach is based on subspace estimation through de-
composition of the spatial correlation matrix combined with
pre- and postfiltering using the singular vectors. However, these
authors do not take into account the ISC, which is necessary to
understand the effects of feedback in the channel.

Blind methods [7], [16], [18], [19] are known to be noto-
rious with respect to convergence problems and local minima.
Furthermore, they often rely on higher order statistics and are
thus computationally expensive and may also be prone to error
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Fig. 1. Central steps in the ISC Framework. H is the channel matrix; UL—uplink and DL—downlink communication.

propagation. Proving global convergence, even for the simplest
ideas, is often cumbersome if not impossible.

There is an ongoing debate about the usefulness of blind and
semiblind methods in the signal processing community. In light
of this debate, it should be noted that blind communication over
TDD MIMO channels has several important advantages over
one-way schemes and frequency-divided systems. The ability to
have important channel parameters estimated without the need
for pilot sequences, using subspace techniques, is but one.

In the paper at hand, we show convergence of an entire
class of MIMO TDD methods and provide theoretical results
as well as practical examples showing the usefulness of the
power method in TDD MIMO communication. The results are
not limited to blind methods, they should appeal to designers
of semiblind and training-based systems equally well. To be
specific, we show that the methods suggested by Dahl et al. [4],
[5], Wen et al. [21], and Liu and Host-Madsen [11] all belong
to a wider class of methods that benefit from the ISC. We also
show an example where a training-based method utilizes the
ISC.

The layout of the ISC scheme is illustrated in Fig. 1.

II. MATHEMATICAL BACKGROUND

A. Channel Model

We assume two-way communication through a N (receive) x
M (transmit) flat-fading MIMO channel matrix H € CV*M at
time slot/index <.

Z(i) = HX(4) (uplink) (3)
W (i+ 1) = H'Y (i) (downlink) 4)

where X (i) € CM*™ and Y (i) € CN*™ are the transmitted
data blocks of length n uplink (UL) and downlink (DL), respec-
tively. A model such as the one above describes a TDD system,
provided the ping-pong time—the time between the beginning
of a DL frame and the beginning of the next UL frame—is
small compared with the channel coherence time. For algorithm
derivation purposes, we initially assume no channel noise, but
subsequently consider the practical noisy case as well. It is also

convenient to work within a framework where the transpose
channel H” in (4) is effectively replaced by the complex con-
jugate transpose H¥ . This is achieved by letting the transmit
data Y () be complex conjugated prior to transmission, and the
received data block W (7) be complex conjugated prior to any
further processing. In this way, (4) may effectively be replaced
by

W(i+1) = H?Y (i) (downlink). )

The rank of H is denoted by Ky < min(NN, M), and its singular
value decomposition (SVD) is H = USV# . S is the diagonal
matrix of singular values 01 > 092 > -+ > 0k, > 0, and

U=uy,...,ug,] € cNxKo (6)
V =[vi,...,vEg,] € CM*FKo (7)

are unitary matrices whose columns can be used as receive and
transmit vectors {u;} and {v;}, respectively. Clearly, one can
select a number K (K < K)) of transmit-receive vector pairs
for communication through orthogonal singular modes.

B. Classical MIMO Eigenmode Transmission

Assume, initially, that the singular vectors are known: One
party [e.g., the base station (BTS)] knows the top K left sin-
gular vectors {u;},j = 1,..., K of H and the other side [sub-
scriber unit (SU)] knows the corresponding subset of right sin-
gular vectors {v;}, j = 1,...,K. The top singular values
{o1,09,...,0K} are assumed to be known by both parties;
however, if the symbol alphabet has unit modulo, this is not

strictly necessary. Let

Ug = [ug,uy,...,ug] (8)
Vi =[vi,va,...,Vk] 9
Sk = diag{oy,09,..., 0k} (10)
denote these subsets arranged into matrices, and let

Cu(i),Cp(i) € CEX" (n > K) be the symbol matrices
comprising the UL and DL symbol blocks, respectively. Each
row of a symbol matrix represents an individual data stream.
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The elements of these matrices are symbols from a modulation
constellation (e.g., PSK and QAM). Using these (known) sin-
gular vectors and values and neglecting noise, the UL transmit
data block X (i) = Vg Cy (i) would be received as

Z(i) = HX(i) = USVHVCy = UgSKCuy(d). (1)
The last equality is obtained by noting that VZV g = I, «x,
which has “1”’s in the K main diagonal elements and zeros else-
where. From this, it follows that USIx,xx = UgSk. De-
coding is then simply performed using S i and U g, noting that

Cu(i) = SF'UEZ(). (12)
The DL transmission block is set up as Y (i) = U Cp (i), and
decoding is carried out at the subscriber unit correspondingly.
Both parties require S g, but the key remark is that no party re-
quires complete knowledge of H. In fact, the base station both
receives and transmits using only U g, while the subscriber unit
only needs V. In addition, if only phase modulation is used
(e.g., QPSK), the singular values are not even necessary for de-
coding.

C. ISC Framework

Consider the situation where we more generally want to com-
municate on K transmit/receive vectors. These could be sin-
gular vector estimates held in M x K matrices Ty (uplink) and
N x K matrices Tp (downlink), but other possibilities exist.
K x m symbol blocks Cyy, Cp are transmitted after premulti-
plying them with Ty and Tp, which serve as UL and DL “pre-
filters,” respectively. Note that the product matrices Ty Cy and
TpCp, which are the actual prefilter-and-symbol blocks trans-
mitted over the channel, have rank equal to K < K.

As an informal analogy of what we are going to describe,
consider the following story of a communications engineer who
“got lucky.” In constructing a communication algorithm for a
two-way TDD MIMO system, she decides to start with a random
set of orthogonal prefilter vectors, whose number K is less than
the rank K of the channel. Using those prefilters for coding
the independent K data streams to construct a rank-reduced
transmit data block, that block is transmitted over the channel in
one direction. On the other side, some blind algorithm is used to
decipher the symbols just transmitted. Then, the column vectors
of the received data block (deciphered or not) are linearly com-
bined to construct another set of K orthogonal prefilters. As we
shall see, there are many ways to obtain such prefilters.

The prefilter vector set is used to send another block of K data
streams in the other direction, where once again, symbol deci-
phering and column vector combinations are used to construct
orthogonal prefilters. The procedure is carried out over and over
again. The engineer notices that the blind symbol decision starts
getting better as the iterations go on. Why? Seemingly, she is
just receiving data blocks and combining them more or less at
random to obtain new sets of prefilter vectors. Why should blind
decoding of the symbols gradually get easier? Because, “mag-
ically,” the prefilter vectors will tend towards lying in the top
left and right singular subspaces of the channel, the subspaces
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maximizing the effective SNR associated with the communica-
tion process. The main contribution of the present paper is to
explain why and to what extent this intrinsic subspace conver-
gence occurs.

Formalizing the above story, the rules of operating the ISC
scheme are the following.

A) Pick an initial arbitrary set of orthonormal transmit vec-
tors.

B) When a data block has been received, construct a new, or-
thonormal set of transmit vectors as a linear combination
of the columns of the receive data block, according to the
rules explained below.

Addressing the issue of additive channel noise, we will add a
rule or principle.

C) Try to obtain knowledge about your received symbol
block up to an orthogonal rotation.

Using this information in constructing your next transmit block,
one will minimize the effect of the channel noise in the task
of obtaining a better set of transmit—receive vectors, as will be
explained in detail below.

We consider first the situation without channel noise, but re-
turn to this issue later. In the following, R{A} denotes the
column subspace associated with a matrix A.

ISC Algorithm:

1. Let Cy(0) € CE*" K < K| be the first uplink symbol
block and let Ty (0) € CM*K be the first orthonormal
guess of the UL transmit vectors. Set ¢ = 0.

2. Transmit uplink through the channel H

X (i) = Tu(i)Cu(i)
Z(i) = HX(i).

SU :
BTS :

transmit
receive

3. BTS: From the block Z(i), decide the symbols Cy(i).

4. BTS: Create a new set of K downlink orthonormal transmit

vectors held as column vectors in T () by linearly com-
bining the columns of Z(4) such that

R{Tp (1)} = R{Z()}.

5. BTS: Transmit downlink through the complex conjugate
channel H¥

(13)

BTS: transmit Y (i) := Tp(i)Cp(4).
SU: receive W(i+1) = HIY(3).

6. SU: From the block W (i + 1), decide the symbols C p (i).

7. SU: Create a new set of K orthonormal uplink transmit
vectors held as column vectors in Ty (7 + 1) by linearly
combining the columns of W (i + 1) such that

R{Tuy(i+1)} = R{W(i+1))}. (14)

8. Increase ¢, and repeat from 2.

The results given in the following paragraphs show the con-
vergence of the transmit vectors towards bases for the leading
left and right subspaces of H under typical circumstances. To
this end, consider first a simpler algorithm, not dealing with ac-
tual symbol transmission.

Two-Way QR Power Iterations:

1) Set Ty;(0) € CM*E = random orthogonal, i = 0.
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2) Y(i) = HTy(4).

3) [To(i), R] = qr(Y(i)).

4) X(i+1) = HETp(5).

5) [Tu(i+1),R] = ¢r(X(% + 1)).

6) Increase 7, and repeat from 2.
Here, ¢r denotes a QR orthonormalization step [9]. Both the
unique positive diagonal-term version of the QR decomposition
or a nonunique version without this requirement could be used.

We should make the extra requirement for both the algorithms
above and for others following, that the columns of the initial
matrix Ty (0) have some component in the leading K -dimen-
sional row subspace of H, e.g., that VI T (0) # 0. This is to
avoid the possibility that the basis search is conducted outside
the subspace of interest, as explained for power iterations more
generally in [9]. However, in practice, roundoff errors, and later
on, added channel noise, will make this scenario implausible.
When channel noise is added, the theoretical possibility that
VT (i) = 0 fori > 0 also arises; however, the same vari-
ability in the noise subsequently will normally compensate for
this deficit in the next iteration. An equivalent argument holds
for T p (i) relative to Ug. Unless explicitly stated, we shall as-
sume the transmit vectors to have some components in the sub-
spaces of interest. In the following, we shall only prove results
for estimating one set of singular vectors, observing that equiv-
alent results hold for estimation of the other.

Theorem 1: Convergence of the two-way power method. If
the K and the K + 1th singular values of H are distinct, then in
the two-way power iterations, Ty (i) — Vg -Ay and Tp (i) —
Ugk - Ap, where Ay, Ap are diagonal matrices in CEXE with
unit-modulo elements.

This result was shown in [5] and could also be elaborated
via the natural power method described in [10]. It states that
the column vectors held in the matrices T/ (¢) and T p(7) will
converge towards the leading right and left singular vectors
respectively, up to a multiplication by a constant number of
unit modulo, which is due to the scalar ambiguity inherent in
the eigenestimation. This produces an ambiguity in the symbol
stream decoding which is typical for blind methods, and
which is circumvented using differential decoding schemes.
The matrix R in steps 3 and 5 is the upper triangular matrix
of the QR decomposition, and is of no further importance
in this procedure. The above algorithm is a straightforward
generalization of the QR-based power iterations for symmetric
matrices [9] and is also know as the NIPALS algorithm in the
field of chemometrics [22]. A new and important generalization
of Theorem 1 is given below. In the subsequent theorems, we
shall assume that the K and K + 1th singular values are distinct
unless explicitly stated.

Theorem 2: If the QR decomposition in steps 3 and 5 of
the two-way power method is replaced by some other or-
thogonal decomposition of Y (¢) and X(i + 1), respectively,
R{TU(Z)} — R{VK} and R{TD(L)} — R{UK} as 7 — oo.

The proof is given in the Appendix. The immediate conse-
quence of this theorem is that we do not rely on using the QR
method as our decomposition method if we are content with
convergence in a subspace sense. Any other orthogonal method,
such as eigenvector/spectral decomposition or the polar decom-
position [9], will do equally well. As we shall see, this opens for
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a number of possibilities in designing SNR-improving commu-
nication schemes, as the above results can be extended to cover
actual symbol transmission situations.

Theorem 3: The ISC algorithm is converging in the sense that
R{TU(L)} — R{UK} and R{TD(L)} — R{VK} as 7 — 00.

The proof is given in the Appendix.

This theorem addresses subspaces spanned by leading sin-
gular vectors rather than the vectors themselves. Relating this
to the classic MIMO eigenmode transmission of Section II-B,
one may ask, “Why is this subspace important, when it is the
vectors that are de facto used for communication?” The sim-
plicity of eigenmode TDD communications seems to lie in the
fact that one party only needs to know one set of singular vec-
tors each. As explained in Section II-B, a right singular vector
u, is translated into a scaled left singular vector o;v; upon mul-
tiplication by the channel matrix H. When only subspace in-
formation is available, and not the singular vectors themselves,
this property is lost. If the matrix T () is not to Vg, but say
Ty (i) = VkQ, where Q € CE*K is an orthogonal matrix,
then the received symbol block will appear rotated prior to de-
coding. In turn, this means that some blind method must be used
to find the missing rotation so that the symbols can be correctly
decided in steps 3 or 6 in the ISC algorithm.

Value of Subspace Information: An important advantage of
MIMO eigenmode communication, however, remains intact
even when the singular transmit/receive vectors are not perfectly
known themselves: Communication using linear combinations
of the leading singular vectors has an SNR-improving effect
relative to using random vectors, or e.g., vectors constituting
an inverse channel matrix. Furthermore, as we shall see, even
“erroneous” symbol block estimation, i.e., estimation up to
a orthogonal factor, has important benefits for the increasing
convergence speeds and reducing the impact of the noise in the
subsequent blind symbol decision step, as will be shown.

Fig. 2 illustrates the usefulness of knowing the leading sin-
gular left and right subspaces even if the singular vectors them-
selves are not known. Consider the situation where the parties
communicate over arandom 6 x 6 MIMO channel. Two random
sets of three orthogonal, six-dimensional complex vectors are
held in the matrices Ty () and Tp(7), with ¢ denoting the iter-
ation index. White additive noise is included in the model, and
the matrices Ty (7) and Tp (%) are used for prefiltering as well
as postfiltering of the received data block, in the same way as
V ik and U i were used both for prefiltering and postfiltering in
the classic MIMO eigenmode communications. Upon conver-
gence, however, Ty (¢) and Tp(7) will only estimate V i and
U g up to orthogonal transformations, and the symbol block will
appear rotated at the decoder. To resolve this, the JADE [2] al-
gorithm was used for symbol stream separation. Furthermore,
since the introduction of noise increases the effective dimen-
sionality of Z(7) and W (), the computation of their subspace
bases in steps 3 and 6 is replaced by a basis approximation. This
was done by performing a QR decomposition of the autocor-
relation matrix at each station, using the K vectors associated
with the largest diagonal element of the upper triangular matrix
as the prefilter to use, letting them serve as (approximate) basis
vectors for R{Z(7)}. In Section III-A-4), we explain why this
QR-based method works so well. The figure shows the bit error
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Fig. 2. Average bit error rates at the various iteration steps of the ISC frame-
work. The autocorrelation matrix of the receive data block was used to extract
K orthogonal prefilters via a QR decomposition. Each curve in the graph cor-
responds to the average error after a given number of iterations.

rates at the various iteration steps of the algorithm at various
SNRs. As the iterations advance, the average BER drops. The
results are based on 10 000 Monte Carlo runs.

A consequence of all this is that the ISC scheme can be seen
as a way fo prepare the transmission prefilters before classic
(blind) estimation methods for symbol detection are put to use.

D. Channel Noise Effect

Having shown convergence of the ISC scheme for the deter-
ministic case in the proofs of Theorems 2 and 3, we now ex-
amine its convergence properties in the presence of noise. In par-
ticular, we want to study the deviation between the deterministic
process and the corresponding stochastic process throughout the
iterations. Mathematically, we modify the steps 2 and 5 to be-
come

2'. BTS : receive Z(i)’
5. SU : receive W (i + 1)’

= HX(i) + Ny (i)
=H7Y(i) + Np(i)

where Ny (i) and Np (i) are white noise matrices in CV*"
and CM>" respectively. A particularly important issue arises
in steps 4 and 7 of the ISC scheme. In the deterministic case, the
task “to find a set of K orthonormal basis vectors” spanning the
column spaces R{Y (¢)}" (or R{W (i + 1)}) was straightfor-
ward. However, it is not as well defined for the stochastic case.
In the deterministic case, the rank of the column spaces of the
matrices Y (i) and W (i + 1) was exactly equal to K (assuming
Cy and Cp to be of full rank). Now, we have to compute K -di-
mensional bases for the K-dimensional column spaces instead.
This naturally leads to the question of approximation of data in
a subspace and how different basis-approximation methods per-
form. This question is beyond the scope of the present paper.
On a general basis, however, computing basis vectors for the
column space of the noise-corrupted receive block Z (%)’ by lin-
early combining its columns can always be expressed as
= Z(i)'vH#

Tp(i) 15)
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where W is some matrix in C**" such that Tp (i) becomes
orthogonal. The trick in establishing subsequent results is to
observe how the ISC algorithm reduces to the two-way power
method. We write out the above product as

Z(i)'v" = [HX(i) + Ny (i) "
= [HTu(i)Cu (i) + Ny (i) ¥

= HTy(i)Cu(i)¥" + Ny(i) v
= HTy(i)P + Ny (i) (16)
where Ny(i) = Ny (i)¥H and P = Cy(i)¥¥ is assumed
invertible for reasons that will be discussed. We see that the
last line is equivalent to step 2 in the two-way power method,
with the exception of the presence of the matrices P and N (3).
Note first, that if there was no channel noise, e.g., N3(7) = 0,
then the matrix P has no influence on the subspace convergence
(as long as it is of full rank). What we now have to study is
the combined effects of the presences of P and Ny () in the
equations. The two main issues we will deal with is 1) how to
minimize the effect of the noise term and 2) showing that the
error in the subspace estimates is limited by the norm of the (ef-
fective) noise matrix. The former is an important issue for the
engineer, seeking to maximize the effect of the subspace con-
vergence which is the subject of the paper. The latter issue is
important both theoretically and practically: Assuming the cen-
tral claim of this paper to be true—that there is such a thing
as a subspace convergence gradually driving the transmit vec-
tors towards a subspace with desirable signal-to-noise proper-
ties—this would be of little value if the channel noise associ-
ated with a single cycle could result in a complete distortion of
that convergence. To simplify the elaborations, we can put the
“distortion terms” P and Ny (7) into a common additive noise
factor. To see this, note that

HTy(i)P + N2(i) = [HTu(d) + N3P (A7)
where N3(i) = Ny(i)P~!. Now, it follows from the invert-
ibility of P that

R{[HTy (i) + N3(i)|P} = R{[HTu (i) + N3(i)}. (18)

Hence, in deriving properties for the column subspace
R{HTy ()P + N2(i)}, we can without loss of gen-
erality derive those properties for the simpler form
R{[HTy (%) + N3(4)}. Most subspace distortion results, and
indeed those we will include, depend on some norm of the
error term, in this case N3 (7). Approaching our core distortion
argument, we consider the following theorem.
Theorem 4: Let
N3(i) = No(i)P~! = Ny (i) UH [Cy (i) wH] !

be the effective noise term in estimating an orthonormal
subspace basis for R{[HTy (i) + N3(i)} = R{Z(i)' U}, as-
sume [Cy(i)¥H] to be invertible, and the rows of Cy (i)
to be mutually orthogonal and of the same L norm
I,Cu(i)Cu(i)! = % - 1. The expected Frobenious norm
E{ IN3(7)|| 7} is minimized over all choices of ¥ given Cys (i)
if and only if R{UH} = R{Cy(i)¥}.
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The proof is given in the Appendix.

Let us consider what this theorem states. First, the assump-
tion that Cy(7) has orthogonal rows seems realistic, given that
the symbol blocks are sufficiently long and the transmitted data
streams’ independence. Next, any orthonormal basis for the
column space of Z(i)' € C™*™ can be found by post-multi-
plying it with a suitable matrix ¥ € C**" complex conjugate
transposed. Finally, the invertibility of Cy(i)¥U# relates to
maintaining full dimensionality in the column spaces Tp (%),
and Ty (7). If invertibility was not the case, the implication
would have to be that some component of the row spaces of
¥ and Cy (%) were perpendicular. This, in turn, would lead to
a rank reduction in (16), representing a situation where one
of the communication channels is effectively “lost.” This case
will not be considered in further detail here but could imply
either that the noise has completely corrupted the signal or that
the assumption about the transmit vectors having components
in the important singular subspaces is broken. What is stated
in the theorem, then, is that if the matrix W, or rather, its row
subspace, has a particular relation with the row subspace of the
symbol block Cy (%), the distortion is at its minimum.

Relations With Classic Subspace Analysis: The above has
an interesting consequence for improving the success of blind
symbol detection algorithms. In constructing a suitable (and
optimal) basis-generating matrix VU, it is sufficient to have
knowledge of the row subspace of the symbol block Cy(7),
which can be estimated straightforwardly using e.g., a subspace
analysis of the received data block. This is a somewhat unusual
result for a blind method: In e.g., decision-directed (DD)
estimation, convergence of the channel parameters towards
the correct optimum will fail unless the symbols are decided
correctly, and vice versa for the symbols with respect to the
channel estimate. Here, we are in a situation where there is
some convergence, if only towards a desired subspace, even
if the symbol block is not perfectly estimated. That subspace,
in turn, is associated with high SNR, increasing the chance
of correct (blind) symbol detection. Contrasting our method
with other blind schemes, the value of performing a subspace
analysis of the received data block differs. Subspace analysis
is normally used as a means of obtaining partial channel
information, such as, e.g., one set of singular vectors and sin-
gular values, as in [11] or [21]. Obtaining the remaining set of
singular vectors is typically achieved using statistics (HOSs),
which becomes an extra computational burden. In the context
of the ISC framework, the situation is slightly different. If, e.g.,
U is chosen such that

H NH
Us = Cy(i)" e - \11/ (19)

Rotatedblock Orthogonalizer

where the term Cy (i) ©, for an orthogonal ©® € CK*X g
not the symbol block itself but a rotated version of it, then the
error-minimizing property still holds. Hence, the introduction of
a subspace analysis, e.g., through an SVD, has important bene-
fits without invoking the additional costs associated with higher
order statistics.

Below, we shall see that a number of previously published
schemes indeed inherit such error-minimizing properties, al-
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though the designers might not have been aware of it. Having
established the form of the noise/distortion term and how to min-
imize it, we recapture some subspace perturbation results from
Wedin for quantifying these errors. We effectively address issue
(2) above in showing that the effect of the distortion term on the
subspace estimation process is bounded. Dealing with distances
between subspace, the following definition from [20] is useful.

Definition 1: Let L and M be two subspaces in the com-
plex field, and let P, P 5, be projection operator matrices onto
those spaces. Then, a measure of the distance between those
subspaces are

d(L, M) = [|sin (L, M)|| = [[(I = Par)Prl|  (20)
for any unitary invariant norm.

Theorem 5: Assume that N3(i) = Ny (i) U [Cy (i)W H] 1
is the effective distortion term in estimating an orthogonal basis
for Z(7)' Then

d(R{HTy (i)}, R{HTy(i) + N3} < INs]|»

s 21

where 6 = opin(HTu (i) + N3).

The proof is given in the Appendix.

We claim that the subspace estimation error at each iteration
step is bounded by the Frobenious norm of the effective noise
term ||N3|| . The denominator term § is a measure of smallest
singular value in the matrix HT'ys(¢) after noise has been added
to it. However, since the effect of additive white noise is usually
an increase in the singular values, this is not likely to lead to
division problems. In total, the smaller the error term N3(4) is,
and the larger the singular values in HT'y (%) are, the lower is
the subspace estimation error. Clearly, the singular values (with
or without noise added) are at their highest when the columns of
Ty (4) lie in the leading right singular subspace of H. The con-
sequence, not surprisingly, is that an optimum choice of Ty (4),
e.g., one where the desired convergence has occurred is a rela-
tively stable condition: When convergence towards the optimum
subspace has occurred, subsequent (re-)estimates of this sub-
space have a lower associated error than was the case prior to
convergence.

Convergence of Primitive Schemes: Note finally, that even if
the matrix ¥ does not conform with the symbol block subspace
principle as stated in Theorem 4, the subspace estimation error
will still be bounded by the error term N3(¢), only it will not
be at its minimum. This means that even “naive” ways of con-
structing orthogonal basis vectors may succeed in converging
towards basis vectors for the optimal subspace. Consider, as one
example, the choice ¥ = [e1,e5,0,......,0]R, where e; and
e, are the first and second elementary vectors, and where the
postmultiplication matrix R has the effect of orthonormalizing
the product Z(7)'[e1, e2,0,. ... .. ,0]. Choosing ¥ this way cor-
responds simply to extracting the two first column vectors of
the receive block Z(7)" and orthonormalizing them to get a new
basis estimate Tp (z). Even with this simple strategy, there will
be a “pull” towards the leading singular subspaces, albeit with a
larger effective noise/distortion term than is accomplished when
Theorem 4 is fulfilled.
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III. RESULTS

A. Fitting Techniques Into the ISC Framework

With the framework in place and its convergence established,
we now show how some techniques fitinto it. A detailed descrip-
tion of each of the algorithms is outside the scope of the present
papers, and for this we refer to the original works. However, the
main ideas that they use should be recognizable, as should their
place in the suggested ISC framework be. In the following, P
is used to denote various specific matrix operations, and 11 de-
notes variations of the spatial correlation matrix.

1) BIMA: The BIMA [5] works in two steps. First, it tries
to estimate the received symbols using the previous set of es-
timated singular vectors. Then, assuming these estimates to be
sufficiently good, it combines them with a QR decomposition of
a certain matrix product to obtain a new set of singular vectors.
BIMA can be cast into step 4 of the ISC framework as follows:
Let Cy/(4) be an estimate of Cy (i). BIMA works by postmul-
tiplying the receive block Z(i)’ by Cy (i)', (.)! denoting the
Moore—Penrose inverse, which gives

Z(i) Cy (i)' = [HTy(i)Cu (i) + Nu ()]Cu (i)'
= HTy(i)CuCu (i)' + Ny(i)Cu (i)
= HTy(i) + Ny(i)Cu (i)' (22)
assuming the estimate Cy (i i) to be correct. The idea s that if the
effective noise term Ny (i )Cu (i)' is low, then performing a QR
decomposition of Z(i)'Cy (i)' is sufficient to obtain a K -di-
mensional orthogonal basis for R{HT(7)}, which again rep-
resents a cycle in the two-way power method. In order to speed
up the convergence, the columns of Z(i)'Cy (i) are sorted in
order of decreasing Lo norm. This sorting can be formalized as
postmultiplication by an orthogonal matrix P consisting of el-
ementary vector columns. Performing a QR decomposition of
the column-sorted matrix can be expressed by further postmul-
tiplying by a matrix R~!, so that
Tp(i) = Z(i)' Cy (i) PR (23)
where QR = Z(7)’ CU( )TP is an economy-version QR de-
composition of Z (i)' Cy (i) 'P. Now consider how this strategy
relates to the derived error-minimizing properties of the ISC
framework. Finding Tp (¢) within the ISC framework is for-
malized by setting
=Cy(i)PR™. (24)
Provided that Cy/(4) is correctly estimated up to premultipli-
cation by any square full-rank matrix, the error-minimizing ef-
fect described in Theorem 4 sets in. This is because R{¥U#} =
R{Cy(i)T} = R{Cy(i)¥}, the latter following from the defi-
nition of the Moore—Penrose inverse.

2) PROTEUS: Wen et al. [21] proposes to use the PROTEUS
algorithm [3] for subspace tracking of the spatial correlation
matrix. Extracting the eigenvectors from the spatial correlation
matrices at each side is essentially the same as performing an
SVD on the received data blocks. PROTEUS explicitly tracks

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 6, JUNE 2007

the eigenvectors of a time-varying covariance matrix by incor-
porating a forgetting factor. Ignoring the forgetting factor mo-
mentarily, the process can be fitted into the ISC framework as
follows. Let Z(i)’ = ®AQH be the economy-version SVD of
Z(7)’, and let

Ui = 7)" . R, (25)
where R1 = @ KAf(l, with @ i containing the first K columns
of ® and A the K first columns and row of A. Using VU to
extract an orthogonal matrix Tp(¢) amounts to computing the
K leading column singular vectors of Z(7)’, which is the same
as performing a (column) principal component analysis (PCA)
of Z(i)'. But note also that

\IIH — Z(,')/H 3 Rl
= [HTu(i)Cu(i) + Nu(i)] "Ry
=Culi )HTU( )HHHRl +NU(Z)HR1 (26)
P N
Assuming the noise term N to be small and
P = Ty(i)®HER; to be full rank, it follows that
R{VHE} =~ R{Cy(i)¥}, eg., the distortion-minimizing

criterion holds approximately. The assumption that P should
be of full rank is plausible as long as the columns of Ty (¢ )
are not perpendicular to the columns of H, Ty(i)"H i
nondegenerate, which was previously assumed. The leadmg
principal components extracted through postmultiplication with
R, will be dominated by the signal part Cy(i)? Ty (i) H¥
of U, provided the noise is sufficiently small. Concluding,
the PROTEUS algorithm, like the BIMA, tends towards
distortion minimization in the subspace estimation process. As
for the forgetting factor, it makes the above claim a bit less
certain—its use implies that the latest basis vector estimates
not only are linear combinations of the received data block, but
also contain contributions from the column space of previous
data blocks. However, for relatively slowly changing channels
and/or forgetting factors implying a short memory, both of
which are typical situations, the proposition is justified. The
convergence occurs not only in a subspace sense, but also on a
vector-by-vector basis. In fact, we can show such convergence,
even for situations where only a subset of K < K| singular
vector pairs are used for communication.

Convergence of the PROTEUS Algorithm: 1t is relatively
straightforward to see that if all K = K singular modes are
used for communication in PROTEUS, then the estimated basis
vectors held in Ty, Tp will be close to the singular vectors
of some square channel matrix H. This is because the spatial
correlation matrix at, say, the BTS, can be computed in the
noise-free case as

L_z0)z(i)"

n—1 = HTy(i)Cu(i)Cu (i) " Tu (i) "H"

~ ¢-HTy(i)Tu (i) HY
=c¢-HHY

27)

where we have used the assumption that independent
data streams held as rows in the symbol matrix yield
Cu(i)Cuy(i)f =~ c - I where c is some constant, and that
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since Ty (7) is square, the relation Ty (i) Ty (i) = I holds
true. The left singular vectors of H are the eigenvectors of
HHZ~, and hence the singular vectors of H can be estimated
directly from Z(4). It is also known from the literature that
white additive noise does not affect the expectation of the
estimated singular/eigenvectors, only their eigenvalues. Hence,
the estimation procedure is unbiased with respect to white
noise. The next natural question now is, “What happens if only
a a subset of the singular vectors are used for transmission?”
In this case, Ty(i)Tuy(i)¥ # I, and a central condition is
broken. However, let us assume that the columns of Ty () are
indeed in the leading right K-dimensional singular subspace
of H or that R{Ty(¢)} = R{Vk}. We can then apply the
following theorem.

Theorem 6: Assume the rows of Cy(7) to be orthogonal
and of equal Ly-norm [, and R{Ty(i)} = R{Vk}. Then, the
leading K left singular vectors of the matrix Z(7) are equal to
the leading K right singular vectors of the matrix H up to mul-
tiplications by a scalar.

The proof is given in the Appendix.

The theorem states is that if the transmit vectors are already
in the right subspace, the correct singular vector estimates will
be obtained by extracting the K first eigenvectors of the spa-
tial correlation matrix. But the “if” part is precisely what the
ISC scheme, wherein PROTEUS is a natural member, provides.
Clearly, the effects of noise and the question about the orthog-
onality of Cy(¢) will affect the precision of the claim, but the
tendencies for convergence of the PROTEUS algorithm should
be explainable by the above arguments.

3) Liu and Host-Madsen: In the paper [11], a method is
presented for communicating both on a single-input multiple-
output (SIMO) and on a MIMO TDD channel. Initially, a full
block of symbols is transmitted from the base station to the mo-
bile subscriber, to enable the computation of the spatial correla-
tion matrix. At the SU, the top eigenvector of this matrix, cor-
responding to the top right singular vector v; is estimated via
an eigenvector-eigenvalue decomposition (EVD) of this matrix
and is used for transmitting a binary-phase-shift-keying (BPSK)
symbol uplink. It is then shown that for a constant H matrix, the
receive spatial correlation matrix at the BTS is

M =uul A} 4 071 (28)
where (u1, A1) is the maximum right singular vector/singular
value pair of the channel. In turn, this means that u; can be
estimated again by an EVD. At the BTS, u; is used again for
downlink communication, and the spatial correlation matrix at
the SU becomes

I=vivIX + 6% (29)
enabling the re-estimation of v; in the same fashion. These steps
are repeated, and it is argued that the singular vectors will be
tracked also for time-varying channels. However, no comment
is made as to why these singular vectors are traceable by such
a simple scheme. Two things can be noted a) that after the ini-
tialization, it is practically identical with BIMA using one top
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singular mode only, and b) the reason why this technique suc-
ceeds in tracking the channel parameters v; and u; when H
changes with time is once again down to the ISC.

Until now, we have only investigated published methods in
light of the ISC framework. However, the principle also allows
construction of new and other simple methods. Two first exam-
ples are given below.

4) A QR-Based Method: Returning to the example of Fig. 2,
consider the following algorithm. At the BTS, the matrix Z(4)’
is received, and the spatial autocorrelation matrix computed as

(30)

Next, we sort the columns of II in decreasing order according to
their Ly norm and perform a reduced QR decomposition where
only the K first columns of the orthogonal matrix are retained.
These two steps can be expressed as postmultiplication by P, a
square column-perturbation matrix, and subsequent multiplica-
tion by a matrix J in CV X% In total, this yields

Tp (i) = IPJ = Z(i) { 31)

~

! 1 Z(z’)’HPJ]

n —

~~

W H

which is again on the form of the ISC framework. Note further-
more that

1
n—1
1
n—1
1
= : Cu(i)"Tu(i)"H"PI + Ny (i)"PJ

n_
1

n—1

UH —

Z(i)"PJ

[HTy(i)Cu (i) + Ny (i)' PJ

Cu(i)"Q(i) + Nyu (i)

(32)

where Q(i) = Ty(i)PH¥PJ and Nyp(i) = Ny(i)PJ.
Assuming the additive noise factor to be small, we can make
the approximation R{W#} ~ R{Cy(i)}, as was the case
with PROTEUS. The effect of sorting the columns prior to
the QR decomposition is to favor vectors with large norms as
candidates for basis vectors in Tp(¢). The rationale behind
this is that vectors with large norms are likely to have been
“scaled large” by previous iterations and are likely already to
be in the leading singular subspace. This method still results
in transmit-receive filter matrices Tp (%), Ty (7), which are
rotated relative to Ug, V.

5) A Training-Based Method: So far, the methods we have
considered are blind. A natural question is whether the ISC
effect has any consequences for training-based methods, or
whether training-based schemes could be constructed to take
advantage of the ISC. To shed some light on this, consider the
following training-based scheme. First, a set of known training
symbols held in the matrix Cy (z)’ are transmitted uplink using
the prefilters held in Ty (¢), so that

X(i)' = Ty(i)Cu (i)’ (33)
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which is received at the BTS as

Z(i) = HX (i) + N(4)
=HTy(i)Cu(i) + N(i). (34)

Now, since the training symbols held in Cy ()’ are known by

both parties, we can use the pseudoinverse Cy(4)'f to compute

HTy(i) = Z(i) Culi)t

= [HTu(i)Cu(i)|Cu (i) + N(i)Cu (i)

= HTy(i) + N(i)Cu(i)"". (39)
Assuming the noise to be sufficiently small, and computing an
orthonormal basis for the result Z(i)'Cy(i)'T € CV*K by
using a QR decomposition—or indeed by using any other or-
thogonal basis for Z(7)'Cy(i)'f, we are once again invoking
the convergence of the two-way power method. The same pro-
cedure is repeated in the DL direction.

B. Simulation Results

Evaluating the latter training-based method, a two-way
MIMO communication scheme is constructed, where a pilot
sequence is sent and the channel is estimated at the receiver
side prior to decoding of the payload data. Both the training
sequence and the actual data blocks have less rows/independent
(K) streams than the maximum number (Kj). Each symbol
block then has to be premultiplied by a NV x K transmit vector
block, Tp() or Ty(i) on the base stations and subscriber
units, respectively. The effective uplink and downlink channels
then become HTy (i) and H¥ Tp (7). We now compare two
different settings, as follows:

a) the one where Ty (i) and Tp (i) are chosen randomly

anew in each iteration;

b) the one where Ty (i) and Tp(7) are constructed as (ar-
bitrary) orthonormalized linear combinations of the re-
ceived data blocks.

The latter is in accordance with rule B) we put up for suc-
cessful convergence of the vectors towards the top singular sub-
spaces. As it turns out, version b) has the interesting property
of mimicking some characteristics of a water-filling algorithm.
The idea of water-filling is to use only the singular modes with
a sufficiently high receive SNR for communication, and skip
subsequent modes. However, to do this, one must perform an
SVD of the channel at the transmitter. Here, the estimation of
the top eigenmodes (or at least a basis for them) occurs “by it-
self” without the need for an actual SVD. The exact linear com-
binations for obtaining the precise singular vectors may not be at
hand, but using a linear combination of the best singular vectors
is a good second best to using the vectors themselves. Version
b) of the scheme could be properly described as a “poor man’s
water-filling method,” taking a limited advantage of its main
characteristics (SNR maximization), while avoiding its highest
costs.

Fig. 3 shows the results, using a 6 X 6 MIMO channel, trans-
mitting on K = 3 streams, with a block length of 200 sym-
bols, and a training rate at 20% of the channel capacity over
500 Monte Carlo runs, each with 20 transmitted blocks. The
upper curve shows performance without the subspace scheme,
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Fig.3. Biterrorrates fora6 x 6 MIMO TDD scheme, communicating on ' =
3 modes, with the use of subspace power iterations and without.

the lower using it. The initial five blocks were considered an ac-
quisition period for the subspace basis vectors to converge and
were, hence, kept out of the computations. In the presence of
noise, the top singular subspaces are the ones that provide the
highest SNRs. Hence, it is not surprising that the method using
“top subspaces” outperforms the “random subspace” method.

IV. DISCUSSION

We have presented a framework for utilizing the impact of
the power method for communicating in a subspace with max-
imum SNR. This was accomplished by constructing the transmit
vector blocks in accordance with some simple rules enabling the
intrinsic subspace convergence to start operating. It was shown
that several published methods rely on or could benefit from
the ISC effect. The stability of the framework and robustness
against noise was demonstrated both by mathematical analysis
and by simulations. Although the theory of the framework was
developed for constant channels H, channels that are slowly or
intermediately time varying can also be tracked: At each itera-
tion step, the estimates of the basis vectors are realized from a
process containing the latest channel. If the time variation is not
too fast, e.g., if the convergence rate of the algorithm is faster
than the speed of the channel time variation, tracking will be
successful, as shown in previous literature [5].

A typical way of assessing a communication scheme is by
its symbol or bit error rates. Two typical sources of symbol de-
cision errors are noise and faulty channel estimation. Further-
more, many adaptive schemes contain an inherent dilemma: “If
the symbol decision is poor, so will the channel parameter es-
timates be, and vice versa.” The ISC has the potential of ob-
taining good channel parameter estimates without good symbol
decisions. It improves transmission schemes by allowing com-
munication in the “best subspace,” the one maximizing the re-
ceive SNR. The convergence towards these top singular modes
is robust, in the sense that as long as the transmit-receive vector
design is made linear, a convergence pull occurs regardless of
other factors, such as success rate of the symbol decision. This
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is in contrast with, e.g., decision-directed estimation, where er-
roneous symbol decision might lead to erroneous channel esti-
mation ad infinitum.

A. Further Research

A large number of methods for blind, semiblind, or training-
based communication could be designed within the ISC frame-
work. Subspace-boosted DD estimation for channel tracking is
but one obvious example.

More work needs to be done and more results derived to
assess the success of the eigenestimation for various algorithms
within the framework, and also for various channel settings.
We have assumed the symbol blocks to have independent
streams, but one could ask what would happen if they were not.
Furthermore, colored channel noise will affect the estimated
basis vector in each step. The overall performance effect of this
is not clear, but deficiency bounds could possibly be derived
using results such as Wedin’s theorem. Simulations and pre-
vious methods implemented on the basis of the eigenestimation
effects do show good promise.

APPENDIX

Proof of Theorem 2: Consider step 3 of the two-way power
method. In replacing the QR method with another orthogonal
decomposition, the term [T p (7), R] is effectively replaced with
some other term [T p(4)’, R'], where R is not necessarily upper
triangular. However, since both Tp(¢) and T p(¢)" must be or-
thogonal matrices spanning R{Y (7)}, there must exist some
matrix Q € CKXK such that Tp(i)) = Tp(i)Q. In step
4 then, X(i + 1) = HETp(i)) = HEITp(i)Q. In step 5,
finding an orthogonal basis for R{X (i 4+ 1)} by QR or some
other method, the presence of the matrix QQ becomes irrele-
vant in the subspace sense. Finding an orthogonal basis for
R{H"Tp(i)Q}, or finding it for R{HYTp (i)} is equivalent,
since the subspaces are the same. Since this relation holds in
every step of the algorithm in both directions, it also holds upon
convergence.

Proof of Theorem 3: Consider step 4 in the ISC framework.
Computing an orthonormal basis for the columns of Z(7) can
be done by postmultiplying by some matrix ¥ € CK*"_ as
previously argued. Writing out, we have

Tp(i) := Z(i)VH = HT(i)Cp (i) T
= HTy(i)P(i) (36)
where P(i) = Cy(i)¥H is in CE>*X and according to the
definitions of the ISC framework, ¥ is chosen so that Tp(4) is
orthogonal. Compare the last line in (36) with steps 2 and 3 in
the two-way QR power Iterations. Comparing with step 2, the
matrix Y (z) is on identical form, with the exception of the mul-
tiplication by the matrix P. Following the same reasoning as in
the proof of Theorem 2, the matrix P does not affect conver-
gence in the subspace sense, and the theorem follows.
Proposition 1: Let A, B in CN*M be orthogonal matrices,
A"A =BYB =1,where N > M.Then, R{A} = R{B} &
A = BQ for some orthogonal matrix Q € CM*M
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Proof: The if part is straightforward: for the only if part,
note that R{A} = R{B} = A = BX for some invertible ma-
trix X € CMXM Byt A is orthogonal, and hence I = AHEA =
XEBHBX = XHX which means that X is orthogonal.

Definition 2: For a fixed orthogonal matrix B € CV*M and
N > M, let Sp be the set of orthogonal matrices in CN*M
such that A € Sp if and only if AZBB¥ A is invertible.

Proposition 2: Define f(A|B) = tr{(A¥BB#A)~!} for
fixed orthogonal B € CN*M N > M. The minimum value of
fover A € Spis M.

Proof: We can rewrite f(A|B) = S22 \(A|B)™,
where \;(A|B) are the eigenvalues of Az BB A. The largest
eigenvalue of AHBBH A is

mmax xTA"BB” Ax = |B” Ax||3

< IBTIBIIAL3Ix]I3 = 1. 37

Hence, f(A|B) > M. To show that there exist A for which
f(A|B) = M, take A = BQ, where Q is orthogonal, and
observe that AFBBH# A = Q¥BYBB?”BQ = I, implying
all eigenvalues are 1 and f(A|B) = M.

Proposition 3: For fixed orthogonal B € CN*M N > M,
f(AB) = tr{(AFBB# A)~'} is minimized over A € Sp
< R{A} = R{B}.

Proof: The if part follows from the proof of Proposition
2 via Proposition 1. For the only if part, note that f(A|B) is
minimum when another function

g(AB) = trA"BB# A (38)
is maximum. This is because g(A|B) = Zfil Ai(A|B)
whose maximum is attained when all \;(A|B) are max-
imized and equal to 1 (from Proposition 2). Then also,
and only then f(A|B) minimum. But we can rewrite
g(AB) = |[BTA|Z = L, |B7al|,”, where {a;} are
the columns of A. Ifa, € R{B} forall ; < 1 < M, the term
|BHa||; is 1 for all i € [1, M] and g is maximum. If some a;
has a component outside R{B}, the term ||B#a|; < 1 and
g(A|B) is not maximum. Thus, a; € R{B} must hold for all
i. This implies R{A} C R{B}. Since A and B are full rank
and dim(A) = dim(B), it follows that R{A} = R{B}.

Proof of Theorem 4: Let ¥ = USVH be a singular value
decomposition of ¥ € CN'™ with U € CVNXN S ¢ CN*N
and V € C™"*N | giving

N3 (i) = Ny () v [Cu (i) 7]
= Ny (i) VSU"[Cy (i) VSUY |

= Ny (i) VSU#[WSU# ]! (39)
where W = Cy(4)V is in CV*¥_ Hence
N3(i) = Ny (i)VSUPUS'w!
=Npy(i)VW 1
= Nyp(i)W™? (40)

assuming W to be invertible, a direct consequence of the
theorem’s definition, and where Ny (i) = Ny (7)V is now
a noise term that will have the same statistical properties as
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Ny (i), since it is merely a rotation of the latter. Now, consider
the expected Frobenious norm of the error

B{|[Ns(i)13} = E{tr N3 (i) N (i)}
= E{tt W Ny (i) Nyy (i) W1}
=toW ZE{Nyy (i) Npy (i) }W !
=nNo? - tr W HW!

nNo? - tr (WWH)~1

=nNo? - tr (WHEW)™1

(41)

where o2 is the noise variance. Assuming Cy (i) to have or-
thogonal rows (as stated)
tr(WHEW) ™! = tr(VECy (i) Cy(i)V) L. (42)

Letting B = (1/1)Cy(i)¥ and A = V in Proposition 3 above,
the theorem follows by noting that R{U#} = R{V}.

Theorem [20]: Let A,B, and T be matrices in CMxK,
where K < M. We define B = A + T, where T represents
a perturbation of A. Let Y and X be matrices containing
orthogonal basis vectors spanning R(B) and R(B*) respec-
tively. Let furthermore Ry = —TX and Rs = —THY . Let
6 = omin(B) be the smallest singular value of the matrix B,
and ¢ = max(||R1||, ||Rz||). Then, for every unitary invariant
norm

d(R(A), R(B)) < = (43)

SN

Corollary: Since the matrices X and Y merely represent
projections of the error term T onto the row and column sub-
spaces R{B} and R{B*}, it follows that | T||r > ||R1||r and
IT||F > ||R2||F- Hence, € < ||T||F, and

a(RA), RB)r < LT

(44)

where d(-,-)r denotes the distance according to Definition 1,
and the Frobenious norm is the chosen norm.
Proof of Theorem 5: Using the corollary above, setting T =
N3(i), A = HTy(i) and B = A + T, the theorem follows.
Proof of Theorem 6: Taking H = USVH as an SVD of H,
one can write

Z(i)Z(i)" = HTy(i)Cy (i)Cu (i) " Ty (i) "HY
= USVHTy(i)Cy(i)Cy (i) Ty (i) vSU¥
=1-USVHETy(i) Ty(i)EV SUH
N—— N——
Q) Q)"
=1-USQ(1)Q(i)"SU
=1-USIy SU#

=1-UgS%3 UL (45)

We have used the relation Q(7)Q(i)? = Iy x, where Iy f is
an N x N matrix with ones on the first K diagonal elements
and zeros elsewhere. This follows from the fact that if T () is
in the subspace spanned by the first columns of V, then

Q(i) = VATy(i) = (“g”) (46)
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where W (4) is an orthogonal matrix. The leading singular vec-
tors of H can then be extracted as the K leading eigenvectors
of the autocorrelation matrix, and the theorem follows.
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