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System Identification Using a Linear Combination of 
Cumulant Slices 

Jose A .  R.  Fonollosa, Member, IEEE, and Josep Vidal, Student Member, IEEE 

Abstract-In this paper we develop a new linear approach to 
identify the parameters of a moving average (MA) model from 
the statistics of the output. First, we show that, under some 
constraints, the impulse response of the system can be ex- 
pressed as a linear combination of cumulant slices. Then, this 
result is used to obtain a new well-conditioned linear method 
to estimate the MA parameters of a non-Gaussian process. The 
proposed method presents several important differences with 
existing linear approaches. The linear combination of slices used 
to compute the MA parameters can be constructed from dif- 
ferent sets of cumulants of different orders, providing a general 
framework where all the statistics can be combined. Further- 
more, it is not necessary to use second-order statistics (the au- 
tocorrelation slice), and therefore the proposed algorithm still 
provides consistent estimates in the presence of colored Gauss- 
ian noise. Another advantage of the method is that while most 
linear methods developed so far give totally erroneous esti- 
mates if the order is overestimated, the proposed approach does 
not require a previous estimation of the filter order. The sim- 
ulation results confirm the good numerical conditioning of the 
algorithm and the improvement in performance with respect to 
existing methods. 

I. INTRODUCTION 
PECTRAL analysis based on higher order statistics has S received great attention in recent years. The developed 

tools allow dealing with problems where either nonlin- 
earities, non-Gaussianity , or nonminimum phase systems 
are present, and they are of great value in diverse fields 
such as radar, sonar, array processing, blind equalization, 
time-delay estimation, image and speech processing, and 
seismology [ 13, [2]. 

This paper presents a new approach to identify a (pos- 
sibly) nonminimum phase linear system driven by i.i.d. 
non-Gaussian noise from just output measurements. This 
problem can only be solved if higher order statistics are 
used since, as it is well known, second-order statistics are 
phase-blind, i.e., they contain only magnitude informa- 
tion. The developed method can also be applied when the 
measurements are contaminated with additive colored 
Gaussian noise or i.i.d. noise. 

Although only systems with a finite impulse response 
(FIR) are considered, the method we propose can be ap- 
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plied to the identification of the moving average (MA) 
parameters of an autoregressive moving average (ARMA) 
model using the AR compensated process (or the AR 
compensated cumulants). It can also be used to identify 
both the AR and MA parts of a noncausal ARMA model 
using the “double MA algorithm” [2]. 

Apart from the theoretically important, but impractical, 
closed-form solutions, the available methods for the iden- 
tification of FIR systems can be classified in two cate- 
gories: linear algebra solutions and optimization solutions 
[2]. Optimization solutions usually provide better esti- 
mates than linear methods but they require complex non- 
linear optimization algorithms. Another disadvantage of 
the optimization-based methods is that they may converge 
to a local minimum. Hence, even if the accuracy of these 
methods is necessary for our application, it is a good idea 
to initialize the nonlinear iterative algorithm with a good 
linear algebra solution. 

The developed algorithm is linear but it presents sev- 
eral interesting differences with respect to existing linear 
algebra solutions. These new characteristics can be sum- 
marized as follows. 

1) The impulse response is computed as a linear com- 
bination of cumulants slices. The weights of this linear 
combination are the solution of an underdetermined linear 
system which is always well conditioned if SVD tech- 
niques are used. 

2) Different sets of cumulant slices of different orders 
can be considered. Although it is not necessary, all the 
cumulants of orders 4, 3 and 2 (autocorrelation) can be 
combined. The methods developed by Giannakis and 
Mendel (GM) [6] and Tugnait (T) [8] require the use of 
the autocorrelation function while in our algorithm this is 
just an option. Consequently, it can provide consistent 
estimates in the presence of colored Gaussian noise of un- 
known power spectral density. No linear approaches pub- 
lished so far provide a general framework to combine all 
the statistics. 

3) Existing linear methods for estimating the MA pa- 
rameters as the C ( q ,  k )  [5], GM, and T methods require 
an exact knowledge of the MA order and give totally er- 
roneous estimates if the order is overestimated. The pro- 
posed algorithm does not need a previous estimation of 
the filter order or any other parameters as required by the 
bicepstral method [7]. 

The following section presents the basic results that al- 
low expressing the impulse response or MA parameters 
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as a linear combination of cumulant slices. Section I11 dis- 
cusses the application of these results to the estimation of 
the parameters of a MA process and proposes a simple 
algorithm. Finally, Section IV presents some simulations 
results comparing the new method with existing linear ap- 
proaches. 

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. I, JULY 1993 

11. CUMULANT SLICES 
In [4] it was shown that for an AR model, there is al- 

ways a linear combination of l-D cumulant slices (w-slice) 
that gives the impulse response of the system. This 
w-slice is used in [9] to develop an adaptive algorithm for 
estimating the AR parameters. In this paper this result is 
extended to MA processes and a general procedure for 
computing the weights of the linear combination is given. 

Consider a MA (q)  process x ( n )  
9 

k = O  
x ( n )  = c b(k)u(n  - k)  (b(0) : = 1, b(q) # 0) 

(1) 

where u(n) is a driving i.i.d. non-Gaussian sequence with 
E ( u ( n ) }  = 0 and mth order cumulants ym. The Brillin- 
ger-Rosenblatt summation formula relates the mth order 
cumulant of x (n) to the impulse response b (n)  as follows: 

q m - I  

io = 0, m z 2 (2) 

Our goal, the FIR system identification problem, is to re- 
cover the right side terms b(n)  from the left size terms 

If we fix the indexes i2 to im - the resulting 1 -D cu- 
mulant slice can be expressed as the cross correlation of 

Cm,.x( 1. 

b(n) and b(n; i2, * 9 i m -  I )  

Cfn,,(i, i2, - 7 i m - 1 )  

4 

n = O  
= C b(n + i )b (n ;  i2 ,  - * 9 i m - 1 )  (3) 

where the causal sequence b(n;  i2, * * 

as 
, im - is defined 

m -  I 

b(n; i2, . . 3 i m - 1 )  = Ymb(n) II b(n + ik). (4) 
k = 2  

From (3) and (4) its clear that any linear combination of 
slices 

4 

C,(i) = W2C2,,(i) + , c W 3 ( j ) C 3 , , ( i , j )  
.I= -4  

q i  

+ j = c -q  k = c -q W4(j, k )  C4,,(i, j ,  k )  + * * . (5 )  

can also be expressed as the cross-correlation of b (n) and 
g,(n) 

4 

n = O  
C , ( i >  = b(n + i)g,(n) (6) 

where g, (n) is the following causal sequence: 
4 

g,W = w2bW + , w 3 ( j ) b ( n ; j )  
.I= -4 

q j  

+ c c w4(j, k ) b ( n ; j ,  k )  + * . (7) 
j= -q k =  -q 

Equation (6) shows that, for a MA model, any w-slice can 
be expressed as the cross correlation of two finite causal 
sequences b (n) and g, (n). The idea behind the developed 
FIR system identification method is to choose the weights 
that give 

1 n = O  i 0 n f O  
g,(n) = 6(n)  = 

since then C,(i) will be equal to b ( i ) .  
Of course, we cannot use (7) to choose the weights be- 

cause we do not know the sequences b(i;  * * .), but we 
can use the following results and properties of the 
w-slices. 

Theorem I: If a w-slice C,(i) is causal, then C,(i) = 

Proofi This theorem and other important properties 
of the cumulant slices can be proven using basic linear 
algebra results if we interpret the 1-D slices as vectors: 

c, (0) b (i). 

C m , x ( i 2 7  . .) = ( C m , x ( - q ,  &, * . a), * * * 3 

C m , x ( O ,  i2, . * * I ,  . * * , 

C m , x ( q ,  i2, * . -1)' 

c w  = (cv( -q) ,  * - * 2 C,(O), * , c,(q))r. 

c, = sw (8) 

Then, ( 5 )  can be expressed in matrix notation as 

where the matrix of cumulants S and the vector w are de- 
fined as 
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Equation (7) can also be rewritten as 

c w  = gw(0) 

a 

= 9 g,(n)b,. 
f l = O  

This equation clearly shows that any slice or w-slice can 
be expressed as the linear combination of the q + 1 coef- 
ficient vectors b,. Observe that these vectors are linearly 
independent. From (9) it is now straightforward to see 
that if a w-slice is causal, then g,(q) = g,(q - 1) = * * * 

= g,(l) = 0, that is, C,(i) is proportional to bo. 
* , 0) is a simple 

example of a causal w-slice since 
If -ym # 0 the slice Cm,,(q,  0, 

i < O  

This example is also a proof of the existence of causal 
w-slices. 

Two particular cases of this theorem will be of interest 
in the rest of the paper. 

Corollary I: If a w-slice C,(i) is causal and C,(O) = 
1 ,  then C,(i) = b ( i ) .  

Corollary 2: If a w-slice C,(i) is equal to zero for i I 
0, then C,(i) is also zero for i > 0. 

The matrix notation used in (8) and (9) allows us to 
obtain other useful properties of the slices subspace. 

Theorem 2: The rank of S, i.e., the dimension of the 
slices subspace, is equal to r ,  the number of nonzero coef- 
ficients. 

Proof: First, it is shown that the rank cannot be 
greater than r. Then, we find r linearly independent slices 
to complete the proof. 
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(9) 

can be reduced from q + 1 to r: 

c, = c g,(n)b,. (10) 
n , b ( n ) # O  

Therefore, the upper bound of the rank is also reduced to 
r. We show now that r is also a lower bound. 

Consider the slices Cm,x( i ,  0, * - * , 0) whose same- 
numbered coefficients b (i) are nonzero 

Cm,x(i, 0, * * -) = (0, e ,  0,  C,,,,(-q + i, i, e ) ,  

C m , x ( q ,  i, . *)I' 
(i = 0,  * . , q; b ( i )  # 0). (11) 

If -ym # 0 then these r slices are linearly independent since 
they have a strictly increasing number of zero terms in the 
first rows 

Cm,x(n, i, * * 9 0)  

n <  - q + i  

n = -q + i. 
= [o 

y,b(i)b(q) # 0 

This result completes the proof and it also shows that any 
w-slice can be expressed as a linear combination of the 
above set of slices, i .e. ,  they are a basis for the slices 
subspace. 

Consider the submatrix S,  formed with the upper q + 
1 rows of S 

With minor modifications the proof of Theorem 2 is also 
valid to prove that the rank of S, is r. This is not an un- 
expected result since Corollary 2 tells us that S,  has the 
same nullspace as S. Observe that we can also construct 
a basis for this subspace with the first q + 1 elements of 
the slices (11). 

From (9) it is clear that the rank is less than or equal to 
the number of coefficients q + 1. Furthermore, if a coef- 
ficient b(n) is equal to zero, then from (4) and (7) we can 
conclude that g,(n) will be also equal to zero for any 
w-slice, i.e., the number of terms in the summation (9) 
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So far we have assumed that the matrix S was formed 
by all the cumulant slices of any order. This is the most 
general assumption since any linear combination of slices 
is considered. Hence, it is clear that Theorem 1 is still 
valid if only a finite number of slices (columns) is consid- 
ered. The rank of the corresponding finite matrix S will 
also be r if a basis as the set of slices given by (11) is 
included. 

111. ALGORITHM 
In Section I1 several properties of the w-slices and slices 

matrix or subspace have been presented. In this section 
we will study the application of these theoretical results 
in the development of FIR system identification methods 
based on cumulants. 

Consider the MA (q) process given by (1). Corollary 1 
indicates that the coefficients b (i) of the FIR filter can be 
recovered from the cumulants if we find a set of weights 
that gives a causal w-slice with C,  (0) = 1. The resulting 
system of equations can be condensed in a single matrix 
equation 

SW = bo (13) 

where the unknowns are the vector w (weights), and the 
last q elements of bo (coefficients). In general, the number 
of unknowns is greater than the number of equations but, 
provided that the true statistics are used to construct S ,  
Corollary 1 assures that the solution is unique for the coef- 
ficients. 

In a practical system identification problem the cumu- 
lants have to be estimated. In this case the rank of S will 
not be exactly r and the solution of (13) for both w and 
the coefficients will not be unique. If the covariances of 
the cumulant estimates were available, we could think in 
developing an optimum criterion to choose one solution 
for the coefficients. Even in this case the resulting algo- 
rithm might be quite involved. We will discuss here a new 
simple approach that does not require any knowledge of 
the cumulant covariances. 

As we have just mentioned, in general, the solution for 
w will not be unique. As a first approach we could think 
in using only one nonzero weight. In fact, in Section I1 it 
was shown that the slices Cm,,(q,  0, - , 0) were causal, 
hence, we can use only one of these slices in the linear 
combination to obtain 

bo = Sw = wm(q, 0, * - - , O)C,,.(q, 0, * * , 0) 

The resulting equation is nothing else but the C(q,  k )  
method [5]. This is an important theoretical result. Never- 
theless, in practice, the C(q, k )  method does not provide 
good estimates since only one slice is considered. Insta- 
bilities are also likely to appear as the estimated cumulant 
C,,,(O, q, 0, * * * , 0) may be close to zero. 

The proposed approach to combine all the slices in the 

estimation is to choose the vector w with the minimum 
norm, This is a simple and usual solution to an underde- 
termined system equation and, if SVD is used, the solu- 
tion will always be well conditioned. The results of the 
simulations confirm the good behavior of this method. In 
fact, this solution would be the optimum solution if we 
did not consider the error in the estimation of the weights 
and the cumulants estimates were independent and had all 
the same variance. The resulting algorithm is the follow- 
ing: 
W-Slice (WS) Algorithm: The matrix equation (13) is 

solved in two steps. 

S1) Computation of the minimum-norm weights that 
give a causal w-slice with C,  (0) = 1. 

S,w = (0, , 0, 1)' = 1 

w, = St1 (14) 

where Su# denotes the pseudoinverse of S, .  

in matrix notation 
S2) Computation of the coefficients as b (i) = C,(i) or 

bo = Sw, = SStl. (15) 

Observe that Theorem 1 is still valid if b(q) is zero. 
Hence, if SVD is used to obtain the minimum-norm 
weights we do not require an exact knowledge of the order 
q or the number of nonzero coefficients r .  The C(q ,  k )  
method is also a proof that we do not require the complete 
basis given by (1 1) to obtain a consistent estimator. If the 
order q is known we just need to include the slice C,,x (4, 
0, - - .  , 0) in S to assure the consistency of the WS es- 
timation. If we only have an upper bound (qmax) and a 
lower bound (qmin) of q then the required minimum set of 
slices for the WS algorithm is 

Observe it is not necessary to include the C,,,,(O, 0, 
. . .  , 0) slice to obtain a consistent estimator. Hence, we 
can still use this approach in the presence of non-Gaussian 
i.i.d. noise. Of course, any kind of Gaussian noise is not 
a problem either, since the slice C2,x is not necessary in 
any case. 

In the WS algorithm the matrix S ,  may be decomposed 
using SVD to obtain the pseudoinverse. Another approach 
is to apply SVD directly to the complete matrix S .  We 
know from Theorem 2 that, when the true statistics are 
used, the rank of S is less than or equal to q + 1. When 
the estimated cumulants are used in S the rank is, in gen- 
eral, greater. Since this increase in rank is due to the noise 
in the estimates we can perform a previous rank reduction 
of S using SVD. The singular values of S can also be used 
to estimate the number r of nonzero coefficients. 

Additional information as the variances of the esti- 
mated cumulants may be used to improve the performance 
of the algorithm. Combining weighted slices with the 
same variance seems a plausible choice in this case. 
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TABLE 1 
E X A M P L E  I, 1000 MONTE C A R L O  RUNS, N = 400/ 1000 

Parameter True Value C ( q ,  k )  GMT 1 GMT2 ws 

-0.81 & 0.14 -0.79 f 0.06 -0.80 f 0.03 

b ( l )  - I .25 - 1.27 f 0.23 - 1.27 f 0.23 -1.23 f 0.11 -1.23 f 0.11 
- I  .46 f 0.26 -1.41 f 0.29 -1.41 f 0.16 b(1) - I .40 - I .43 f 0.22 

b (2) 0.98 1.00 + 0.24 

b(1) -1.13 -1.15 f 0.18 - 1.19 + 0.26 -1.12 k 0.16 -1.13 k 0.09 
b (2) 0.60 0.61 k 0.20 

b ( l )  -0.80 0.81 0.14 

0.98 + 0.08 0.97 k 0.1 I 0.99 f 0.17 

0.59 & 0.06 0.59 0.11 0.61 0.07 

IV. EXAMPLES 
The objective of the simulations is to compare the per- 

formance of the proposed algorithm with existing ap- 
proaches. We are also interested in checking the good be- 
havior of the algorithm when the system order is 
overestimated or the observations are noisy. 

As stated in the introduction, several methods have been 
reported in the literature for the identification of FIR sys- 
tems. The GM method [6] is one of the best known and 
it has received the attention of authors such as Tugnait 
[8], [IO], [ l l ] ,  and Porat and Friedlander [3] who have 
studied its performance and have proposed various mod- 
ifications to the original approach. We present the results 
obtained with two modified versions of the GM method 
that will be denoted as GMT1 and GMT2. Details can be 
found in the Appendix. The results of the C(q,  k )  method 
[5] are also included. 

Another linear approach that shares various character- 
istics with the WS approach is the bicepstral method de- 
veloped by Pan and Nikias [7]. As in the WS method, this 
cepstra-based method requires neither order determina- 
tion nor the use of second-order statistics. Nevertheless, 
the bicepstral method is, in some sense, a nonparametric 
approach and it does not work when the zeros are close 
to the unit circle. In the simulations, we have restricted 
ourselves to the clearly parametric approaches mentioned 
in the previous paragraph. All of them need a prior esti- 
mation of the MA order, but no other restrictions on the 
MA coefficients are required. 

Except in Example 5 ,  for the WS algorithm the 2Q + 
1 third-order cumulant slices C 3 , x ( j )  ( j  = -Q, . - , 
Q) have been used to form a 2Q + 1 by 2Q + 1 statistics 
matrix S .  

Example 1: Porat and Friedlander studied in [3] the 
performance of the GM approach for different systems. In 
this example we consider the same MA (1) and MA (2) 
processes. The input is an i.i.d. (one-sided) exponentially 
distributed random sequence. No noise is added to the 
output samples used to estimate the parameters. For the 
WS algorithm Q is equal to the true order q. The results 
of a Monte Carlo simulation with 1000 runs are shown in 
Table I (mean k standard deviation). The record length 
was 400 for the MA (1) models and 1000 for the MA (2) 
models. 

Example 2: The first MA (1) process of Example 1 is 
used now to test the algorithms with noisy observations. 
The Monte Carlo runs were performed in the same con- 

ditions as in Example 1 ,  but white Gaussian noise was 
added to the output signal. The signal-to-noise ratio was 
10 dB. As expected, the variance of the estimation in- 
creased for all the algorithms. The estimation given by 
the GMT2 algorithm is also clearly biased since the ex- 
pected value of the measured C2(0) is affected by the 
Gaussian noise (Table 11). 

Example 3: In this case we have considered the MA 
(5) process used in [lo], [ l l ] ,  where several methods of 
MA parameter estimation were compared. Our results for 
the C ( q ,  k ) ,  GMT1, and GMT2 algorithms are in agree- 
ment with those presented in [ lo], [ 111 for a record length 
of 5120 samples. Table I11 shows that the proposed WS 
method outperforms all the other linear methods in both 
bias and standard deviation. 

Example 4: The same MA ( 5 )  process is used now to 
test the WS algorithm when the order is overestimated (Q 
= 7). Since none of the other algorithms work at all in 
this case, only the WS algorithm results are presented in 
Table IV. The Monte Carlo runs were performed in the 
same conditions of Example 3. It can be observed that all 
the coefficients, including b (6) and b (7), are correctly es- 
timated. Furthermore, the variance of the estimates does 
not increase substantially in respect to the case Q = 5. 

Example 5: The purpose of this example is to illustrate 
the effect of combining different sets of cumulant slices 
of different orders. The system in Examples 3 and 4 is 
used. Three different sets of slices are considered: 

s2: c 2 . x  (1 slice) 

S,: C 3 , . r ( j )  ( j  = -Q, * - . , Q) (2Q + 1 slices) 

S,: C4,x(J, 0) ( j  = -Q, * , Q) (2Q + 1 slices) 

When two or more sets of different orders are used to form 
the statistics matrix S ,  the normalization of each set has 
an important influence on the accuracy of the estimates. 
The study in depth of this normalization is outside the 
scope of this paper. As commented at the end of Section 
111, combining weighted slices with equal variance seems 
a good choice, but it requires information about the co- 
variances of the sample cumulants. In our simulations, 
the signal was first normalized to obtain C,,,(O) = 1. In 
addition to this normalization, the fourth-order sample cu- 
mulants were multiplied by 1 /6 .  

As in the previous examples, an i.i.d. exponentially 
distributed sequence was used as the input of the system. 
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TABLE I1 
EXAMPLE 2, 1000 MONTE CARLO RUNS, N = 400, SNR = 10 dB 

Parameter True Value C ( q ,  k )  GMT 1 GMT2 ws 

b(1)  -0.80 -0.82 f 0.17 -0.82 f 0.17 -0.76 f 0.08 -0.80 f 0.07 

TABLE Ill 
EXAMPLE 3, 256 MONTE CARLO RUNS, N = 5120, q = 5 

b(1) 0.100 1.59 f 21.2 1.68 f 2.10 0.01 f 0.54 0.14 * 0.31 

b (3) 3.020 6.68 f 77.9 1.14 f 0.97 2.05 f 0.70 3.05 * 0.63 

b ( 5 )  0.490 0.50 f 18.5 0.16 f 0.26 0.22 +_ 0.29 0.47 k 0.18 

b (2) - 1.870 -5.04 f 47.7 -1.66 f 1.79 -1.33 f 0.51 -1.98 + 0.56 

b (4) - 1.435 -2.76 f 40.7 -0.47 f 0.67 -0.72 f 0.60 -1.43 + 0.33 

TABLE IV 
EXAMPLE 4, 256 MONTE CARLO RUNS, N = 5120 

Parameter True Value WS (Q = 5) WS (Q = 7) 

b(1) 0.100 0.14 f 0.31 0.09 f 0.31 
b (2) - 1.870 -1.98 f 0.56 -1.84 f 0.56 
b (3)  3.020 3.05 f 0.63 2.91 f 0.67 
b (4) - 1.435 -1.43 f 0.33 -1.41 k 0.39 

0.490 0.47 f 0.18 0.46 f 0.21 
- 0.00 f 0.17 O.Oo0 

b (7) 0.000 - 0.00 f 0.13 

b ( 5 )  
b (6) 

TABLE V 
EXAMPLE 5, 256 MONTE CARLO RUNS, N = 5120, Q = 5 

Parameter True Value ws (S,) ws 0 3  + S4) ws (S, + S,) ws (S, + s3 + S,) 

b ( l )  0.100 0.14 f 0.31 0.09 f 0.26 0.15 f 0.30 -0.05 0.25 
b (2) -1.870 - 1.98 f 0.56 -1.79 f 0.51 - 1.98 f 0.56 -1.70 f 0.47 
b (3) 3.020 3.05 f 0.63 2.92 f 0.58 3.04 f 0.63 2.68 f 0.56 
b (4) - 1.435 - 1.43 f 0.33 - 1.32 f 0.28 - I .43 k 0.33 - 1.30 f 0.27 
b ( 5 )  0.490 0.47 f 0.18 0.47 f 0.15 0.47 f 0.17 0.43 ~t 0.13 

For this distribution, fourth-order sample cumulants have 
a high variance. Nevertheless, the variance of the esti- 
mated parameters decreased when the slices S2 and S4 were 
added to the set S3 (Table V). 

The Computational Complexity of the Algorithms 
Since different set of slices can be considered, the WS 

method provides flexibility also in the computational cost 
of its implementation. This gives some degree of freedom 
to choose between complexity and performance. For a 
large number of data points ( N  > lOOO), the calculation 
of the sample cumulants represents the main computa- 
tional load of cumulant-based methods. Therefore, it is 
sufficient in practice to count the number of different sam- 
ple cumulants required. 

In Examples 1-4, we considered all the 2Q + 1 third- 
order slices of the support region. With this set of slices, 
the WS method requires (Q + l ) (Q + 2)/2 third-order 
cumulants. For comparison purposes, the number of cu- 
mulants and autocorrelations used by other algorithms are 

given in Table VI. Although with this election the number 
of cumulants is of order Q2, the complexity of the WS 
algorithm is not much greater than the complexity of the 
GMT algorithms, even for a MA order as large as q = Q 
= 7.  

V. CONCLUSIONS 

This paper studied the properties of the cumulant slices 
of a MA process. We showed that all the slices lie in a 
subspace of dimension equal to the number of nonzero 
MA coefficients. The properties of the slices’ subspace 
were used to develop a new method for the identification 
of FIR systems from output measurements. The proposed 
algorithm can be based on different sets of cumulant slices 
and allows obtaining consistent estimates when colored 
Gaussian noise and/or i.i.d. noise is present in the mea- 
surements. The simulations also showed that it gives 
competitive results in bias and variance, and that it has a 
good behavior even if the order is overestimated. 
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TABLE VI 
NUMBER OF SAMPLE STATISTICS REQUIRED BY THE ALGORITHMS 

MA Order C ( q .  k )  GMTI GMT2 ws Statistics 

4 q + l  3q - 1 34 (4 + l ) ( Y  + 2)/2 cumulants autocorrelations 

3 

- 4 q + l  - 

4 8 9 
3 4 - 

cumulants 
autocorrelations 

5 6 14 15 
5 6 - 

21 
- 

cumulants 
autocorrelations 

7 8 20 21 36 cumulants 
- 7 8 - autocorrelations 

APPENDIX and combined with the equations 
1. The Modijied GM Algorithm (GMTI) 

4 

[E’b(q)] C2,,(7) - c b(k)C, , , (k  - 7, 4) 
The GM algorithm [6] was modified by Tugnait in [8], 

[lo] to remove certain deficiencies. The modification con- k =  I 

sisted in augmenting the GM equations 

9 4 = C3,,(-7, 4) (A5) 
C b2(k)C2,+(7 - k )  - C [~b(k)] C 3 , x ( ~  - k ,  7 - k )  

k =  I k = O  to form a linear system with 2q + 2 unknowns: E ’ ,  ~ ’ b  ( k ) ,  
b(k), E’b2(k) ( k  = 1 ,  2 ,  . * , q).  We have considered for 
the simulations the noise-free case in which (A4) is used 
for -q I 7 I 2q and ( A 3  for -q I 7 I q. The least 
squares solution for b(k)  ( k  = 1 ,  2, . . , q)  is used di- 
rectly as the estimated coefficients. 

= -C2.x(7) 

with the equations 
4 

k =  1 
b(q)C3,,(-7, 0) - c b2(k>C3,,(k - 7, 9) 

= C3..r(-7, 4). (A2) 

The two sets of equations are treated as a linear system 
with 2q + 2 unknowns: E ,  b(q) ,  ~ b ( k ) ,  b2(k) ( k  = 1 ,  2 ,  
* - , q). The simulations were performed with the Hi- 
Spec implementation of this algorithm (ma-est) [ 121, that 
combines (Al) for -q I 7 I - 1  and q + 1 I T 5 2q, 
and (A2) for 1 I 171 I q. The least squares solution of 
the resulting system of 4q equations is then used to com- 
pute the estimates as 

(‘43) 

if all the estimated b2(k) are positive. If not, the alterna- 
tive solution b ( k )  = [eb (k)] / E  is used. The above set of 
equations are still valid in the presence of i.i.d. noise, but 
the performance is clearly degraded in respect to the case 
where all the equations are considered. 

2. Modijication to Reformulated GM Algorithm (GM72) 
With the aim of avoiding numerical ill conditioning the 

GM equations were recently reparametrized [ 111 as 

4 4 

k = O  k =  1 
c [E’b2(k)1c2,x(7 - k)  - c b(k)C3,,(7 - k ,  7 - k )  

= C3,x(7, 7) (A4) 
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