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The signal flow graph for the fast recursive implementation method 
of OC with the GSE of size two is presented in Fig. 4. The 
comparison of Fig. 3 with Fig. 4 shows that the fast recursive 
structure in Fig. 4 requires significantly fewer computations for an 

V. CONCLUSION 
Efficient real-time implementation methods for the FP nnorphologi- 

cal operators were presented by extending our previous work 151, [6]. 
It was shown that the proposed recursive algorithms can improve the 
computational efficiency of the basis matrix implementation method 
by avoiding the redundant steps in computing overlapping min/max 
operations. It was also shown that, with the proposed recursive 
algorithms, both opening and closing can be determined in real time 
by 2N - 2 additions and 2N - 2 comparisons, and bolh OC and 
CO by 4 N  - 4 additions and 41V - 4 comparisons when the size of 
the GSE is equal to N .  Moreover, the proposed recursive algorithms 
can reduce the memory requirement further than the basis matrix 
representations. 

output of oc. 
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Motion Estimation Using Higher Order Statistics 

Elisa Sayrol, Antoni Gasull, and Javier R. Fonollosa 

Abstract-The objective of this paper is to introduce a fourth-order cost 
function of the displaced frame difference (DFD) capable of estimating 
motion even for small regions or blocks. Using higher than second-order 
statistics is appropriate in case the image sequence is severely corrupted 
by additive Gaussian noise. Some results are presented and compared to 
those obtained from the mean kurtosis and the mean square error of the 
DFD. 
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I. INTRODUCTION 
There is a growing interest in applications involving the estimation 

of 2-D motion or velocity field between consecutive image frames 
1141. There are some situations where motion has to be estimated 
in the presence of noise. These include motion estimation or motion 
compensation applications, as in images from surveillance cameras 
or medical images such as echographics with speckle noise. In such 
cases, most existing methods do not work properly, and more robust 
techniques are necessary. On the other hand, noise can be realistically 
described as a colored Gaussiam process. In such circumstances, 
higher order statistics (HOS) may offer some advantages since 
cumulants of Gaussian processes are asymptotically zero. 

HOS-based methods have already begun to be used in motion 
estimation. In [7] the displacement vector is obtained by maximiz- 
ing a third-order statistics criterion. In [2] several algorithms are 
developed based on a parametric cumulant method, a cumulant- 
matching method, and a mean kurtosis error criterion. The latter is 
an extension of the quadratic pixel-recursive method by Netravali 
and Robbins [lo]. Other improved extensions to this algorithm were 
given by Walker and Rao [I81 and Biemond et al. 131. On the other 
side, iterative solutions that involve additional constraints to compute 
optical flow have been studied by Horn and Shunk [5] and latter by 
Nagel 191 using, in both cases, smoothness constraints. See [17] for 
a review on motion estimation techniques. 

In this correspondence, we propose an alternative criterion that 
exploits HOS 1121, [13]. However, our goal is to obtain a low- 
variance cost function to reduce the problems associated with the 
estimation of HOS for small blocks of data. Our method is based 
on an adaptive algorithm that was proposed in [I] for the estimation 
of fourth-order cumulants. The motivation behind this approach is to 
use previous frames and previously estimated displacements. 

This work is organized as follows. The problem formulation is 
introduced in Section 11. In Sections I11 and IV, cost functions based 
on the variance and the kurtosis of the DFD are revised. In Section 
V, a new class of HOS-based cost. functions is derived. In Section VI, 
a recursive version of the new cost function is presented. Simulation 
results are provided in Section VI1 and, finally, Section VI11 is 
devoted to conclusions and final remarks. 

11. PROBLEM FORMULATION 
The problem of motion estimation can be stated as follows: “Given 

an image sequence, compute a representation of the motion field that 
best aligns pixels in one frame of the sequence with those in the 
next” [IO]. This is formulated a’s 

g k - 1  (mj = fk-L(mj + 1L.k-1 (m) 

g k ( m )  = . f i ( m )  -k w ( m )  == f k - l ( m  - &(m)j + %(m) (1) 

where m = ( I I L ,  n)  denotes spatial image position of a point; yk  (m) 
and gk-l(m) are observed image intensities at instant I; and IC - 1, 
respective1y;fk (m) and fk--l  (m)  are noise-free frames; nk(m)  and 
7Lk- l  (m) are assumed to be spatially and temporally stationary, zero- 
mean image Gaussian noise sequences with unknown covariance; 
and dg(m)  is the displacement vector of tht. object during the time 
interval [ k  - 1, k ] .  The noise-free signals are assumed to be zero- 
mean non-Gaussian random fieldis that are statistically independent 
of the noise. In this formulation, the basic assumption is intensity 
constancy, as follows: 

fn(m) = fk -1  (WL - &(mj). (2) 

1057-7149/96$05.00 0 1996 IEEE 



1078 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5 ,  NO. 6, JUNE 1996 

I -0.05 

-0.1 ' I 
-10 -5 0 5 10 

(a) 

-0.051 

-0.1 
-10 -5 0 5 10 

(C) 

Fig. I .  Cost functions for SNR = 15 dB of a 256 length object where 
single realization of J 2 k  ( d ) .  

The problem is to estimate d i ( m )  from the observation of g k ( m )  
and g k - - l ( m ) .  The DFDk(d) is defined [lo] as follows: 

or equivalently 

where we omit the space dependency of the displacement to simplify 
notation. In our model we consider that pixels of regions are visible 
over the entire frame; that is, no occlusions occur, pixels do not 
move in or out. Given the previous assumptions, we propose a motion 
estimation scheme that is divided into two steps; we concentrate our 
efforts on the second step. 

Segmentation: We may work with motion estimation based on 
blocks or on a segmentation approach. The latter aims to adapt the 
segmentation to the scene such that each region uniquely corresponds 
to one continuously moving 2-D object [15]. Several problems that 
are inherent to block-oriented approaches are avoided; i.e., blockmg 
artifacts are drastically reduced and small region sizes are not 
imposed. However, the method becomes increasingly complex as the 
number of regions undergoing different displacements increases. In 
this case, we can also apply block-oriented methods without loss of 
generality. 

Motion Estimation: For every moving region or block, we esti- 
mate motion using a HOS-based cost function that is maximized or 
minimized for the desired displacement. 

Next, we introduce different criteria to obtain the displacement 
vector based on second- and fourth-order statistics of the DFDk(d). 
We analyze under which conditions it is more appropriate to utilize 
each of the cost functions. 

0.51 
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0.4 I 
" 
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(d) 

d: = 6. (a) J 4 l k ( d ) .  (b) J z k ( d ) .  (c) single realization of J 4 l k ( d ) .  (d) 

111. VARIANCE OF THE DFD 

The classical solution to obtain the displacement vector from the 
DFDk(d) is the minimum square error [lo] as follows: 

& ( d )  = E{DFD;(~)}. ( 5 )  

An estimation of this cost function is given by the sample averaging 

(6) 

where fIm denotes the spatial domain that contains the pixels from 
a region, and N the number of such pixels. 

Equation ( 5 )  can also be expressed as a function of signal and 
noise covariances, substituting (4) in ( 5 )  as follows: 

1 
L ( d )  = ~ D F D ; ( ~ )  

mas2, 

J 2 k ( d )  = 2a; - 2 E { f k - l ( m  - di)fk-i(m - d ) }  

+ 2ff: - 2E{nk(m)nk-l(m - d ) }  (7) 

where C T ~  and 0; are the signal and noise variances at time IC and 
k - 1. In case images are affected by white noise, the above cost 
function can be utilized to detect the correct displacement, since the 
noise covariance term cancels out and its only contribution in (7) is 
the variance term, which is assumed constant. Nevertheless, we are 
interested in studying the case when noise is colored; consequently, 
its covariance contribution is different from zero. In this situation, 
the cost function at the correct displacement may not be a minimum. 
The characterization of the signal and noise covariances may allow 
a deeper knowledge of the effects of the degradation. The signal 
covariance term in (7) has a maximum at the correct displacement 
for any statistics of the region. Analogously, the noise covariance 
term will also show a maximum for displacement zero. Thus, J ~ i c ( d )  
will show two local minima, one at displacement zero and the other 
at the correct displacement. 

To obtain the correct displacement, we require the global minimum 
of the function to be located at the desired displacement. Developing 
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Fig. 2. Cost functions for S N R  = - 2 . 5  dB of a 256 length object where d: = 6. (a) J 4 l k ( d ) .  (b) J z k ( d ) .  (c) Single realization of J 4 1 k ( d ) .  
(d) Single realization of J z k ( d ) .  

the inequality J2k(d; )  < J z k ( 0 )  as a function of signal and noise 
covariances,we obtain a minimum SNR from which the correct 
displacement can be found. In lower SNR scenarios, we should seek 
an alternative measure to obtain displacement. We are interested 
in choosing a cost function based on HOS to reduce the presence 
of colored Gaussian noise. Recall that HOS methods are blind to 
Gaussian processes and, thus, information due to deviations from 
Gaussianity may be extracted [8], [11]. 

Iv. KURTOSIS OF THE DFD 

HOS-based cost functions can be built from different criteria. The 
approach in [2] is based on a fourth-order statistics cost function 
that utilizes the kurtosis of the DFDk(d),  which is asymptotically 
unaffected by correlated Gaussian noise. It is defined as 

J4ik(d) = K(DFDk(d))  (8) 

where the kurtosis is by definition [ 111, as follows: 

Zi(DFDk(d)) = E{DFD:(d)} - 3[E{DFDE(d)}].2 (9) 

The correct displacement is found by minimizing J41k(d) when 
the region has a positive kurtosis or maximizing it if the kurtosis 
is negative. Tugnait [16] was the first to propose this criterion to 
estimate the time delay between two signals as an extension to the 
performance index J 2 k  ( d ) .  Later, Anderson and Giannakis [2] used 
the above cost function to recursively estimate the displacement of 
pixels between two images. 

The corresponding consistent estimation of J41k  ( d )  is given by 

(10) 

Asymptotically, the presence of Gaussian noise does not degrade 
the detection process and the cost function will depend only on the 

signal second- and fourth-order moments. Substituting (4) in (9) and 
developing the two expectation terms, the cost function becomes 

J4ik(d) = 2 m ~ 4  + 6 E { f L  (m - ~ E ) . ~ ~ - I ( T T L  - d ) }  
- 4E{.fk-l(m - dl)f;-,(m - d ) }  

- 4E{.f-,(m - d i ) f k - , ( m  - d ) }  

- 12a; - 12E2{fk-1(m - d i ) f k - l ( m  - d ) }  

+ 24g;.E{fk-i(m - di).fk-i(m - d ) }  (11) 

where m14 = ~ Y { f i - ~ ( m  - d i ) }  = E { f i - l ( m  - d ) .  Observe that 
all noise terms have been canceled. 

As important as the theoretical result is the study of the variance 
in estimating each of the cost functions. In the following example 
we consider AR models; hence, the noise covariance may be given 
by [6, p. 2141 

(12) 

where d = ( d m , d , )  are the two displacement components and 
a,, a n ,  arc are the AR coefficients. The signal covariance term within 
the region is also given by 

E{nk(m)nk-l(m -- d ) }  = &a:"ap"'a, 

E { f k - l ( m  - d i ) f k - l ( m  .- d ) }  = a ; b p + J p J " l  (13) 

where b,  and b ,  are the AR coefficients. Similar expressions can be 
derived for the fourth-order moments in (1 1); although we avoid them 
here for the sake of simplicity, they depend on the same parameters. 

In Figs. 1 and 2 we compare & ( d )  and J 4 1 k ( d )  for a rectangular 
1-D object of length 256 whose kurtosis is negative. Each figure 
displays the following. The solid line is the mean of the cost function 
using 20 realizations of a sequence of two signals, where dg = 6; the 
dashed line is the theoretical cost function; and finally, the dashed- 
dot line is the mean pludminus the standard deviation. Fig. I(a) and 
(b) shows the estimation for SNR = 15 dB, the pixels of the signal 
are uncorrelated, and the Gaussian noise follows an AR model with 
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Fig. 3. Estimated cost functions when d i - l  = 0,e = 8 and S N R  = -2 dB for a colored signal of length 256. (a) J 4 l k ( d )  normalized. (b) 
J 4 1 k ( 4 .  (c) J 4 2 k ( 4 .  (d) J ' 2 k ( 4  . 

Fig. 4. 
a k  = a,, = a, = 0 . 6  and the SNR is 10 dB. (c) One of the noisy frames when the SNR is 2 dB. 

(a) One of the original frames from the Flower Garden sequence. (b) One of the noisy frames where colored noise follows an AR model with 

arrL = a k  = 0.8. The mean estimation is close to the theoretical ex- 
pectations. Fig. 2(a) and (b) shows both cost functions when SNR = 
-2.5 dB. Clearly, although the mean estimation of the kurtosis tends 
to the theoretical result, the variance is very high. Similar behavior 
was observed for other AR parameters. These results suggest that the 
kurtosis-based cost function should not be used for low SNR unless 
dealing with longer signals, which would reduce the variance. We 
must be aware of the fact that we are going to use this cost function for 
image regions or blocks and the number of pixels may not be large. 

estimates of HOS to reduce the effect of additive noise. Amblard 
et al. [l], proposed an adaptive scheme for the estimation of fourth- 
order cumulants for transient detection that overcomes the problems 
of the classical adaptive scheme. It was proven for the case of i.i.d. 
random variabIes that the estimator is asymptotically unbiased. A 
convergence analysis was also carried out. The original expression 
was defined for a sequence of random variables. In this work, we 
have derived an expression as a function of the kurtosis of the DFD 
in a region or block. At time k this expression becomes [13], [ l ]  

V. MODIFIED KURTOSIS OF THE DFD 

Image information is repeated along the sequence as it is es- 
tablished in (2). This redundancy may be used to obtain better 

k k ( ~ ~ ~ ( d ) )  = kkp1 ( D F D ( ~ ) )  + - & ( D F D ~ ( ~ ) )  
- kk-1 (DFD(d))] (14) 
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TABLE I 
PERCENTAGE OF ERROR WHEN TRACKING A MOVING OBJECT 

where i(DFDk(d)) is the “instantaneous kurtosis” given by 

and 

p and y are forgetting factors that adapt the estimation to changing 
conditions. The subindex k has been suppressed in the DFD’s 
where previous frames are involved. We are interested in obtaining 
the displacement vector at time k and this only depends on the 
instantaneous kurtosis, that is, (15) and (16). It is clear that there 
is no information on the current displacement between two frames in 
previous images or in previous displacements (unless we introduce 
some prediction or motion model). Previous frames can be used to 
obtain information on the statistics of the regions andor statistics of 
the noise. Our goal is to define a low variance cost function that 
should be, at the same time, asymptotically unaffected by correlated 
Gaussian noise. Thus, we choose (15) as the cost function to obtain 
the displacement. Observe that, comparing this equation with the 
kurtosis in (lo), instead of having the instantaneous second-order 
moment estimate to the power of two, which may show a high 
variance, we have a term that is the product of the instantaneous 
second-order moment by a past estimation of the second-order 
moment using more than two frames. The new cost function is then 
given by 

1 

men, 

where the normalization by the quadratic function improved the 
results obtained when considering AR models and over the examples 
using real sequences. The adjustment of the weight p should be car- 
ried out. For small values of p, past frames become more significant 
than the previous one. Hence, its value is chosen close to one when 
the scene in the image sequence changes rapidly (for p = 1 only the 
previous frame intervenes), and closer to zero otherwise. 

An alternative estimation is necessary in case only two frames are 
available, or for the first two frames of a sequence. We propose the 
following approach: 

where we have substituted the estimation of the second-order term by 
a quadratic difference term from a single frame. The resulting cost 
function displays a behavior similar to the one in (17), yielding to 
better estimates of the displacement. It has been successfully applied 
to the problem of time delay between two 1-D signals [12]. 

In terms of expectations, (17) is rewritten as 

- 3E{DFD;(d)}Ek--l {DFD2(d)}]. (19) 

As wins done for the previous cost functions, we can decompose 
the cost function in terms of second- and fourth-order moments of 
the signal and noise by substituting (4) in (19). We obtain for p = I: 

In the case of nonuniform motion, this cost function shows a 
minimum at the correct displacement for regions characterized by 
positive or negative kurtosis. The noise term contributes with a 
maximum to J 4 2 k ( d )  and, thus, the minimum that provides the 
correct displacement is not mistaken as it happens to J42k(d)  for 
low SNR. This behavior has been studied for AR models, but can 
be extended to other models whose covariance shows an absolute 
maximum at zero. In the case of uniform motion, that is, when the 
optimal displacements at time k. and k - 1 are equal, we can deduce 
that .J42k (d )  for p = 1 is nothing else but the normalized kurtosis of 
the DFDk(d). It displays a maximum at the correct displacement 
when the region has negative kurtosis and a minimum when the 
region kurtosis is positive. Hence, the newly defined cost function 
always exhibits an absolute minimum at the desired displacement for 
positive kurtosis regions. The same behavior is observed for negative 
kurtosis regions except when dg-l = dg and p = 1, in which case 
the cost function becomes the normalized kurtosis and the desired 
displacement becomes a maximum. Thus, except for this case, in all 
other situations the correct displacement is derived from an absolute 
minimum. We need to introduce a mechanism to avoid searching for 
a wrong minimum in that case. We use p < 1; thus, the influence from 
previous frames is not restricted to frame at time k - 1. An additional 
step can be added in this case, which consists on introducing a shift 
of -d“,_, to Ek-l{DFD2(d)) (that is available since it has been 
obtained when estimating the displacement between time instants 
k - 1 and k - 2). As a consequence, in the following iteration, 
i(DFDk(d)) will have a maximum at d = 0 and a minimum at 
d = d& 

In Section VII, we present some examples where we compare the 
cost functions defined up to this point. We will see the effects of 
the estimation and the advantages of using the newly defined cost 
function. 

VI. RECURSIVE ESTIMATION OF THE DISPLACEMENT 
In the previous section, the estimated displacement was taken 

from an exhaustive search of the displacement that provided the 
absolute minimum or maximum of a given cost function. Recursive 
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Fig. 5. (a) Noise-free real displacement map given blocks of 16 x 16 pixels obtained from J z / c ( d ) .  (b) displacement map for noisy frames when using 
J Z k ( d ) ,  SNR = 10 dB. (c) J 2 k ( d )  for SNR = 2 dB. (d) J41k(d)for S N R  = 10 dB. (e) J41k(d)for S N R  = 2 dB. (f) ~J42k(d)for S N R  = 10 dB. 
(g) J4Zk(d))for S N R  = 2 dB. (h) J43k(d)for S s R  = 10 dB. (i) rfqyk(d)for S N R  = 2 dB. 

estimation algorithms aim to reduce the computational load, specially 
for subpixel displacements, since they use apriori information on the 
location of regions. Thus, given the ith estimate of the displacement, 
we obtain the ( i+l) th  estimate such that the value of the cost function 

resulting from the ( i  + 1)th estimate is lower (or higher) than the one 
used in the ith. The gradient search Procedure [lo] is 

d' = a1-1 - E A ~ ~ - I J ( ~ " ' ) .  
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The recursive estimation of J42k(d) for p = 1 substituting (17) in 
(21) becomes [13] the following: 

7 - 2  

1 1 
N 

$ 6 -  D F D ; - ~ ( ~ ~ - ~ ) -  D F D ~ ( K - ~ )  
men, lV men, 

(22) 
where the gradients of the DFD’s are expressed as a function of the 
gradient of the image intensity at time k considering the previous 
and current displacements of the region. An example comparing the 
recursive scheme of J42k(d)  and J z k ( d )  was given in [12]. 

VII. EXAMPLES 

Exumple I :  In this example we compare the cost functions for 
a I-D object of negative kurtosis. Its length is 256 and it follows 
a first order AR model whose parameter i s  b,  = 0.8, which is 
moving along three frames where d;-l = 0 and dg = 8. Noise 
is simulated using a first order AR model with am = ak = 0.6 
and SNR = -2 dB. We generate the sequence 20 times and obtain 
the mean behavior of the cost function at time k (The dashed line 
represents the theoretical curve; the solid line, the mean-estimation; 
and the dashed-dotted line, the mean k the standard deviation of 
the estimation). We can observe in Fig. 3(b) that the kurtosis does 
not show the maximum at the correct displacement, and its behavior 
is not improved after normalization by J&(d)  (Fig. 3(a)). Fig. 3(c) 
shows . J 4 2 k ( d )  using the estimation given by (17), for p = 1. For the 
modified kurtosis, the standard deviation is much lower and follows 
the theoretical results. For . J z k ( d )  in Fig. 3(d) the variance is low, 
but for this SNR the minimum is not absolute. 

Example 2: We compare the modified kurtosis with J z k  ( d )  in case 
of uniform motion. For this purpose, we utilize the procedure of 
shifting Ek-1{DFD2(d)) by and p = 0.89. We are given 
ten realizations of a sequence of seven synthetic noise-free images 
containing a 2-D rectangular object. The object was previously 
segmented and was moving (3,1) pixels per frame. Colored Gaussian 
noise was generated from a first order AR model with urL = U, = 
ah = 0.6. For this size and signal distribution, the cost function 
J41k(d) failed. Table I shows the percentage errors to reach the 
final position of the object for different sizes and SNRs.  An error 
was generated when a wrong displacement was estimated between 
two frames, and this misdetection was not compensated for in the 
following frames. 

Exumple 3: This example demonstrates the performance of the 
cost functions J4lk(d) ,  J 4 2 k ( d ) ,  J43k(d)  and J z k ( d )  when block- 
matching i s  applied to obtain the displacement between consecutive 
real frames. Fig. 4(a) shows a portion of one of the original images 
taken from the Flower Garden sequence (frames 1 12 to 116). Fig. 4(b) 
i s  the same image when colored Gaussian noise generated from an 

AR model with a k  = a, = un := 0.6 has been added to the sequence 
and the SNR is 10 dB. In Fig. 4(c), the SNR is 2 dB. The results 
obtained from the second-order cost function between frames 115 and 
116 when no noise is added are illustrated in Fig S(a). We use these 
results to compare them with those obtained when colored Gaussian 
noise is added (it is not our goal to study the noise-free case). Fig. 5(b) 
and (c) are the maps obtained for J2k(d)  when colored noise is added 
to the sequence for SNR = 10 and 2 dB, respectively. Analogously, 
we represent the results for J ~ I  ( d )  in Fig. 5(d) and (e). Fig. 5(f) and 
(g) shows J 4 2 k ( d ) ,  while Fig. 5(h) and (i) illustrate J 4 3 k ( d )  for the 
two different SNR’s. Missing arrows in the displacement map indicate 
that zero displacement has been estimated. The cost functions .J42k ( d )  
and J43k ( d )  clearly outperform the second-order cost function for 
SNR = 2 dB. In the case of SNR = 10 dB, the results given by 
J 4 2 k ( d )  seem to be better in the upper part of the image, whereas 
J z k ( d )  is preferable in other blocks. The results obtained using the 
kurtosis were not satisfactory. 

VIII. CONCLUSIONS 
There are some situations where motion between frames has 

to be estimated in the presence of noise. In such circumstances, 
HOS may offer some advantages, since cumulants of Gaussian 
processes are zero. Cost functions of the DFD based on second- 
and fourth-order statistics were examined and compared. Examples 
employing moderate-size regions and low SNR were given. The 
second-order cost function of the DFD is capable of detecting the 
correct displacement from an absolute minimum up to certain SNR. 
On the other hand, the mean behavior of the kurtosis followed the 
predicted function; however, its standard deviation was so high that 
detection of the correct displacement was difficult in most of the 
cases. This measure should be utilized for long data records that 
imply moderate variance. Finally, the modified kurtosis of the DFD 
has shown its usefulness for moderate size regions in a range of 
SNR where the second-order cost function is biased and the kurtosis 
shows a high variance. 

The results of this paper suggest that low-variance cost functions 
based on higher order statistics may be defined and can outperform 
not only the second-order cost function but other existing HOS-based 
cost functions. 
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An Estimation Algorithm for 2-D Polynomial Phase Signals 

Benjamin Friedlander and Joseph M. Francos 

Abstract-We consider nonhomogeneous 2-D signals that can be repre- 
sented by a constant modulus polynomial-phase model. A novel 2-D phase 
differencing operator is introduced and used to develop a computationally 
efficient estimation algorithm for the parameters of this model. The 
operation of the algorithm is illustrated using an example. 

I. INTRODUCTION 
A fundamental problem in 2-D signal processing and in many 

image processing applications is the modeling and analysis of non- 
homogeneous 2-D signals. For example, in almost any image taken 
by a camera, perspective exists, and hence, the acquired 2-D signal 
is nonhomogeneous, even if the original scene was homogeneous. 
Conventional approaches to the problems of perspective and camera 
orientation estimation usually involve local analysis of the image by 
means of edge detection algorithms 161. Recently, a nonparametric 
method for estimating, and then canceling, the effects of perspective 
was suggested in [7], using the Chirplet transform. In this method, a 
1-D cross section of the image is expanded onto a set of modulated 
and warped versions of one “mother-waveform” in order to later 
compute an unwarped representation of the original image. 

Parametric models, when used in image processing, generally 
assume the observed image to be homogeneous or piecewise ho- 
mogeneous. In this correspondence, we consider a parametric model 
that is nonhomogeneous and attempts to perform global (or at least 
less localized) image analysis. More specifically, the proposed model 
is aimed at modeling images that result from continuous coordi- 
nate transformations of homogeneous images. Since 2-D continuous 
functions can be approximated by 2-D polynomials, we will study a 
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model consisting of a sine (or cosine) of a polynomial function of 
the image coordinates. In the special case of a first-order polynomial, 
this reduces to a homogeneous model-a simple 2-D sinusoid. When 
the polynomial order is higher, the model is no longer homogeneous: 
The spatial frequencies are now a function of location. This type of 
model arises, for example, when a homogeneous image consisting of 
a periodic structure undergoes distortion due to perspective. Using 
the 2-D Wold decomposition, it is shown in [3] that an approximate 
model for homogeneous textures is a sum of harmonic components in 
additive noise. Hence, in general, the deterministic component [3] of 
a homogeneous texture undergoing nonlinear continuous warping can 
be approximated by a sum of 2-D sinusoids of a polynomial function 
of the image coordinates. 

The proposed model belongs to the general class of AM-FM 
signals that has been recently investigated both for 1-D and 2- 
D signals using nonparametric methods [8]-[ll]. It is shown that 
the Teager-Kaiser energy operator can be used to approximately 
estimate the amplitude envelope of the AM component as well as 
the instantaneous frequency of the FM component. However, using 
this method, an approximation error exists even when no observation 
noise is present. The estimation algorithm of 2-D multicomponent 
AM-FM signals [ 1 11 initially uses multiband bank of Gabor wavelets 
to isolate the different components, thus avoiding the interference 
between the various components and increasing the effective SNR. 
The estimation of the AM and FM parts of each component follows 
in the next stage. 

For reasons that will become clear later, it is more convenient to 
work with a complex valued model in which the sinusoidal function 
is replaced by a complex exponential. In some applications, such as 
synthetic aperture radar imaging, the 2-D signal is complex valued 
to begin with. In other applications, the 2-D signal is real but can be 
converted subject to some restrictive conditions into complex form 
through the Hilbert Transform 121. 

Throughout this paper, we consider 2-D signals that can be repre- 
sented by a constant amplitude complex exponential whose phase is a 
polynomial function of the coordinates. Having defined the model, we 
study the problem of estimating its parameters given observations on 
the 2-D signal. In the presence of additive white Gaussian noise, 
a straightforward but computationally prohibitive approach is to 
develop a maximum likelihood estimator for the polynomial phase 
parameters. This estimator involves a multidimensional search in 
the parameter space and is not practical except for very low order 
models. Here, we present a suboptimal but computationally efficient 
algorithm for estimating the parameters of 2-D constant amplitude 
polynomial phase signals. This algorithm is an extension of the so- 
called polynomial phase transform, which was introduced in [l]. 
The algorithm is based on the properties of a 2-D polynomial phase 
difference operator, which is defined in the next section. 

The paper is organized as follows. In Section 11, we define the 
parametric model of the observed signal, define the 2-D polynomial 
phase difference operator, and present some properties of the operator. 
In Section 111, we present the proposed parameter estimation algo- 
rithm that is based on the 2-D polynomial phase difference operator 
and its properties. We then illustrate the algorithm operation using a 
numerical example. 

11. THE PHASE DIFFERENCE OPERATOR 
In this section, we define the phase difference operator and present 

some of its basic properties. We start with a description of the type 
of signal for which the operator was designed. 
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