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Impulse Response Recovery of Linear 
Systems Through Weighted Cumulant Slices 

Josep Vidal and JosC A. Rodrfguez Fonollosa 

Abstract- Identifiability of the so-called (1)-slice algorithm is proven 
for ARMA linear systems. Although proofs were developed in the past 
for the simpler cases of MA and AR models, they were not extendible 
to general exponential linear systems. The results presented in this paper 
demonstrate a unique feature of the w-slice method, which is unbiasedness 
and consistency when order is overdetermined, regardless of the IIR or 
FIR nature of the underlying system, and numerical robustness. 

I. INTRODUCTION 

The problem addressed below is the blind estimation of the 
impulse response of a linear system. It is well known that if the 
process cannot be assumed to be cyclostationary, only higher-than- 
second-order statistics (and, in particular, cumulants) of the output 
process preserve the system phase information [7].  The specific set of 
cumulant slices and the number of cumulant samples per slice that are 
needed for identifiability has been considered thoroughly in the past 
for different algorithms (see [4], for instance). Recently, the authors 
have proposed a new method that employs linear combinations of 
slices from (generally) different order cumulants to obtain linear, 
consistent, low variance estimates [2] and [6]. Developments were 
built in the special cases of AR and MA models. Although complete 
and well founded, the rational followed there did not allow for the 
extension to the more general ARMA structure. This i s  specifically 
the case that we deal with in this paper. The importance of the 
derivation lies on the fact that the same estimation procedure-i.e., 
the m-slice algorithm-can be applied to obtain consistent estimates 
of the impulse response of any linear system, regardless of its IIR or 
FIR nature and with no previous knowledge of the exact model order. 

We will present first the problem and a briefing of the results 
found in [2] and [6] and then the extension of the same principles 
to the ARMA case, which is the backbone of this correspondence. 
Finally, we will present some numerical examples illustrating the 
performance. 

To start up with the derivation, first consider a zero-mean, ergodic 
process ~ ( 7 2 . )  with finite cumulants. Assume that the process is 
generated by a causal linear system, whose input/output relation is 
described by 

N 

Consider now that the output is corrupted with another process v (  71 ) : 

fitting the following hypotheses, which will be assumed throughout: 
H"1. The driving process c(71) is zero-mean, stationary, i.i.d., 

non-Gaussian with finite kth-order cumulants and absolutely 
summable 2kth-order cumulants. 
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H"2. H ( 2 )  is time invariant, causal, and exponentially stable, that 
is, all poles are inside the unit circle. 

H"3. The process ZJ ( n  ) is independent of e ( 7 ~ ) ;  zero-mean, Gauss- 
ian, and of unknown power spectrum. 2 ! ( 7 1 )  is allowed to 
be non-Gaussian if some kth-order cnmulant cancels, in 
which case, that kth order will be used for identification 
(i.e., if the noise is known to be zero-mean and uniformly 
distributed-as the quantization noise-then third-order cu- 
mulants can be used). 

The Barlett-Brillinger-Rosenblatt summation formula [ 11 relates 
the kth-order cumulants of Z ( ~ L )  to the impulse response of the 
system: 

n = o  m=O 

r o = 0 . 5 > 2  (3)  

where ?n, is the kth-order cumulant of the excitation process e(.). 
Aiming at the recovery of h( 7z ) from the Cn (.) terms, we can express 
the 1-D slice cumulant of kth order as the cross correlation 

n=--L 

. h ( 7 c :  1 2 ,  ' ' .  . 21-1) 

where the causal sequence h ( n ;  i 2 ,  . . . , i k - ,  ) is defined as 

(4) 

IC-1 

(5) h ( r z .  2 2  . . .  . = ̂ k e h ( 7 ! )  11 h(n - tarn) .  
m = d  

If we use a linear combination of cumulant slices (U -slice) it is also 
possible to obtain a cross correlation of the impulse response and a 
causal sequence 

Lf2 

C,,(L) = L L I L C L I / ( Z )  + 7 f , I C I ( Z L ) C J y ( k  22)  

' 2 = -  %y2 

W? z ,  

where g.u.(rz) is the causal sequence 

The key idea of the ai-slice method [2], [6] is to choose the weights 
w = [ U J ~ ,  w n ( i 2 ) .  f i i 4 ( i ? :  i 3 ) : .  . .] of the linear combination in such 
a way that Ct,,(i) yields the impulse response h ( n ) .  According to 
(6), the w-slice can be written in matrix form as 

c,  = s,w = 1 (8) 

where S a  is a ( P  + 1) rows matrix containing the cumulant sam- 
ples corresponding to ( P  + 1) anticausal slices, the weight vector 
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w is chosen as the one yielding the w-slice to be causal, and 
1 = [O, . . .  0, h ( O ) l T .  Then, as w has been computed using the 
pseudoinverse, it can be used with the causal counterpart of S, 
in order to estimate P + 1 samples of the impulse response h = 
[h(O),  1~(1) ,  . . . ,  h(P)lT of the system 

h = S,Sf 1. (9) 

We have found that for AR and MA models, it is a sufficient 
condition that the weights are chosen so that the tu-slice is causal. For 
MA(q) models, causality has to be imposed from n = -4 ,  . . . , - 1 
[2] ,  whereas in AR(p) models, the minimum range of values is 
11 = -p.  ... . -1 [6]. The right choice of P and other sufficient 
conditions to achieve identifiability for ARMA models are derived in 
Section I-A. In any case, the order of the cumulants can be chosen 
at will, and second-order statistics are not necessary at all. 

11. ARMA MODELING 

Are the approaches found in [2] and [6] valid in the case of ARMA 
models? Before addressing this question, consider the expression 

P 

U ( i 2 ) C k y ( i ,  y - i 2 .  0. . . . . 0) = y k e b ( q ) h ( i )  
22=0 

l l(0) = 1 (10) 

which was first derived in [4]. The terms a ( i )  are the AR parameters, 
and b ( i )  are the MA parameters. Equation (10) is telling us that there 
exist a linear combination of p + 1 slices (whose weights are the AR 
coefficients) that yield the impulse response of the ARMA system. 
This linear combination is not unique: The convolution of the AR 
coefficients and the cumulant slices can be repeated up to k - 2 
times, always obtaining the impulse response of the system: 

We will see in the sequel that the recovery of the impulse response is 
possible with the same w -slice approach by imposing mild constraints 
on the number of slices used 

A. Properties 

From (6), it is obvious that the impulse response is found in the 
io-slice if gw (n )  is forced to be the Kronecker delta times a constant. 
Our interest is to investigate if this goal is possible by forcing a 
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hc+' = H,[S(~L) + g:] = 
h ( P -  1 )  h ( P )  

h (P)  h ( P +  1) 

finite number P of anticausal samples of the w-slice to be zero. The 
impulse response of an ARMA(p, q )  system fits the recursion 

By considering the right-most side of (6),  we can rewrite (8) as a 
system matrix with an infinite number of unknowns: 

or, more compactly 

where h;+l denotes the vector of length P + 1 whose first element 
is h ( Q ) ,  and the rest of elements are samples of h(n)  with increasing 
indexes. Among all the columns of this matrix, only the first P + 1 
are linearly independent, and they form a basis for the rest of the 
column vectors. Then, the solution for the gw (.) is the addition of 
the trivial solution gtu(7~)  = 6(n) plus the homogeneous one g & ( n ) :  

If now we try to recover the impulse response by using the same 
approach as in the MA or AR cases, that is, the linear combination 
of gw(.) with the causal counterpart of the matrix in (13), we obtain 
the ( P  + 1) -long vector containing the estimated impulse response 
from sample 0 to sample P + l(h;+'), as shown in (14), which 
appears at the bottom of the page. The reader should note that the 
impulse response cannot be recovered if the null subspaces of H, and 
H, are not the same. This point is shown in the following lemma: 

Lemma I: If P 2 max(p, q ) ,  and the underlying system is 
ARMA, then the null subspace of the matrix H, is, in general, not 
included in the null-space of the matrix H,. 

Prm$ This fact can be easily proven by inspecting (13) and (14) 
and noticing that the columns of H, are contained in the columns of 
Ha. W 

As the homogeneous solution to (13) brings difficulties, it is 
interesting to restrict it to be the zero vector. Fortunately, we do 
not need infinite equations because not all the unknowns gw(n) are 

. . .  
' .  . h(2P-  1) h(2P) . . . J (&??q 
. . .  h(2P) h(2P+ 1) ... 

L .  
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independent, as we will see below. Therefore, identifiability will be 
achieved under two cortditions: 

1) If we can constrain the independence of the gw(71) terms 
to, at most, the first P + 1 and then force g w ( n )  = 0 for 
n =I 1, . . . , P there would be no solution for the gw ( 7 ~ )  lying 
in the null subspace of Ha. In this case, the only solution would 
be the one given by g , ( n )  = 6(n). 

2) On the other hand, we must allow for the nonhomogeneous 
solution to (13). 

The following lemma deals with point 1. 
Lemma 2; If P - 1%' 2 q and M + iV 2 P ,  then the number of 

linearly independent variables g.; ( n )  is upper bounded by P. 
Prooj? In order to simplify the derivation and with no loss of 

generality, let us assume we deal only with kth-order cumulants. Let 
- N be the lowest numbered slice of lcth order and M be the highest 
numbered slice being taken. Dependency among the g,, (n) is clearly 
shlown by rewriting (7) in the following way: 

.1/1 

1 = - N  

M 

or rather, in matrix form, 

[gw(O) ~ ~ ( 1 )  ... g,(P) g w ( P +  = 7h-DHw 

where D = diag[h"-'(O), h"*(1), . . . ,  h k p 2 ( P ) ,  . . . I ,  w = 
[ w ( M ) .  ,uj(hf - l), . . . ,  w ( - N ) ] ~  and as given in (15), which 
appers at the bottom of the page. Clearly, the number of linearly 
independent variables gtu(n) is, at most, the rank of DH. M and 
N can be tuned so that the rows rank of the matrix H is P + 1 by 
forcing the P + 2. P + 3: . . . numbered rows to be linearly dependent 
of the previous P + 1 ones: Consider the ARMA recursion 

U 

a(i),6(7z - i )  = - - h j f L )  R > q. 
2 = I  

By looking at the structure of (15), this happens when P - N 2 q .  
Then, in order to ensure the rank of H, the number of columns must 
be at least P + 1 : + N 2 P. Therefore, the rank of DH is, at 
most, P + 1 under the conditions stated, but it may be lower if some 
samples of the impulse response (the diagonal terms in D) are zero. 

The coriditions to achieve point 2, and hence, the conditions for 
identifiability are shown in Theorem 1. 

Theorem 1: The causal part of a ui-slice C,(i) contains the 
impulse response of the underlying ARMA(p, q )  if the first P 
samples of the anticausal part are zero, and the following conditions 
are met: 

1) The set of slices considered contain the slices q - p ,  q - p + 
1. . . . ~ q ,  that is 

-if 2 q 

N > p  - q. 

2) The number of necessary cumulant samples per slice is P - 

Pro08 If we are able to force P + 1 linearly independent gw (n )  
coefficients, then the homogeneous solution will be the zero vector. 
This is ensured by Lemma 2. On the other hand, we have to guarantee 
at least one solution to (8) since S a  is of unknown rank. Any of the 
solutions given by (8) is useful for us, but the solution requiring 
the least number of slices is the solution w k ( i )  = a( i ) .  To allow 
for its existence, the number of slices being used must be at least 
p + 1 : M + N 2 p ;  M must be at least q : M 2 q. and the lag 
of the right-most element of the first row in H should be lower or 
equal to q - p : q - p 2 -N. Finally, condition 2 is extracted from 
Lemma 2. 4 

A similar reasoning can be developed to derive identifiability 
conditions when different cumulant orders are considered. According 
to (6), (13) remains unchanged, but (15) has to be enlarged in the 
number of columns. Consider, for instance, the use of 1-D slices of 
third- and fourth-order cumulants. Then, we can rewrite (7) as 

Ad3 AW4 

1 = - his 2 = - . v 4  

ic' 2 q. 

g u , ( n )  = w s ( i ) h ( n ;  i )  + w q ( i ) h ( q  i ,  0) 

M4 

and hence, as previously, (15) is modified to 

L 

. (::) 
= HW (16) 

where 

h$ = [ h ( M ) .  h ( M - l ) : . . ,  h ( M - s + l ) ] .  

Again, at least one solution has to be allowed for the equation 
Saw = 1. which may be W k ( i )  = U(;). Then, by the same reasoning 

H =  
. . .  

h ( M  + P )  h ( M  + P - I) . . . h(-N + P + 1) h ( - N  + P )  
h ( M + P + l )  h ( M + P )  " .  h ( - N + P + 2 )  h ( - N + P + I )  
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q-slice 
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M.201 M.133 M.162 M.380 M.088 M.069 M.165 M.109 M.101 M.099 M.117 M.070 

k0.269 f0.390 f0.163 f0.289 ~ kO.156 M.118 M.084 fl.349 rt0.095 M.077 M.070 M.082 
-1.379 0.551 -0.039 -1.372 -1.089 0.992 -0.437 -1.243 -0.797 0.656 -0.014 1.002 

used in Theorem 1, the following relations must hold: 

The counterpart for Lemma 2 is discussed now: Matrix H has a 
triangular zero matrix on its upper-right corner, corresponding to the 
columns containing the fourth-order terms and whose dimensions 
are set once 1\14 and Ar4 are tuned. The columns corresponding 
to the third-order terms also contain a triangular zero matrix on 
its upper-right comer. Following a reasoning similar to the one in 
Theorem 1, it is easy to see that the P + 2, P + 3 , .  . . numbered 
rows are not linearly dependent of the above ones due to the terms 
h ( O ) ,  h2(0) ,  h( l ) ,  h2(1) ,  . . . , and hence, the rank of (16) is limited 
by the number of columns Ms + n/r, + N j  + N4 + 2. In order to 
limit the number of independent g(.) terms, the number of columns 
must be bounded to P + 1: 

P 2 1 v 3  + Nz + h f 4  + N4 + 1. 

That is, as more cumulants are considered, a larger P should be used. 
From the conditions above, it turns out that 

P 2 2 p +  1. 

B. Algorithm 
Theorem 1 allows the use of the h ( n )  estimation procedure already 

seen in the MA and AR cases under the constraints previously shown. 
The resulting set of cumulant slices and lags can be condensed in (8) 
for 1-D slices of kth-order cumulants, where Sa is the anticausal 
w-slice matrix as shown in (16a), which appears at the bottom of 
the page, with P, M ,  and N chosen according to the values allowed 
in Section I-A, 1 = (0, ... 0, l ) T ,  and w is the weighting vector 

The final ARMA w-slice algorithm can be resumed in three steps 

S1) Computation of the minimum norm weights that yields a 

wm = sg1. (17) 

w = [Ui3 ( i l )  ’ ‘ ’ w4(i2) .  . .I”’. 
if upper bounds $. @ of the true ARMA(p, q )  orders are known: 

causal w-slice with Cw(0) = 1: 

S2) Estimate the causal part of the impulse response using 

ho = Scwln (18) 

where S, denotes the causal counterpart of Sa [2], [6], 
and ho = [h(O), . . . , h(pX + p ) l T  is the estimated impulse 
response. 

S3) Solve for the AR parameters using 

S4) Then, the b( .) coefficients can be estimated by using the AR- 
compensated impulse response or any other linear or nonlinear 
method: 

P 

b(n) = a ( k ) h ( n  - k ) .  
k=O 

Most of the features seen in [2] and [6] are also encountered in 
the ARMA case. Some others are as follows: 

Remark 1: Once the AR parameters have been estimated, as well 
as b ( q ) ,  the higher order cumulants 7 k e  of the driving process 
e(.) can be computed from (10). Of course, this implies accurate 
estimation of q .  

Remark 2: Unlike other methods, identifiability is guaranteed even 
if we are only given upper bounds of the true AR and MA orders. 
In practice, since q may be unknown, N should be set to an upper 
bound of p ,  and A4 should be set to an upper bound of q .  

Remark 3: The matrix in (19) has rank equal to p (the AR order), 
provided that q is greater than or equal to the true MA order and 
that the ARMA(p, q )  has no pole-zero cancellations (see [3, pp. 
244-2451), Hence, we get an estimate for the AR order by analyzing 
its singular values. The true MA order may be estimated by following 
the approaches in [SI over the AR-compensated cumulant sequence 
B(7nl.  n 1 2 ) .  The comparative test of order determination algorithms 
in combination with the w-slice algorithm is beyond the scope of 
this paper; however, sensitiveness of the w -slice approach to order 
overdetermination has been tested in the simulations below. 
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True h(n) and bias for the wideband 
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0.3 , 

Fig. 1. 
for the w-slice, for differerit (0ver)estimations of the true MA order. 

Bias and standard deviation of the estimated impulse response of both the wideband and narrowband nonminimum phase ARMA process computed 

Remark 4: In practice.. theoretical cumulants are substituted by 
the sample estimates, which are known to be consistent and asymp- 
totically Gaussian. For a large number of signal samples N ,  the 
covariance of the estimated sample cumulants is inversely propor- 
tional to N. Since the wslice is a linear transformation, a similar 
behavior is expected for the estimated linear impulse response, as well 
as for the PLR parameters. In 161, one can find a simulation in which 
the evolution of the variance of the estimated AR parameters is plotted 
versus IV. Fkeasonable l /X dependence was found for N > 1000 on 
that AR(2) process. 

111. NUMERICAL EXAMPLES 
In the firs,t example, three different models have been tested by per- 

forming 50 independent Monte Carlo runs. Third-order statistics have 
been used, and the minimium set of slices to guarantee identifiability 
in each method. Each reco:rd contains 2048 noiseless samples of i.i.d., 
zero-mean, exponentially ‘distributed samples that have been filtered 
through two different bandpass ARMA(3, 1) models containing an 
allpass term as follows: 

Wideband process: b = 1.5 T = 0.45 B = 0.3142 rad 
Narrowband process: b = 1.5 r = 0.85 0 = 1.2566 rad 

and a third ARMA(2, 2) model proposed in [8] that contains zeros 
on the unit circle: 

1 + z-2 - - 
1 - 0.82-’ + 0 . 6 5 ~ - ~ .  

Results assuming the true order known are shown in Table I for the 
w-slice and for the q-slice algorithm [SI. As can be seen, the w-  
slice approach exhibits similar performance in variance to the q-slice 
method but somewhat lower bias. 

In the second example, we have tested the robustness of the method 
to order overdetermination. The q-slice algorithm is very sensitive 
to this situation and becomes inconsistent. Both the wideband and 
the narrowband ARMA(3, 1) process have been tested, using 2048 
samples of an exponentially distributed process in every one of the 
50 Monte Carlo runs. We have assumed an AR order of 5 and values 
for the estimated MA order ( e )  of 1 (true order), 2, and 3. The set 
of third-order cumulant slices used is M = 5: N = 5 - tj in all 
cases, and the value of P has been set to i + N .  The number of 
the estimated samples of the causal impulse response (the number of 
rows in S,) has been seven in all cases. Results are shown in Fig. 1, 
which depicts a similar behavior in bias and standard deviation for 
the estimated impulse response. This is not an unexpected result since 
the method is still consistent, and we are just using more cumulant 
slices. 
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IV. CONCLUSIONS 

We have presented a proof for the consistency of the u-slice 
algorithm in the estimation of the impulse response of an ARMA 
linear system. Its extension to the ARMA case is an important feature 
of the method, which allows impulse response recovery even if 
the FIR or IIR nature is unknown. Simulations have shown good 
performance and robustness to order overdetermination. 
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Complex Linear-Quadratic Systems 
for Detection and Array Processing 

Pascal Chevalier and Bernard Picinbono 

Abstruct- Linear-quadratic (LQ) filters for detection and estimation 
are widely used in the real case. We investigate their extension in the 
complex case, which introduces various new questions. In particular, we 
calculate the optimum LQ array receiver in a non-Gaussian environment 
by using the deflection criterion and evaluate some of its performance. 

I. INTRODUCTION 
Linear-quadratic (LQ) systems are widely used in many areas 

of signal processing and especially in detection problems. As an 
example, the optimum receiver for the detection of a normal signal 
in a noma1 noise is an LQ system. Most of the results known for LQ 
systems are established in the real case. However, these assumptions 
are too restrictive for various problems and especially in narrowband 
array processing. Even if the physical signals received by the sensors 
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are real, there is a great advantage in the narrowband case to work 
with the complex representation, for example, by using the analytic 
signal (see [l, p. 2291). This especially allows definition of the 
complex steering vector characterizing the geometrical structure of 
the problem. 

The most general form of a complex LQ filter calculating an output 
y in terms of a vector input x is 

y(z) = c + Z H h l  + zTh2 + x H M 1 x  + z“Mzx* + x T M 3 x  

where 
c is a constant; 
111 is a complex vector; 
hL is a complex vector; 
M ,  are three complex matrices. 

In this equation, zH means transposition and complex conjugation. 
Note that because of the symmetry of the last two quadratic terms, 
there is no loss of generality in assuming that the matrices M Z  and 
M J  are symmetric. The introduction of complex signals and systems 
yields significant changes in statistical signal processing problems. 
The main purpose of this correspondence is to calculate the vectors 
and matrices appearing (1) in such a way that y satisfies some 
optimality criterion introduced in the next section. 

11. STATEMENT OF THE PROBLEM 

The basic detection problem consists of deciding between two 
simple hypotheses Ho and H I  from an observation vector x. When 
the probability distributions of x under HO and H I  are known, the 
optimum procedure consists in comparing the likelihood ratio (LR) to 
a threshold. Our basic assumption is that we are not in this situation 
and that our knowledge concerning the statistical properties of x is 
much lower. If, for instance, this knowledge is limited to second- 
order properties of x under Ho and H I ,  which means that only the 
mean values and the covariance matrices are known, it is possible to 
calculate the linear filter that maximizes the output signal to noise 
ratio, and, in the case of nonrandom signals, this leads to the famous 
matched filter used in many areas of statistical signal processing 
(see [l, p. 5551). The output signal-to-noise ratio is also called the 
dejection and can be defined for any filter y(x) by the expression 

where Eo and E l  are expectations under Ho and H I ,  respectively, 
and Vi is the variance under Ho . This deflection was introduced long 
time ago and has been used under various assumptions, especially in 
the context of array processing [2]-[5]. Even if it has been essentially 
used in the linear case, there is no reason to limit its use to linear 
systems. Therefore, if the moments up to the order 4 are known, it 
is possible to calculate the deflection of (1)  and to find the system 
giving its maximum value. This work extends to the complex case 
results obtained in [6] for the real case. 

We shall outline only the principles of the method used in order 
to maximize the deflection of systems like (1). The first point is to 
note that the deflection is invariant under affine transformation, and 
then it is appropriate to use this property to work with LQ systems 
having an output with zero mean value under Ho. This is realized 
by subtracting the mean value. By assuming that the input vector z 
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