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with T (z) = D1(z)D2(z
�1)�D2(z)D1(z

�1): The sign ofQ(z) is
the same as that of RefG(z)=D1(z)g on the unit circle; an identical
consideration can be made forR(z) and D2(z): Therefore,G(z)
can be computed by findingQ(z) = Q(z�1) andR(z) = R(z�1)
positive on the unit circle and such that

R(z)D1(z)�Q(z)D2(z)

= 0 8z such thatT (z) = 0; jzj � 1:

The roots ofT (z) outside the unit circle can be readily included in
R(z) andQ(z) (and, by symmetry, the roots inside the unit circle).
However, given the positivity ofR(ej!) andQ(ej!) for all !, the
zeros ofT (z) on the unit circle must be canceled out by solving the
interpolation problem

R(z)

Q(z)
=
D2(z)

D1(z)
8z such thatT (z) = 0; jzj = 1:

With D1(z) = (1� �Mz�1)N andD2(z) = (1 + �Mz�1)N , those
roots are only two, namely,z = 1 and z = �1: The interpolation
can be carried out by the algorithm presented in [8], and the degree
of C(z) = G(zM) can be checked to beNM [10].

V. SIMULATIONS

In this example, the three poles of the plant are known to belong
to 
, which is given by


 = fz = �ej�: �0:28 � � � 0:28; 0:1 � � � 0:9g:
It can be proved that there does not existC(z) such thatC(z)=A�(z)
is SPR for allA�(z) with their roots in
: However, the region

2 = fz: pz 2 
g, which characterizes the uncertainty in the
roots ofD(z) as in (10), forN = 3;M = 2 can be enclosed in
a region that admits two extreme polynomials, namely,D1(z) = 1
andD2(z) = (1�0:81z�1)3, which satisfy (9). Such a region is the
intersection of the circles centered at 0.5 and�0.095 and with radii
0.5 and 0.905, respectively. See [9] for more details on these types
of regions. An appropriate compensatorC(z) is obtained following
the steps shown in Section IV:C(z) = 1�1:33z�2+0:36z�4: The
true plant is given byH(z) = (1=A�(z)) with

A�(z) = 1� 2:5799z�1 + 2:2804z�2 � 0:6885z�3:

The input is zero-mean, unit variance white noise filtered byS(z) =
(1=As(z)) with

As(z) = 1� 2:4581z�1 + 3:0648z�2 � 1:9911z�3 + 0:6561z�4:

The spectrum ofu(�) is especially significant for those! such that
Re(1=A�(ej!))< 0: White measurement noise is introduced so that
the SNR at the plant output is 26 dB. Fig. 1 shows the trajectories of
the denominator coefficients in two cases. On the top, we haveM = 2
and the robust compensator computed above. With no compensator,
an expansion factorM = 3 was needed to achieve convergence in
the bottom part of the figure.

VI. CONCLUSIONS

An analysis of hyperstability-based adaptive IIR filtering algo-
rithms with polyphase structures has been performed. By appropri-
ately selecting the polyphase expansion factor, the SPR condition that
this class of algorithms requires for convergence can be satisfied. A
method for this selection has been given, usinga priori information
about the location of the unknown plant poles in the form of
uncertainty regions.
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The Continuous Wavelet Transform as a Maximum
Entropy Solution of the Corresponding Inverse Problem

Laura Rebollo-Neira and Juan Fernandez-Rubio

Abstract—The continuous wavelet transform is obtained as a maximum
entropy solution of the corresponding inverse problem. It is well known
that although a signal can be reconstructed from its wavelet transform,
the expansion is not unique due to the redundancy of continuous wavelets.
Hence, the inverse problem has no unique solution. If we want to recog-
nize one solution as “optimal,” then an appropriate decision criterion has
to be adopted. We show here that the continuous wavelet transform is an
“optimal” solution in a maximum entropy sense.

I. INTRODUCTION

The continuous wavelet transform (CWT)~f(a; b); (a; b) 2 R2 of
a signalf(t) 2 L2(R), with respect to an admissible mother wavelet
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	(t) 2 L2(R), is defined as [1]

~f(a; b) = h	a;b j fi =
R

f(t)	�
a;b(t)dt; (a; b) 2 R2 (1)

where	a;b(t) =
1p
jaj

	( t�b

a
); (a; b) 2 R2, and	�

a;b(t) indicates

the complex conjugate of	a;b(t). Let us denoteF as the subspace of
all wavelet transforms with respect to a mother	(t) 2 L2(R), i.e.,

F = ~f(a; b) = h	a;b j fi =
R

f(t)	�
a;b(t)dt

for somef(t) 2 L2(R); (a; b) 2 R2 : (2)

As a special case of the resolution of the identity property of the
CWT [1], we have

R

jf(t)j2 dt = 1

C	 R

j ~f(a; b)j2 dadb
a2

(3)

whereC	 is the admissibility constant,C	 =
1

�1
j	̂(!)j
j!j

d!, and

	̂(!) is the Fourier transform of	(t). Equation (3) shows that the
CWT mapsL2(R) isometrically intoL = L2(R2;C�1

	 a�2dadb),
which is the space of all the functionsh(a; b); (a; b) 2 R2 that
are square-integrable with respect to the weight functionC�1

	 a�2.
However, the isometry is only partial because its rangeF constitutes
a closed subspace and not all ofL. Thus, not everyh 2 L can be
the CWT of some signalf 2 L2(R). A necessary and sufficient
condition for a functionh 2 L to belong toF is that it satisfies the
reproducing kernelequation [1], [3]

h(a0; b0) =
1

C	 R

h(a; b)h	a ;b j 	a;bidadb
a2

; (a0; b0) 2 R2:

(4)

If h =2 F , the right-hand side of (4) gives rise to the orthogonal
projection ofh ontoF [3]. Hence, although the functionf can be
reconstructed (at least in the weak sense) from its CWT through the
integral [1], [3]

f(t) =
1

C	 R

~f(a; b)	a;b(t)
dadb

a2
; t 2 R (5)

the expansion is not unique. The most general solution can be
expressed ash = ~f + ~f? for any ~f? 2 F?, whereF? denotes the
orthogonal complement ofF in L [3]. Consequently, the problem of
inverting the integral equation

f(t) =
1

C	 R

h(a; b)	a;b(t)
dadb

a2
; t 2 R (6)

has an infinite number of solutions. This problem appears typically in
RADAR and SONAR signal processing when the wideband model for
echo locationis considered, and only one outgoing signal can be used.
In this case, the functionh is thereflectivity density, which represents
a dense-target environment, and the functionf the only availableecho
[3], [10]. In the general case, (6) can be seen as the input–output
relationship for a time-scale system characterized by the functionh.
From a single input–output operation, it is impossible to uniquely
determine the system. Since infinitely many systems can produce
identical output from the input, if we want to recognize a particular
functionh as a good estimate of the unknown system, an appropriate
decision criterionhas to be adopted. By choosing~f? = 0, the CWT
~f appears to be “optimal” solution in a minimum norm (MN) sense.
The MN requirement may be a reasonable criterion to be adopted in
some applications; however, in other cases, there may be noa priori
reason for accepting a MN solution as a suitable estimate of the
unknown solution. In this correspondence, we address the problem
of deciding on an appropriate estimate for the unknown systemh

by recourse to a postulate originally conceived for the purpose of
making decisions in indeterminate situations, namely, the principle
of maximum entropy (ME) [5]–[7].

The ME principle is based on the interpretation of a probabil-
ity distribution as expressing the lack of the complete knowledge
required to draw definite conclusions. The entropy is claimed to
be a measure of such uncertainty or “ignorance,” and the postulate
states that the “least committal” probability distribution with regard
to the missing information is the one that maximizes the entropy
(uncertainty) and agrees with what is known [5]–[7]. According to the
ME prescription, inferences on the basis of incomplete information
should be made through predictions of expected values computed
with the probability density that, while reproducing the available
information, yields maximum uncertainty with respect to all other
matters [5]–[7].

The problem of undertaking the selection ofone h 2 L as an
estimate for the unknown system on the basis of the incomplete
information that provides (6) is certainly well represented by the
above ME formalism. Our “uncertainty” underlies the fact that we
cannot be certain about which systemh has generated the output
f . The need for a statistical description is further supported by the
wideband regime example mentioned above. Since, in such a case,
the time-scale systemh represents a dense-target environment, it is
clear thath is most likely to change randomly. We then assign a
probability density to each functionh and consider the expected value
of h to represent the system. The ME postulate is employed in order
to reconstruct the probability density from the outputf .

The ME criterion for estimating solutions of underdetermined
inverse problems and integral equations has been extensively applied
in several fields during the last 20 years. As examples, we can mention
[2], [8], [13], [15], [16], and [18]. In particular, the ME approach with
constraints on the mean solution has been used in crystallography
[11] and other contexts [9]. We incorporate a restriction on the mean
variance of the process in order to ensure the existence of the ME
distribution over the unbounded range of definition. Once the ME
probability density satisfying the given constraints is determined,
we are in a position to “infer” the unknown system by predicting
its expected value. The result is that the predicted expected value
corresponds to the MN solution, i.e., the CWT. In other words, we
provide one more reason for deciding on the MN solution as, from
an ME point of view, it turns out to be the “least biased” assignment
that we can make on the basis of the available data. This result has
also been shown to hold as a property within theframe theory[14].

It should be stressed that through the proposed scheme, the
ME estimate for a time-scale system is able to be improved by
additional input–output operations. Provided that such information
were available, it can be introduced in the proposed framework simply
by adding the corresponding equations as constraints. In this sense,
the result we derived here should be understood as a “first-order” ME
estimate of the unknown system since such an estimate is obtained
from a single input–output relationship.

II. ME STATISTICAL DESCRIPTION

We address here the problem of estimatingone function h 2 L
when the only information we are given is (6) and the integral is
assumed to converge tof at least in the weak sense, i.e., all the inner
products are equal. In order to properly expressed this restriction, we
take an orthonormal basis spanningL2(R), sayyj(t); j = 1; . . . ;1,
representf(t); t 2 R as

f(t) =

1

j=1

sjyj(t); sj = hyj j fi (7)
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and require that

sj =
1

C	 R

h(a; b)hyj j 	a;bi
dadb

a2
; j = 1; . . . ;1: (8)

Let �n(a; b); n = 1; . . . ;1; (a; b) 2 R2 be an orthonormal basis
for L. Thus, each functionh 2 L can be expressed as

h(a; b) =

1

n=1

cn�n(a; b); (a; b) 2 R
2 (9)

with

cn =
1

C	 R

h(a; b)��n(a; b)
dadb

a2
; n = 1; . . . ;1: (10)

The above equations provide a one-to-one correspondence between
a function h and the sequencec1; c2; . . . : Hence, the problem
of selectingone solution h among the infinitely many possible is
equivalent to selectingone sequencec1; c2; . . . : Our aim is that
of deciding on such a sequence through adecision criterion to
establish how to use the available incomplete information in an
optimal way. The inversion problem is then transformed into a
problem of inference. As argued in the previous section, we place
the problem within this framework by expressing our ignorance
of the “true” sequence by assigning a probability density to each
possible one. The statistical estimate of the sequence is represented
by the expected value of the random sequence that we denote as
c1; c2; . . . : Accordingly, the statistical estimate ofh is evaluated
as h(a; b) = 1

n=1
cn�n(a; b); (a; b) 2 R2. Introducing the last

expression in (8), the constraints of our problem adopt the form

sj =
1

C	 R

1

n=1

cn�n(a; b)hyj j 	a;bi
dadb

a2
; j = 1; . . . ;1

(11)
that we split into real and imaginary parts, and they become

s
u
j =

1

n=1

cunw
u
nj � cvnw

v
nj ; j = 1; . . . ;1 (12)

s
v
j =

1

n=1

cunw
v
nj + cvnw

u
nj ; j = 1; . . . ;1 (13)

wherecun andcvn are the real and imaginary parts ofcn, respectively,
whereassuj andsvj are the real and imaginary parts ofsj , andwu

nj and
wv
nj are the real and imaginary parts ofwnj =

1

C R
�n(a; b)hyj j

	a;bi
dadb

a
.

In what follows, we shall considerM -dimensional sequencesc1;
c2; . . . ; cM and examine thelimM!1 at the end of the calculations.
To simplify notation, let us denotecu = cu1 ; . . . ; c

u
M and c

v =
cv1 ; . . . ; c

v
M . Assuming that these2M random variables are distributed

according to a joint probability densityP (cu; cv), the expected
values cun; cvn involved in (12) and (13) are calculated using the
expected value definition, i.e.,

cun =
1

�1

P (cu; cv)cundc
u

dc
v; j = 1; . . . ;M (14)

cvn =
1

�1

P (cu; cv)cvndc
u

dc
v; j = 1; . . . ;M (15)

where the integral sign denotes2M integrals, whereasdcu =
dcu1 ; . . . ; dc

u
M , anddcv = dcv1 ; . . . ; dc

v
M .

In order to guarantee the existence of the ME probability dis-
tribution over the range(�1;1)2M , we shall require the mean
variance of the process to be finite. Consequently, in addition to the
normalization condition

1

�1

P (cu; cv)dcu dcv = 1 (16)

we set the constraint

1

2M

M

n�1

1

�1

P (cu; cv) c
u
n
2 + c

v
n
2
dc

u

dc
v = C (17)

whereC is an unknownconstant.
We face now the problem of determiningP (cu; cv) satisfying (12),

(13), (16), and (17). Among all theP (cu; cv) capable of fulfilling
these constraints, we select one adopting the ME principle. As we
are dealing with random variables of continuous-type, in the absence
of a priori knowledge about the sought distribution, the uncertainty
measure we consider is the differential entropy, which is defined as
[4]

H(cu; cv) = �
1

�1

P (cu; cv) lnP (cu; cv)dcu dcv: (18)

(Note: The entropy maximization is tantamount to assuming a uni-
form prior distribution in the minimum cross entropy formalism
[17].)

We look for the probability density that maximizes (18) with
constraints (12), (13), (16), and (17). We incorporate each constraint
(12) into the variational process through a Lagrange multiplier�uj and
each constraint (13) through a Lagrange multiplier�vj . Constraints
(16) and (17) are introduced through the Lagrange multipliers�0 and
�, respectively. Thus, the functionalS to be maximized is cast as

S = �
1

�1

P (cu; cv) lnP (cu; cv)

+ �

M

n�1

c
u2
n + c

v2
n + �0 dc

u

dc
v

�

1

j=1

�
u
j

M

n=1

cunw
u
nj � cvnw

v
nj

�

1

j=1

�
v
j

M

n=1

cunw
v
nj + cvnw

u
nj : (19)

From the condition�S
�P

= 0, we obtain

P (cu; cv) = exp�(�0 + 1)

� exp �

M

n=1

c
u
n


u
n + cn


v
n + �c

u
n
2
+ �c

v
n
2

(20)

where
un = 1

j=1
(�ujw

u
nj + �vjw

v
nj), and 
vn = 1

j=1
(�vjw

u
nj �

�ujw
v
nj).

The verification that the stationaryH is actually a maximum,
and the only one is straightforward with the aid of the well-known
inequality [12]

�
1

�1

P
y(cu; cv) lnP y(cu; cv) dcu dcv

� �
1

�1

P
y(cu; cv) lnP (cu; cv) dcu dcv (21)

holding for anyP y(cu; cv) andP (cu; cv), which are both normal-
ized. The equality is reached if and only ifP y(cu; cv) = P (cu; cv).

With P (cu; cv) given in (20), the differential entropyH is

H = (�0 + 1) +

1

j=1

�
u
j s

u
j +

1

j=1

�
v
j s

v
j + �2MC (22)

whereas if we take any otherP y(cu; cv) satisfying constraints (12),
(13), (16), and (17), the corresponding differential entropy~H will
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be ~H = �
1

�1
P y(cu; cv) lnP y(cu; cv)dcu dcv, and using (21),

we have

~H �
1

�1

P y(cu; cv) (�0 + 1) +

M

n�1

cun

1

j=1

�ujw
u
nj + �vjw

v
nj

+

M

n�1

cvn

1

j=1

�vjw
u
nj � �ujw

v
nj

+ �

M

n�1

cun
2
+ cvn

2
dcu dcv

= (�0 + 1) +

1

j=1

�uj s
u
j +

1

j=1

�vj s
v
j + �2MC = H (23)

which shows thatP (cu; cv), as in (20), corresponds to the abso-
lute maximum of the differential entropyH subject to the given
constraints.

The normalization condition (16) entails

exp(�0 + 1)

=
1

�1

exp�(�0 + 1)

� exp �

M

n�1

cun

u
n + cn


v
n + �cun

2 + �cvn
2 dcu dcv

=
�

�

M M

n=1

exp

un

2

4�
exp


vn
2

4�
(24)

so that by substituting (20) in (14) and (15) and performing the
integrals, we obtain

cn = �
1

2�

1

j=1

�jw
�
nj

= �
1

C	2� R

	a;b

1

j=1

�jyj ��n(a; b)
dadb

a2

n = 1; . . . ;M (25)

where�j = �uj + i�vj ; j = 1; . . . ;1. On the other hand

cn =
1

C	 R

h(a; b)��n(a; b)
dadb

a2
: (26)

On comparing (25) and (26), we gather thath(a; b) =
�(1=2�)h	a;b j 1

j=1
�jyji; (a; b) 2 R2, and hence,�h 2 F

[cf. (2)]. Thus, we are in a position to univocally determine�h. In
fact, by using�h in (6) and performing the inner product of both
sides with	a ;b , we have

h	a ;b j fi =
1

C	 R

h(a; b)h	a ;b j 	a;bi
dadb

a2

(a0; b0) 2 R2 (27)

and, since�h 2 F , the reproducing kernelequation (4) is verified.
Hence, from (27), we conclude thath(a0; b0) = h	a ;b j fi =
~f(a0; b0); (a0; b0) 2 R2, which proves that the CWT is an “optimal”
estimate of the inverse problem in a ME sense. This result shows that
from an ME viewpoint, the MN criterion works out by averaging
functions in a maximally noncommittal way and, therefore, is the
“least biased” assignment we can make on the basis of the available
information.

We now examine the resulting differential entropyH, which adopts
the simple expressionH = M ln �e

�
. Hence, the pertinent differential

entropy rate, or differential entropy per degree of freedom, which
is defined as [12]�H = limM!1

1

2M
H(cu; cv), turns out to be

�H = 1

2
ln �e

�
.

As a final remark, we wish to stress that the proposed framework
can be used to improve on the given ME estimate for the unknown
systemh if additional input-out operations are available. Indeed, if
we input another waveform	0 6= 	 and obtain an outputf 0 6= f ,
this information can be incorporated into the above scheme simply
by adding the corresponding equation to the previous constraints. The
ME estimate we have derived here should be understood as a “first-
order” ME estimate of the unknown system in the sense that it was
obtained from asingle input–output relationship.

III. CONCLUSION

The CWT has been derived as a ME estimate of the concomitant
inverse problem. This was achieved by

i) transforming each possible solution into a sequence of coef-
ficients;

ii) assigning a probability density to each sequence;
iii) representing the unknown solution through the expected value

of such random sequence;
iv) undertaking the reconstruction of the probability density

on the basis of the given constraints and the principle of
maximum entropy;

v) deciding on the unknown solution through the expected value
sequence inferred by the ME probability density.

The so-estimated solution was shown to be identical to the CWT.
Thus, we are led to conclude that the CWT, or MN solution, is
an “optimal” estimate of the concomitant inverse problem from a
ME point of view. This result supports the use of the MN solution
as being the “least biased” assignment we can make on the basis
of the incomplete information that provides (6). In addition, the
proposed ME treatment for estimating a time-scale system represented
by the functionh allows for the inclusion of additional information
to improve upon the given estimate.
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1994.

[4] R. E. Blahut,Principles and Practice of Information Theory. Reading,
MA: Addison-Wesley, 1987.

[5] E. T. Jaynes, “Information theory and statistical mechanics,”Phys. Rev.,
vol. 106, pp. 620–630, 1957.

[6] , “Where do we stand maximum entropy?,” inThe Maximum
Entropy Formalism, R. Levine and M. Tribus, Eds. Cambridge, MA:
MIT Press, 1979.

[7] , “Prior information and ambiguity in inverse problems,” inProc.
SIAM-AMS, 1984, vol. 14, pp. 151–166.

[8] A. Mohammad-Djafari and G. Demoment, Eds.,Maximum Entropy and
Bayesian Methods. Boston, MA: Kluwer, 1993.

[9] A. Mohammad-Djafari, “Maximum entropy and linear inverse problems.
A short review,” in Maximum Entropy and Bayesian Methods, A.
Mohammad-Djafari and G. Demoment, Eds. Boston, MA: Kluwer,
1993, pp. 253–264.

[10] H. Naparst, “Dense target signal processing,”IEEE Trans. Inform.
Theory, vol. 37, pp. 317–327, 1991.

[11] J. Navaza, “On the maximum-entropy estimate of the electron density
function,” Acta Cryst. A, vol. 41, pp. 232–244, 1985.



2050 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 7, JULY 1999

[12] A. Papoulis,Probability, Random Variables and Stochastic Processes.
New York: McGraw-Hill, 1991.

[13] C. R. Smith and W. T. Grandy Jr., Eds.,Maximum Entropy and Bayesian
Methods in Inverse Problems. Dordrecht, The Netherlands: Reidel,
1985.

[14] L. Rebollo-Neira, J. F. Rubio, and A. Plastino, “Frames: A maximum
entropy statistical estimate of the inverse problem,”J. Math. Phys., vol.
38, no. 9, pp. 4863–4871, 1997.

[15] L. Rebollo-Neira and A. G. Constantinides, “Power spectrum estimation
from noisy and limited autocorrelation values: A maximum entropy
approach,”Signal Process., vol. 56, no. 2, pp. 135–147, 1997.

[16] J. Skilling, Ed., Maximum Entropy and Bayesian Methods. Boston,
MA: Kluwer, 1988.

[17] J. E. Shore and R. W. Johnson, “Axiomatic derivation of the principle of
maximum entropy and the principle of minimum cross-entropy,”IEEE
Trans. Inform. Theory, vol. IT-26, pp. 26–37, 1980.

[18] C. R. Smith and W. T. Grandy Jr., Ed.,Maximum Entropy and Bayesian
Methods in Inverse Problems. Dordrecht, The Netherlands: Reidel,
1985.

Multidimensional Polynomial Transform Algorithm
for Multidimensional Discrete W Transform

Yonghong Zeng and Xiaomei Li

Abstract—The multidimensional (MD) polynomial transform is used to
convert the MD W transform (MDDWT) into a series of one-dimensional
(1-D) W transforms (DWT’s). Thus, a new polynomial transform algo-
rithm for the MDDWT is obtained. The algorithm needs no operations
on complex data. The number of multiplications for computing an r-
dimensioanl DWT is only 1

r
times that of the commonly used row-column

method. The number of additions is also reduced considerablely.

Index Terms—Discrete transform, fast algorithm, multidimensional
signal processing.

I. INTRODUCTION

As the generalization of the multidimensional (MD) discrete Hart-
ley transform [1]–[3], the MD discrete W transform (MDDWT) is a
tool for MD problems. MDDWT is symmetrical and real. It is simpler
than the MD discrete Fourier transform (MDDFT) since it needs no
operations on complex data. Therefore, it is useful for processing
MD signals. In applications such as image processing and optical
engineering, DWT (DHT) has been effectively used [3], [4]. In areas
of computer vision, high definition television (HDTV), and vision
telephony, where we must process or analysis motion images [which
is also called multiframe detection (MFD)] MD discrete transforms
are often used. Currently, the discrete Fourier transform (DFT) and
the discrete cosine transform (DCT) are the two most commonly used
transforms in these areas [5], [6]. If we process the motion of three-
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dimensional (3-D) images, the four-dimensional (4-D) DWT may be
used. Furthermore, the MD DWT can be used to compute the MD
DFT in order to reduce computational complexity [7].

Since the computational complexity for the MDDWT is extra-
ordinary high, designing a good fast algorithm is very important.
Although the kernel of the MDDWT is not separable, we can turn
it into a transform with its kernel separable [3], [8]. The resulting
transform can be computed by the well-known row-column method.
The row-column method is commonly used, but it is far from the
best. The polynomial transform is considered to be a useful tool for
handling MD problems. It has been successfully used for computing
MD DFT, MD convolution, and MD DCT, and so on [9], [11]. In
this correspondence, we use the polynomial transform to derive a
new algorithm for the MDDWT. The number of operations needed
by the proposed algorithm is reduced considerably compared with the
row-column method; the number of multiplications is only1

r
, and the

number of additions is also less, wherer represents the dimension of
the transform. Furthermore, the algorithm is simple in structure and
easy for programming.

II. MD POLYNOMIAL TRANSFORM

ALGORITHM FOR r–DIMENSIONAL DWT-II

In the following, assume thatNr = 2t; Nr=Ni = 2l ; i =
1; 2; . . . ; r�1, whereli � 0 is an integer. Anr-dimensional DWT-II
with sizeN1 � N2 � � � � � Nr is

X(k1; k2; . . . ; kr) =

N �1

n =0

N �1

n =0

� � �

N �1

n =0

x(n1; n2; . . . ; nr) (1)

� cas
�(2n1 + 1)k1

N1

+ � � �+
�(2nr + 1)kr

Nr

ki = 0; 1; . . . ; Ni � 1; i = 1; 2; . . . ; r: (2)

This is a multiple sum. In the following, we try to change the order
of the sum and eliminate the redundant operations in the sum.

Lemma 1: Let pi(nr) be the least non-negative remainder
of the (2pi + 1)nr + pi module Ni, and let A =
f(n1; n2; . . . ; nr) j 0 � ni � Ni � 1; 1 � i � rg;
B = f(p1(nr); p2(nr); . . . ; pr�1(nr); nr) j 0 � pi � Ni � 1; 1 �
i � r � 1; 0 � nr � Nr � 1g. Then,A = B.

Proof: It is sufficient to prove that the elements inB are
different from each other. Let(p1(nr); p2(nr); . . . ; pr�1(nr); nr)
and (p01(n

0

r); . . . ; p
0

r�1(n
0

r); n
0

r) be two elements inB. If they are
equal, then

pi(nr) = p0i(n
0

r); i = 1; 2; . . . ; r � 1; nr = n0r:

From the definition ofpi(nr), we see that

(2pi + 1)nr + pi � (2p0i + 1)nr + p0i modNi:

Hence

(2nr + 1)(pi � p0i) � 0modNi; i = 1; 2; . . . ; r � 1:

Since2nr + 1 is relatively prime withNi, we getpi � p0i modNi,
that is, pi = p0i.
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