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Abstract—The inversion problem concerning the windowed Fourier
transform is considered. It is shown that, out of the infinite solutions that
the problem admits, the windowed Fourier transform is the “optimal”
solution according to a maximum-entropy selection criterion.

Cy = llol* = / (o) do.
R

Although the inversion formula (2) allows the recovery of a signal
from its WFT, the inversion is not unique. Let us dendtéto the
Index Terms—Gabor transform, inversion problems, maximum en- image of the WFT, i.e.,

tropy, windowed Fourier transform. )
W = {F(w,t); Flw,t) = / e g (v — ) f () das
R

. INTRODUCTION

for somef(z) € LZ(R)}. )

The use of a generalized Fourier integral to convey simultaneous
time and frequency information was first introduced by Gabor (1946). o
In [2], he defines a windowed Fourier integral, using a Gaussid¥ is only a closed subspace, not all bf(R*) (not every function
window. Later, the window was generalized to any functiodig), "(w,t) € L?(R”) belongs toWV). The next theorem, whose proof is

the space of square integrable functions. The so generalized G&%?n( in [)6, p. 56], provides the necessary and sufficient condition
for h(w,t) € W.
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The functionk'(w', ', w, ) is called thereproducing kernetleter- Ill. THE ME APPROACH

mined by the windowy and (4) is called the associatednsistency  The problem we address now is that of inverting iathe equation
condition

1 [ s
Theorem 2: All functions 2™ (w, t) belonging toA/* (the orthog- flz) = / e g(x — t)h(w,t) dw dt. (12)
i Cy Jpe
onal complement oiV) satisfy
- We begin by splitting the above complex equation into real and
/ T g — )T (w,t) dw dt = 0. (6) imaginary parts so that it becomes
R2

Proof: Multiplying the right-hand side of (6) by~ ‘e 9" (x—t") Fie) = c, /nz (ngt(x)h (w,8) = ge,e(@)h (w’t))d” at (12)
and integrating over: we have 1

£@) =g [ b @) + b ) dedt @3

/ </ gz —t) il g m—t)dm) v (w, t)dwdt. (7) , - i .
Rr2 \JR ‘ ‘ wheref“(z), f°(x) are the real and imaginary parts ffz) whereas
h*(w,t), h"(w,t) are the real and imaginary parts bfw,?) and

From the definition ofV it follows that g%.(2), gb..(x) are the real and imaginary parts f* g(x — 1),

ion i , respectively.
/RC g (x—t)e™ "glx —t)dr €W. As discussed in the previous section, there exist several functions
h(w,t) capable of satisfying (12) and (13). Our aim is that of selecting
Consequently, one of those solutions as “optimal” in an ME sense. In order to
achieve such a goal, we regard the possible solutions as a stochastic
/ </ % gz — t)ﬁ—iu’y;g*(:ﬂ _ t/)dw)hl(%ﬂ duw dt process and estimate the desired solution as its mean value that we
R2 denote
. - o * R Bl P (0 2
— / </ efzwrg*(‘r _ t)em; lg(.ﬂ _ t/) dJ,) hl(w,t)dw (lt h(u,,t) = h (»,t) + L}l (w,t), (w,t) € R .
R2 R

To deal with the stochastic process in a discrete way, we diRide
into squares of areAr = -, centered at the points, = (w;.t;)

and takdim M — oc. With this discretization, (12) and (13), which
provide the constraints to be satisfied by the desired solution, are
evaluated as

=0 ®)

becauser(w,t) € W+ is orthogonal to every function inv.
Notice that (8) can be recast in the form

te g(l’_mF("’t)):/Rei gl @de=00) ., _ Jim_ UOZ (@) () — gt ()R () (14)

where

- () = e (ry) + g ()b (rp)). (15
F(m):/ ¢ g2 — Y (w, ) dw di (10) f= UO Z @)+ g, R ))- - (19)
R2

At a fixed pointr;, both 2*(r;) andh*(r,) are now random vari-
ables. To simplify notation let us denok& = 1" (r1),- -, h¥(ras)
andh” = r"(r1),---,h"(rar). Assuming that thes@ M random
variables are distributed according to a probability denBih*, h"),
the mean values“(r;), h¥(r;) involved in (14) and (15) are
calculated as

and since

span{e™ E gl =)} iyene

is dense inL?(R)

(" gle =) | Pa)) =0, V(1)

he(r;)= P(h", A" )h" (r;) dh™ dh", j=1,---,M (16)
R2M
implies F'(z) = 0, whereby the proof is completed. o — 7 - w 1w
he(rj)= P(h", h*)h"(r;) dh* dh®, j=1,---,M (17)
The lack of uniqueness of the inverse WFT is an immediate con- R2M
sequence of Theorem 2. Indeed, besifiés, t), for any h™(w,t) € where

W the functionh(w,t) = F(w,t)+ h*(w,t) also reconstructs the

same siglnal. The inversion formula (2) corresponds to the particular dh™ = dh"(r1),- -, dh"(rar)
choice h~(w,t) = 0 and obviously gives rise to a solution of the

inverse problem which is “optimal” in @ minimum norm (MN) sense‘f’md
The MN requirement may be a reasonable criterion to be adopted in dh® = dh"(r1),---,dh"(rar).

the case of some applications, batpriori, certainly not inall of

them. In this correspondence we address the problem of decidingincel(k*, k”) is a probability density we must require it satisfies
on an appropriate estimate for the unknown solutigw,¢) by the constraint

recourse to a postulate originally conceived for the purpose of making .

decisions in indeterminate situations, namely, the MEP [4], [5]. In the / P(h*, h°)dh™ dh® = 1. (18)
next section we show that the WFT is also an “optimal” solution of R2M

the inverse problem according to a ME selection criterion, as it turns

out to be the mean of the probability density that maximizes tHe addition, we should set a constraint to enslife, t) € L*(R?).
entropy. This is guaranteed under the requirement thdf? be finite, which
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also ensures that the variance of the probability density is finitwhere

Consequently, we will set the additional constraint 1 X
" T (7‘]7) = NCg Zl ()‘a:yz-.(/rj (T’) + )‘iigrj (T')) (24)
. 1 . " u v u 2 v N2 u v =
2 — il - - ¥ and
(||| A}linoo ATJZI/}{ZA/IP(h LRY)Y (R () R (rj)7) dh®™ dRh Lo
=C (19) 2(0) = F& ; (\2.gr (i) = Af g0 (). (25)

where C' is an unknownconstant. Since the entropy (20) is a convex functional [7] it takes on its

Constraints (14), (15), (18), and (19), to be satisfied by th%bsolute maximum aP(h",h’.’) given in (,23)'
probability density we are looking for, are not enough to determine 1€ normalization constraint (18) entails
it in a uniqgue way. Among all the?(h™, h”) capable of fulfilling -
these constraints, we shall selente adopting the MEP. This cri- eXP(2M>\0+1):/ .
terion yields the probability density that, being consistent with the "

M
exp (—2 Z(h,u (ri)v(rj)+h"(rj)v2(r;)
j=1

available data, is maximally noncommittal with respect to the lack s e u w v

of information (entropy) [4], [5]. +BR"(r))"+ 807 (r;)”) |dh® dh
The entropy, or uncertainty, associated with the probability den-

sity is given by the generalization of Shannon’s measure [8] to [ M A n(ry)? Yo ()2

continuous-type random variables [7], i.e., = <ﬁ> H exP( 23 )eXp< 23 )

j=1

" 26
H(h",h") = —/ P(R®.h”)In P(h". h*) dh" dh®.  (20) (26)
R2M The remaining Lagrange multiplieray , \%.; i =1,---, N, and
Since we should takdim M — oo to represent our stochastic/’» should be obtained by using (23) in (14), (15), and (19) and
process, the appropriate measure to be used is the entropy pRing the equations. However, as we shall see below, the functional

H, or entropy per degree of freedom, defined as [7] form_ of P(h",h"), given_in (23), already provides_ the information
that is needed to determine the mean value fundhiony) that such
H= lim LH(h’ﬂ ). 1) probability density will prgdict. Indeed, by replacing (23) in (16) and
M—oo 2M " (17) and performing the integrals we have
¥ N
We then look for the probability density that maximizég with  ——— n(r;) 1 u u v v
h(ry) = — =- Ay g (i) + Ay, gr (2
constraints (14), (15), (18), and (19). In order to introduce the' (rs) 213 28NC, ;( riry (00) & Auigry (2 )
constraints (14) and (15) into the variational process, we divide the 27)
axis R into intervals of lengthAz = 3 centered at the points; r)) ) N
1 ; i Ui FYRRY V2T v u v
and takelimy—, at the end. Assuming thgt"(«) and f*(x) are  ju(; 7y = — 223, = ~35ve Z (AL 90 (i) = A, g2 ().
continuous functions we incorporate each constraint (14), evaluated at / 2PNy =
x = x;, through a Lagrange multiplier that we writ¢. Az and each (28)

constraint (15) through a Lagrange multipliaf Ax:. Constraints

(18) and (19) are introduced through the Lagrange multiphgrand Taking nowlim V' — oo, the above equations yield

3, respectively. Thus the function&§, to be maximized is cast he(r;) = _2;316” / (Negr' (@) + Xigy () da (29)
‘9 JR
= 1 ‘ u v o ]- " vou u v
5__211"[ /RzM P(h 7h ) }lb('l‘]') - _2/30;7 /R ( mgrj (I) - Igrj (J)) - (30)
M s 0 or
| In P(h", R )-I—Z,zi;(h (r;)°+h"(r;)*) |dh™ dk R = or) = o) + i)
— o / P(h*, k") dh* dh® =/R e~ g (v = ty)w(x) da (31)
2M 3
, f L m with
—— u - U AR () — g (VRO () 1 .
N 257G, 2 95 @O () =gr okt () w(e) = —5ae- (A + k).
i=1 7j=1 i g

N M
1

s 1 v — y From (31) and definition (3) we gather that
TN /\mm ; (g7, (x)he(r;)+ g7 (2)hv (r)) ) (22)

hwj, t;) €W, (wj, tj) € R’

So that, by Theorem 1, we are in a position to revie@l,¢,). In
fact, by usingh(%t) in (11) and performing the inner product of
both sides withe™ *g(x — #') we have

h*(r;) andh?(r;) are calculated as in (16) and (17).
From the condition> = 0 we obtain

P(h*,h") = exp —(2MXo + 1) (e g(a—t') | f(x))
M 1oyt
u v = F w .t
o <_22(h (ri)7i(r;) + h* (rj)ve(r)) 1( r ) s .
=1 = —/ (e Tgle —t) | gl — t))h(w,t)dwdt (32)
Cy S
+ AR () + /3h'"(rj)2)> (23) and, sinceh(w,t) € W, by Theorem 1 theconsistency condition

(4) is verified. Hence, from (32) and Theorem 1 we conclude that
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h(w',t') = F(w',t"), which states the WFT as an optimal solution [3] C. Heil and D. Walnut, “Continuous and discrete wavelet transforms,”

of the inverse problem according to an ME selection criterion. Since
such a solution is also optimal in an MN sense, we are led tdA]
conclude that the MN requirement works by averaging functions
in a maximally noncommittal way. In other words, we give here al®
new argument supporting the use of the MN solution for the inverse
windowed Fourier transform problem, as it has been shown to be t
“least biased” assignment one can make on the basis of the availablé

information.
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