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On the Inverse Windowed Fourier Transform

Laura Rebollo-Neira and Juan Fernandez-Rubio

Abstract—The inversion problem concerning the windowed Fourier
transform is considered. It is shown that, out of the infinite solutions that
the problem admits, the windowed Fourier transform is the “optimal”
solution according to a maximum-entropy selection criterion.

Index Terms—Gabor transform, inversion problems, maximum en-
tropy, windowed Fourier transform.

I. INTRODUCTION

The use of a generalized Fourier integral to convey simultaneous
time and frequency information was first introduced by Gabor (1946).
In [2], he defines a windowed Fourier integral, using a Gaussian
window. Later, the window was generalized to any function inL2(R),
the space of square integrable functions. The so generalized Gabor
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transform is mostly referred to as the windowed Fourier transform
(WFT).

Restricting the space of signals toL2(R), the WFT is a mapping
from L2(R) to L2(R2) which is not bijective. As a consequence,
lack of uniqueness of the inverse problem must be expected. In
this contribution, we focus on a statistical analysis of the inversion
problem. First the problem is shown to admit an infinite number of
solutions. We then work on the space of possible solutions adopting a
statistical description as the essential tool. The possible solutions are
considered as a stochastic process distributed according to a (to be
determined) probability density. The desired solution is estimated as
the mean value of the random process. Among all the probability
densities capable of yielding admissible mean-value solutions we
single out one, adopting the maximum-entropy principle (MEP).
Finally, we show that, from the maximum-entropy (ME) probability
density a mean-value solution is inferred which is identical to the
WFT. Thereby the WFT is shown to be an “optimal” solution
according to an ME selection criterion. This result also holds as a
property within theFrame Theory[9].

II. THE WFT INVERSE PROBLEM

Definition: Let f(x) 2 L2(R) be a given signal andg(x) 2
L2(R) be any fixed function inL2(R). The WFT of f(x) is a
function F (!; t) 2 L2(R2) defined by

F (!; t) = hei!xg(x � t) j f(x)i =
R

e
�i!x

g
�(x� t)f(x)dx (1)

whereg�(x) denotes the complex conjugate ofg(x).
The signal can be reconstructed from its WFT through the inversion

formula [1], [3], [6]

f(x) =
1

Cg R

e
i!x

g(x� t)F (!; t)d! dt (2)

where

Cg = kgk2 =
R

jg(x)j2 dx:

Although the inversion formula (2) allows the recovery of a signal
from its WFT, the inversion is not unique. Let us denoteW to the
image of the WFT, i.e.,

W = F (!; t);F (!; t) =
R

e
�i!x

g
�(x� t)f(x) dx;

for somef(x) 2 L
2(R) : (3)

W is only a closed subspace, not all ofL2(R2) (not every function
h(!; t) 2 L2(R2) belongs toW). The next theorem, whose proof is
given in [6, p. 56], provides the necessary and sufficient condition
for h(!; t) 2 W.

Theorem 1: A function h(!; t) belongs toW if and only if it is
square integrable and, in addition, satisfies

h(!0; t0) =
1

Cg R

K(!0; t0; !; t)h(!; t)d! dt (4)

where

K(!0; t0; !; t) = hei! x
g(x� t

0) j ei!xg(x� t)i

=
R

e
�i! x

g
�(x� t

0)ei!xg(x� t) dx: (5)
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The functionK(!0; t0; !; t) is called thereproducing kerneldeter-
mined by the windowg and (4) is called the associatedconsistency
condition.

Theorem 2: All functionsh?(!; t) belonging toW? (the orthog-
onal complement ofW) satisfy

R

e
i!x

g(x� t)h?(!; t) d! dt = 0: (6)

Proof: Multiplying the right-hand side of (6) bye�i! xg�(x�t0)
and integrating overx we have

R R

e
i!x

g(x� t)e�i! x
g
�(x� t

0)dx h
?(!; t)d! dt: (7)

From the definition ofW it follows that

R

e
�i!x

g
�(x� t)ei! x

g(x � t
0)dx 2 W:

Consequently,

R R

e
i!x

g(x� t)e�i! x
g
�(x� t

0)dx h
?(!; t) d! dt

=
R R

e
�i!x

g
�(x� t)ei! x

g(x � t
0) dx

�

h
?(!; t) d! dt

= 0 (8)

becauseh?(!; t) 2 W? is orthogonal to every function inW.
Notice that (8) can be recast in the form

hei! x
g(x � t

0) j F (x)i =
R

e
�i! x

g
�(x� t

0)F (x)dx = 0 (9)

where

F (x) =
R

e
i!x

g(x� t)h?(!; t)d! dt (10)

and since

spanfei! x
g(x� t

0)g(! ;t )2R

is dense inL2(R)

hei! x
g(x � t

0) j F (x)i = 0; 8(!0; t0)

impliesF (x) � 0, whereby the proof is completed.

The lack of uniqueness of the inverse WFT is an immediate con-
sequence of Theorem 2. Indeed, besidesF (!; t), for anyh?(!; t) 2
W? the functionh(!; t) = F (!; t)+h?(!; t) also reconstructs the
same signal. The inversion formula (2) corresponds to the particular
choiceh?(!; t) = 0 and obviously gives rise to a solution of the
inverse problem which is “optimal” in a minimum norm (MN) sense.
The MN requirement may be a reasonable criterion to be adopted in
the case of some applications, but,a priori, certainly not inall of
them. In this correspondence we address the problem of deciding
on an appropriate estimate for the unknown solutionh(!; t) by
recourse to a postulate originally conceived for the purpose of making
decisions in indeterminate situations, namely, the MEP [4], [5]. In the
next section we show that the WFT is also an “optimal” solution of
the inverse problem according to a ME selection criterion, as it turns
out to be the mean of the probability density that maximizes the
entropy.

III. T HE ME APPROACH

The problem we address now is that of inverting forh the equation

f(x) =
1

Cg R

e
i!x

g(x� t)h(!; t) d! dt: (11)

We begin by splitting the above complex equation into real and
imaginary parts so that it becomes

f
u(x) =

1

Cg R

g
u
!;t(x)h

u(!; t)� g
v
!;t(x)h

v(!; t) d! dt (12)

f
v(x) =

1

Cg R

g
v
!;t(x)h

u(!; t) + g
u
!;t(x)h

v(!; t) d! dt (13)

wherefu(x); fv(x) are the real and imaginary parts off(x) whereas
hu(!; t); hv(!; t) are the real and imaginary parts ofh(!; t) and
gu!;t(x); g

v
!;t(x) are the real and imaginary parts ofei!xg(x � t);

respectively.
As discussed in the previous section, there exist several functions

h(!; t) capable of satisfying (12) and (13). Our aim is that of selecting
one of those solutions as “optimal” in an ME sense. In order to
achieve such a goal, we regard the possible solutions as a stochastic
process and estimate the desired solution as its mean value that we
denote

h(!; t) = hu(!; t) + ihv(!; t); (!; t) 2 R
2
:

To deal with the stochastic process in a discrete way, we divideR2

into squares of area�r = 1
M

, centered at the pointsrj = (!j ; tj)
and takelimM !1. With this discretization, (12) and (13), which
provide the constraints to be satisfied by the desired solution, are
evaluated as

f
u(x) = lim

M!1

1

MCg

M

j=1

g
u
r (x)hu(rj)� g

v
r (x)hv(rj) (14)

f
v(x) = lim

M!1

1

MCg

M

j=1

g
v
r (x)hu(rj) + g

u
r (x)hv(rj) : (15)

At a fixed pointrj , both hu(rj) andhv(rj) are now random vari-
ables. To simplify notation let us denotehhhuuu = hu(r1); � � � ; h

v(rM)
and hhhvvv = hv(r1); � � � ; h

u(rM). Assuming that these2M random
variables are distributed according to a probability densityP (hhhuuu; hhhvvv),
the mean valueshu(rj); hv(rj) involved in (14) and (15) are
calculated as

hu(rj)=
R

P (hhhuu
u
; hhh

vvv)hu(rj)dhhh
uuu
dhhh

vvv
; j=1; � � � ;M (16)

hv(rj)=
R

P (hhhuu
u
; hhh

vvv)hv(rj) dhhh
uuu
dhhh

vvv
; j=1; � � � ;M (17)

where

dhhh
uuu = dh

u(r1); � � � ; dh
u(rM)

and

dhhh
vvv = dh

v(r1); � � � ; dh
v(rM):

SinceP (hhhuuu; hhhvvv) is a probability density we must require it satisfies
the constraint

R

P (hhhuu
u
; hhh

vvv) dhhhuu
u
dhhh

vvv = 1: (18)

In addition, we should set a constraint to ensureh(!; t) 2 L2(R2).
This is guaranteed under the requirement thatkhk2 be finite, which
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also ensures that the variance of the probability density is finite.
Consequently, we will set the additional constraint

khk2= lim
M!1

1

M

M

j=1 R

P (hhhuu
u
; hhh

vvv)(hu(rj)
2
+hv(rj)

2)dhhhuu
u
dhhh

vvv

=C (19)

whereC is an unknownconstant.
Constraints (14), (15), (18), and (19), to be satisfied by the

probability density we are looking for, are not enough to determine
it in a unique way. Among all theP (hhhuuu; hhhvvv) capable of fulfilling
these constraints, we shall selectone adopting the MEP. This cri-
terion yields the probability density that, being consistent with the
available data, is maximally noncommittal with respect to the lack
of information (entropy) [4], [5].

The entropy, or uncertainty, associated with the probability den-
sity is given by the generalization of Shannon’s measure [8] to
continuous-type random variables [7], i.e.,

H(hhhuu
u
; hhh

vvv) = �
R

P (hhhuu
u
; hhh

vvv) lnP (hhhuu
u
; hhh

vvv) dhhhuu
u
dhhh

vvv
: (20)

Since we should takelimM !1 to represent our stochastic
process, the appropriate measure to be used is the entropy rate
�H, or entropy per degree of freedom, defined as [7]

�H = lim
M!1

1

2M
H(hhhuu

u
; hhh

vvv): (21)

We then look for the probability density that maximizes�H with
constraints (14), (15), (18), and (19). In order to introduce the
constraints (14) and (15) into the variational process, we divide the
axis R into intervals of length�x = 1

N
centered at the pointsxi

and takelimN!1, at the end. Assuming thatfu(x) andfv(x) are
continuous functions we incorporate each constraint (14), evaluated at
x = xi, through a Lagrange multiplier that we write�ux �x and each
constraint (15) through a Lagrange multiplier�vx �x. Constraints
(18) and (19) are introduced through the Lagrange multipliers�0 and
�, respectively. Thus the functional,S, to be maximized is cast

S=�
1

2M R

P (hhhuu
u
; hhh

vvv)

� lnP (hhhuu
u
; hhh

vvv)+2�

M

j=1

(hu(rj)
2+hv(rj)

2) dhhh
uuu
dhhh

vvv

��0
R

P (hhhuu
u
; hhh

vvv)dhhhuu
u
dhhh

vvv

�
1

N

N

i=1

�
u
x

1

MCg

M

j=1

g
u
r (xi)hu(rj)�g

v
r (xi)hv(rj)

�
1

N

N

i=1

�
v
x

1

MCg

M

j=1

g
v
r (xi)hu(rj)+g

u
r (xi)hv(rj) (22)

hu(rj) andhv(rj) are calculated as in (16) and (17).
From the condition�S

�P
= 0 we obtain

P (hhhuu
u
; hhh

vvv) = exp�(2M�0 + 1)

� exp �2

M

j=1

(hu(rj)
1(rj) + h
v(rj)
2(rj)

+ �h
u(rj)

2 + �h
v(rj)

2) (23)

where


1(rj) =
1

NCg

N

i=1

�
u
x g

u
r (xi) + �

v
x g

v
r (xi) (24)

and


2(rj) =
1

NCg

N

i=1

�
v
x g

u
r (xi)� �

u
x g

v
r (xi) : (25)

Since the entropy (20) is a convex functional [7] it takes on its
absolute maximum atP (hhhuuu; hhhvvv) given in (23).

The normalization constraint (18) entails

exp(2M�0+1)=
R

exp �2

M

j=1

(hu(rj)
1(rj)+h
u(rj)
2(rj)

+ �h
u(rj)

2+�hv(rj)
2) dhhh

uuu
dhhh

vvv

=
�

2�

M M

j=1

exp

1(rj)

2

2�
exp


2(rj)
2

2�
:

(26)

The remaining Lagrange multipliers,�ux ; �vx ; i = 1; � � � ; N; and
�, should be obtained by using (23) in (14), (15), and (19) and
solving the equations. However, as we shall see below, the functional
form of P (hhhuuu; hhhvvv), given in (23), already provides the information
that is needed to determine the mean value functionh(rj) that such
probability density will predict. Indeed, by replacing (23) in (16) and
(17) and performing the integrals we have

hu(rj) = �

1(rj)

2�
= �

1

2�NCg

N

i=1

�
u
x g

u
r (xi) + �

v
x g

v
r (xi)

(27)

hv(rj) = �

2(rj)

2�
= �

1

2�NCg

N

i=1

�
v
x g

u
r (xi)� �

u
x g

v
r (xi) :

(28)

Taking now limN ! 1, the above equations yield

hu(rj) = �
1

2�Cg R

�
u
xg

u
r (x) + �

v
xg

v
r (x) dx (29)

hv(rj) = �
1

2�Cg R

�
v
xg

u
r (x)� �

u
xg

v
r (x) dx (30)

or

h(rj) = h(!j ; tj) = hu(!j ; tj) + ihv(!j ; tj)

=
R

e
�i! x

g
�(x� tj)w(x)dx (31)

with

w(x) = �
1

2�Cg
(�ux + i�

v
x):

From (31) and definition (3) we gather that

h(!j; tj) 2 W; (!j ; tj) 2 R
2
:

So that, by Theorem 1, we are in a position to revealh(!; t; ). In
fact, by usingh(!; t) in (11) and performing the inner product of
both sides withei! xg(x � t0) we have

hei! x
g(x� t

0) j f(x)i

= F (!0; t0)

=
1

Cg R

hei! x
g(x� t

0) j ei!xg(x� t)ih(!; t) d! dt (32)

and, sinceh(!; t) 2 W, by Theorem 1 theconsistency condition
(4) is verified. Hence, from (32) and Theorem 1 we conclude that
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h(!0; t0) = F (!0; t0), which states the WFT as an optimal solution
of the inverse problem according to an ME selection criterion. Since
such a solution is also optimal in an MN sense, we are led to
conclude that the MN requirement works by averaging functions
in a maximally noncommittal way. In other words, we give here a
new argument supporting the use of the MN solution for the inverse
windowed Fourier transform problem, as it has been shown to be the
“least biased” assignment one can make on the basis of the available
information.
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