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ML Approaches to Channel Estimation for
Pilot-Aided Multirate DS/CDMA Systems
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Abstract—This paper analyzes the asymptotic performance
of maximum likelihood (ML) channel estimation algorithms in
wideband code division multiple access (WCDMA) scenarios. We
concentrate on systems with periodic spreading sequences (period
larger than or equal to the symbol span) where the transmitted
signal contains a code division multiplexed pilot for channel
estimation purposes. First, the asymptotic covariances of the
training-only, semi-blind conditional maximum likelihood (CML)
and semi-blind Gaussian maximum likelihood (GML) channel
estimators are derived. Then, these formulas are further sim-
plified assuming randomized spreading and training sequences
under the approximation of high spreading factors and high
number of codes. The results provide a useful tool to describe
the performance of the channel estimators as a function of basic
system parameters such as number of codes, spreading factors, or
traffic to training power ratio.

Index Terms—Conditional maximum likelihood (CML),
Gaussian maximum likelihood (GML), semi-blind channel esti-
mation, wideband CDMA (WCDMA).

NOMENCLATURE

Scalar.
Vector.
Matrix.
Transpose of .
Conjugate transpose of.
Conjugate of .

identity matrix.
matrix of zeros.

th element of .
vec Vector reshaping column-wise.
tr Trace of .

Kronecker delta.

I. INTRODUCTION

T HE UNPRECEDENTED growth of the demand for
wireless services has recently called for the introduction

of third-generation mobile communication systems. These
systems, which are specifically designed to accommodate
multiple and higher data rates, are largely based on multirate
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direct-sequence code division multiple access (DS/CDMA)
technology. This is because classical DS/CDMA modulation
schemes can be easily generalized to incorporate and homog-
enize the simultaneous transmission of several data streams at
distinct bit rates through the same physical interface. Tradition-
ally, there have been three distinct approaches to generalizing
the classical DS-CDMA modulation scheme to a multirate
framework, namely

1) multicode modulation, where users transmitting at high
bit rates make use of more than one spreading code trans-
mitted simultaneously;

2) variable spreading factor modulation, where the span of
the symbol in terms of number of chips is variable and
depends on the transmitting bit rate;

3) variable chip rate modulation, where users transmitting at
a higher bit rate occupy a larger portion of the available
bandwidth.

Currently, standardized systems such as the frequency division
duplex (FDD) mode of UMTS terrestrial radio access (UTRA)
transmit according to a modulation format usually referred to as
wideband code division multiple access (WCDMA), which is
basically designed as a combination of the multicode and vari-
able spreading factor strategies. This means that each user is
allowed to make use of more than one waveform or code se-
quence, while at the same time, the span of the bit interval in
number of chips is variable, depending on the transmission bit
rate. Fig. 1 depicts an example for real-valued signals where
three different data streams are mapped to three codes with dif-
ferent spreading factor but equal chip and repetition periods.

One of the most interesting features of these newly deployed
systems is the introduction of a pilot signal that, serving channel
estimation purposes, is code division multiplexed and trans-
mitted at the same time as the traffic information (one example
of such a structure can be found in the uplink of the FDD mode
of UTRA; see [1]). While the performance of channel estimation
algorithms for systems in which a training sequence is time divi-
sion multiplexed with the traffic data has been widely studied,
little attention has been paid to systems where it is code divi-
sion multiplexed. Given the importance that such systems may
have in the near future, it seems crucial to investigate some spe-
cific aspects such as the dependence of the channel estimation
performance on, e.g., the spreading codes repetition period, the
signal-to-noise ratio (SNR), the quotient between the pilot and
the traffic signal powers, or the spreading factor utilized. This
paper tries to provide answers to these questions in a theoretical
yet simple manner. It will be shown that under some asymptotic
conditions, very simple expressions describing the behavior of
the analyzed channel estimation algorithms can be obtained.

1053–587X/02$17.00 © 2002 IEEE
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Fig. 1. Example of multirate modulation as a combination of multicode and
variable spreading factor schemes. A single user simultaneously transmits three
data streams mapped to three different codes, each having a different spreading
factor but equal repetition period.

These simple expressions will prove most useful from a system
designer point of view in that they will provide a precise de-
scription of the expected performance as a function of physical
system parameters.

From the whole range of channel estimation algorithms
available in the literature, we will focus on maximum likeli-
hood (ML) estimation procedures since under certain regularity
conditions, they provide asymptotically efficient estimates
(see, e.g., [2]). In particular, we will study both classical
training-only techniques (based on the knowledge of the pilot
or training sequence exclusively) and semi-blind techniques
[3], [4] (which make use of the training sequence and improve
this estimation taking into account the signal structure). We
will see that the performance gain obtained from the use of
semi-blind techniques, which could be described as moderate
in classical systems with time division multiplexed training
sequences, turns out to be dramatic in systems with a code
division multiplexed pilot.

The rest of the paper is organized as follows. Section II
presents the multirate signal model and introduces the system
parameters and assumptions. Section III describes the three
different channel estimation methods under consideration and
their asymptotic performance. In Section IV, the covariance
of these estimators is particularized for some asymptotic
cases assuming random training and code sequences. Finally,
Section V presents a numerical validation of the results, and
Section VI outlines some conclusions regarding the techniques
under analysis.

II. M ULTIRATE SIGNAL MODEL

The transmitting station is assumed to map the underlying
data sequence to distinct and synchronized spreading se-
quences with period chips. Both the period of the spreading
sequences and the chipping rate are assumed constant for
all the sequences. Let represent the underlying
complex symbol stream associated with theth code sequence,
and assume that , consecutive symbols are
mapped to each interval of chips. The spreading factor
associated with a particular spreading sequence is denoted as

chips/bit. According to these definitions, the
total number of symbols mapped to a code sequence period
( chips) is .

We assume that at the basestation, the signal is synchronously
sampled at the chip rate (modulation with no excess bandwidth)
and that symbol detection is made in observation windows
of chips, where can be regarded as the number of
spreading periods in the observation interval. Stacking
samples of the received signal corresponding to theth code
period into a column vector , we can define the
total received signal vector as

(1)

where is the channel-filteredknown training
sequence, is a matrix of received signatures,

is a vector containing the complex-valued trans-
mitted symbols, and is the noise component. Here, is the
number of symbols received in an observation interval, which
is equal to the sum , where is the
number of symbols corresponding to theth code

Note from (1) that the training sequence is transmitted code divi-
sion multiplexed—rather than time division multiplexed—with
the traffic information. We denote by the column
vector containing the channel impulse response, which is as-
sumed stationary on the observation interval and of length,
where for simplicity, we only consider . Accordingly,
the known part of the received signal, can be expressed as

(2)

...
...

...

(3)

where denotes the chip-level training sequence.
Let us now concentrate on the matrix of received signatures
. This matrix is formed by stacking side by side the signa-

ture matrices corresponding to each of the code sequences
. These , can in turn be expressed

as

...
...

...
. ..

. . .
(4)
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where is the Kronecker product, and .
Matrices and are the upper and lower parts of the
next convolution matrix

...
...
.. .

...
. . .

...

(5)

with defined from the original code sequences ,
setting to zero all the samples outside theth

symbol interval, i.e.,

otherwise.

Matrix is obtained as the columns on the
right of and contains the contribution from symbols trans-
mitted prior to the observation interval.

All this formulation is useful to understand the signal model
in (1) but becomes a bit cumbersome when performing matrix
manipulations. For this reason, we prefer to use the following
partitioning throughout the paper.

(6)

where now, each matrix contains the convolu-
tion matrix of the code sequence associated with theth symbol
interval.

Returning to the signal model in (1), it is finally assumed
that the components of the noise vector are circularly symmetric
Gaussian distributed with zero mean and covariance

. This seems a reasonable approximation since we are
concentrating on a single-user scenario. The results obtained
here could, in principle, be generalized to the multichannel es-
timation case, modifying the signal model in (1) to include the
contribution from several users in the signal term. This is, how-
ever, out of the scope of this paper.

III. ML C HANNEL ESTIMATION METHODS

In the following, we present some channel estimation
methods based on the principle of ML. We will see that dif-
ferent ways of modeling the presence of the unknown symbols,
transmitted at the same time as the training sequence, will lead
to distinct types of estimators with different asymptotic per-
formance. In particular, we will concentrate on three different
types of estimators.

1) classical training-only (TO) estimator, which results from
ignoring the presence of the unknown symbols;

2) CML estimator, based on a model in which unknown data
are regarded as deterministic parameters;

3) GML estimator, which arises from modeling them as
Gaussian-distributed random variables.

In order to ensure channel identifiability, it is assumed that
a) the channel length is lower than or equal to the observation
window ( ) and that b) the sequence is per-
sistently exciting1 of order or higher. These are sufficient
conditions to ensure identifiability in both training-only and
semi-blind GML methods. As for the semi-blind CML esti-
mator, it will also be assumed that c) thecodes are linearly
independent and that d) the number of symbols per code period
is lower than the period itself in number of chips ( ).

In any case, it is important to distinguish between the model
for which each channel estimator is derived and the model as-
sumed taken when evaluating their asymptotic performance. In
this paper, and as far as the performance evaluation is concerned,
we will assume the following

As1) The unknown symbols are circularly symmetric
i.i.d. random variables with zero mean, unit vari-
ance , ,

, , zero third-order mo-
ment and a finite fourth-order moment corresponding
to2 .

Note that no particular distribution is imposed. We will see
that under the appropriate set of assumptions, results are inde-
pendent of their particular statistical distribution.

Notation: In what follows, for a certain parameter vector,
e.g., , we will distinguish between the minimization variables

(training-only approach) (conditional approach)
(Gaussian approach) the actual estimators , and the
vector of true values . The same notation will be used for all
the other parameters.

A. Training-Only Approach

The training only estimator disregards the presence of the
traffic channels, which is equivalent to setting in (1).
The ML estimator for this signal model coincides with the con-
ventional least squares solution and can be expressed as

(7)

Examining the form of the training-only estimator in (7)
and making straightforward calculations, one can state the
following.

Proposition 1: Under the statistical assumptionAs1),
the random vector is asymptotically (in )
circularly-symmetric Gaussian-distributed with zero mean and
covariance equal to , where

(8)

and

1See [5, p. 177] for a definition of persistent excitation. Note that for training
sequences belonging to a finite alphabet, this condition implies that they cannot
be periodical with period lower thanL [6].

2All these statistical assumptions are verified by most of the modulation con-
stellations used in digital communications, cf. [7].
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is the Cramér–Rao bound for the training-only scenario (cf. [8]).
Proof: Convergence in law to a Gaussian distribution fol-

lows from the central limit theorem for -dependent processes
[9, Th. 6.4.2] as (in our case, in the sense that

and ). The covariance
matrix can readily be obtained from (7).

Note that due to the presence of the traffic signal (second term
in ), the estimator becomes inefficient even at high SNRs
[that is, the second term in (8) remains fixed when ]. This
poor performance of the estimator can be improved with an ex-
plicit modeling of the traffic channels in the signal model of (1).
In particular, one can model the unknown data either as deter-
ministic parameters (conditional approach) or as random vari-
ables (unconditional approach); see [10] and references therein.
These two approaches will lead to two distinct estimators, that,
as already shown in [8], [11], and [12], do not perform equiva-
lently.

B. Conditional (Deterministic) ML Approach

If we model the unknown data as deterministic parameters,
the ML estimator for both data and channel impulse response
can be obtained minimizing the following negative log-likeli-
hood function

(9)

where and subindexes in , and
denote conditional model. The unknown symbols can be esti-
mated as

(10)

where is the CML estimate of the channel impulse response,
and is equal to replacing with . Plugging (10) for
the general case into (9), we can reduce the dimen-
sionality of the parameter space of the cost function

(11)

where denotes the orthog-
onal projection matrix onto the null space of the columns of.

The semi-blind CML channel estimator has to be obtained
after an exhaustive search for the global minimum of (11). How-
ever, if we have a good initialization for the estimator (this could
be provided by a training-only estimation), we can get to the
CML solution forcing the gradient of different sets of param-
eters to zero while assuming that the others are constant (this
is the traditional alternating-maximizing approach proposed in
[13]). Of course, depending on the initialization of the algo-
rithm, the solution might converge to local minima rather than
the global one. In addition, depending on the actual size of the
matrices, solving the set of equations might be prohibitive from
a computational point of view. In any case, it seems interesting

to analyze the estimator equations in the neighborhood of the
actual channel response to gain insight into the inherent process
of ML estimation.

In the CML semi-blind case, estimates of the channel im-
pulse response and the noise power can be readily obtained min-
imizing either (9) or (11)

being , where is a struc-
tured reconstruction of the convolution matrix associated with
the unknown component of the received signal. Fig. 2(a) is a
representation in a recursive block diagram of the equation that,
when properly initialized, gives the CML semi-blind estimation.
First, the known component of the signal is removed from the
observation, and the result is passed through a zero-forcing (ZF)
equalizer to obtain estimates of the unknown symbols. These
estimates are then used to regenerate the unknown component
of the received signal. The convolution matrix of the global re-
generated signal is finally used to perform a least squares
channel estimation. This is a well-known interpretation of the
CML process of estimation; see, for instance, [14] and [15].

Let us now discuss the asymptotic performance of this esti-
mator.

Proposition 2: Under As1), the normalized conditional
channel estimator is asymptotically ( )
circularly symmetric Gaussian-distributed with covariance

, where

(12)

(13)

and is the conditional Cramér–Rao bound

(14)

Furthermore, these results hold, regardless of the assumption
about the distribution of the symbols vector.

Proof: See Appendix A.
The conclusion derived from the estimator covariance in (12)

is clear. The conditional channel estimator is inefficient for finite
values of the SNR. This is due to the finite number of chips per
symbol , from which it is not possible to obtain a consistent
estimation of the unknown data as grows. This effect can be
alleviated using a Gaussian statistical model for the transmitted
symbols.

C. Gaussian ML Approach

According to the Gaussian ML approach, symbols are mod-
eled as complex mutually independent circularly symmetric
Gaussian random variables with zero mean and unit variance. A
Gaussian ML approach is preferred to a strictly unconditional
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(a)

(b)

Fig. 2. Schematic representation of the (a) CML and (b) GML channel
estimators.

ML estimator (where symbols would be modeled with a dis-
crete uniform distribution) because we seek to obtain methods
based on second-order statistics of the received signal, which
are always more affordable from the computational point of
view.

The negative log-likelihood function to be minimized can be
expressed as

tr (15)

where and stand for the temporal covariance matrix
associated with the random component of the signal and its
rank-one sample estimate, respectively

(16)

(17)

and and are defined replacing in the last equations
the true parameters , with the minimization variables ,

. Note that unlike in the Conditional case, the estimation of
channel impulse response and noise power are not decoupled.

The GML channel estimator can be obtained as one of the
solutions to the equation obtained forcing the gradient of (15)
with respect to the channel vector to zero

(18)

where is equal to , replacing the minimization vari-
ables with their GML estimates. Matrix can be interpreted

as a structured reconstruction of the unknown component of the
signal

where is the output of a minimum mean squared error
(MMSE) equalizer matched to the global impulse response

(19)

The noise power estimator can be calculated as one of the solu-
tions to

tr

which is obtained forcing the derivative of with respect to
to zero.

Fig. 2(b) is a schematic representation of the equation that
gives the GML solution. We see from (18) that as it happened
with the CML estimator, the semi-blind GML can be interpreted
as a combination of linear estimators and signal regenerators.
In this case, the observation is passed through two different
branches. In the upper branch, the known component of the
received signal is first removed; the result is then used to ob-
tain an estimation of the unknown symbols through a MMSE
equalizer (as opposed to the ZF equalizer in the conditional ap-
proach) in order to regenerate the unknown component of the
received signal. This regenerated signal is used to obtain a first
conditional mean estimate of the channel, which is denoted by

. In the lower branch, the estimator first removes the mean
value of the unknown component of the received signal (as-
sumed here), and the result is used to obtain a second con-
ditional mean estimate of the channel, which is represented as

since it is obtained from the known component of the signal.
Finally, these two estimations are combined, and the resulting
bias is removed after projection onto the inverse of the matrix

.
Let us now discuss the asymptotic performance of the esti-

mator as .
Proposition 3: UnderAs1), the normalized real-valued esti-

mator

Re Im
(20)

is asymptotically ( ) Gaussian-distributed with
covariance depending on the statistical model for the un-
known symbols through one of their fourth-order moments

. The asymptotic (in ) covariance equals
, where

Re Im

Re Re Im

Im Im Re

(21)
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with representing the Gaussian Cramér–Rao bound

Re Im
Re Re Im

Im Im Re

and

tr

tr

(22)

where denotes the Schur–Hadamard product.
Proof: See Appendix B.

We see that in general terms, the GML semi-blind estimator is
neither circularly symmetric nor asymptotically robust. Further-
more, given the complicated expressions in (22) and the intrinsic
dependence on the training and code sequences, it is difficult to
draw any conclusion about the behavior of the estimator. In the
next section, we simplify these expressions, assuming that both
training and codes are random variables.

IV. RANDOMIZED CODES ANDTRAINING SEQUENCE

In this section, we investigate the asymptotic behavior of the
covariance matrices for semi-blind and training-only estimation
algorithms assuming the following.

As2) The spreading codes are circularly symmetric
i.i.d. random variables with zero mean, vari-
ance ,

, , and finite fourth-order
moments that are independent of the unknown sym-
bols.

As3) The training sequences are circularly sym-
metric i.i.d. random variables with zero mean,
variance ,

, and independent of
the unknown symbols and the spreading sequences.

Note that underAs2andAs3, the sequences
are almost surely mutually linearly independent, and the training
sequence is persistently exciting of all orders so that identi-
fiability is guaranteed with probability one whenever
(as well as in the semi-blind CML case).

Two different limits will be considered: a limit when the
number of codes () tends to infinity while their period ( )
remains constant (high spectral efficiency case) and a limit
as the period and spreading factors grow at the same rate for
a fixed number of codes (low spectral efficiency case). Due
to space limitations, we do not derive these asymptotic limits
here. See [16] for a complete proof of these results.

A. High Spectral Efficiency Case

The limit as the number of codesgrows without bound for
a fixed code period can only be applied to the training-only and
GML semi-blind estimators because the CML estimator is not
defined for .

1) Training-Only Estimator:Under As2 and As3 and as
, the covariance matrix of the training-only estimator

tends in probability to3

(23)

where

...
...

...

and

Defining the global SNR as

(24)

the normalized asymptotic covariance matrix for the
training-only case can be expressed as

When the SNR increases without bound, the relative asymptotic
covariance matrix tends to the constant value

(25)

Due to the presence of the traffic channels ( ) and the finite
period of the code sequence ( ), the estimator can never
attain the Cramér-Rao bound, however high the SNR might be.
Interestingly enough, the estimator seems to be inefficient even

3Invoking the Lebesgue dominated convergence theorem, it can also be seen
that this is the mean value of the covariance matrix for any fixedQ.
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when dealing with frequency nonselective channels ( ).
This is a result that, due to the random code approximation, is
too pessimistic. In practice, these codes are designed to be or-
thogonal to the training sequence to ensure that efficiency is ob-
tained when . In any case, it is worth bearing in mind that
the approximation of the channel estimator covariance matrix
derived under random code sequences in (23) has to be handled
carefully since it may be too pessimistic in certain scenarios.

2) Semi-Blind GML Estimator:Assuming thatAs2andAs3
hold and that the number of codes increases without bound, the
quantities , , and tend, respectively, in proba-
bility to

where

is the channel frequency response, and its
spectral power density. The values of , , , and
tend to somewhat complicated quantities that depend on one of
the fourth-order moments of the code sequences and are
thus omitted here for clarity. It suffices to say that their contribu-
tion to the actual covariance is relatively low for typical symbol
kurtosis and that it vanishes at both high and low SNRs.

3) Performance Comparison (High Spectral Effi-
ciency): For comparison purposes, it is interesting to express
the Gaussian Cramér–Rao bound associated with the reduced
set of parameters Re Im , namely

Re Im

Im Re

where

In [16], it is proven that

Re Im

Im Re

where for two square matrices, means that is
positive semidefinite.

Fig. 3 represents the averaged trace of the channel estima-
tion covariance under the approximation of high spectral effi-
ciency for the two cases under consideration. In this example,
the channel impulse response taps were randomly chosen with
a uniformly distributed phase and an exponentially decaying
power delay profile. The delay spread is given by the inverse
of , as shown in the figure. The higher the angular spread, the
higher the gain that can be obtained from using semiblind iden-
tification techniques.

B. Low Spectral Efficiency Case

We now analyze the asymptotic behavior of the different co-
variance matrices for a fixed number of codes () and a code
period increasing without bound. The number of symbols
per period is assumed fixed for each code, which implic-
itly implies that the different spreading factors ( ) scale up
at the same rate as .

1) Training-Only Estimator:Under the statistical assump-
tions As2 and As3, if the period of the spreading codes and
the corresponding spreading factors increase without bound at
the same rate ( , ) while their quotient remains
constant, the covariance of the training-only estimator tends in
probability to

2) Semi-Blind CML Estimator:Assume thatAs2 and As3
hold. Then, as , , the covariance of the semi-blind
CML channel estimator tends in probability to

where is defined in (24), and .
Two observations are in order. First, note that under these

asymptotic conditions, the covariance of the CML channel es-
timator does not depend on how the symbols are distributed
across the different codes or what the power associated with
each code is. Instead, it depends on the total number of trans-
mitted symbols per code period and the global power asso-
ciated with the codes. Second, we see now more clearly that
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Fig. 3. Asymptotic performance of the training-only and semiblind GML
channel estimation algorithms for the high spectral efficiency case.

the second term of (12) depends quadratically with the inverse
of , thus tending to zero faster than the Cramér–Rao bound as
the SNR unit increases.

3) Semi-Blind GML Estimator:Assume once again thatAs2
andAs3 hold. Then, provided that the period of the spreading
codes and the corresponding spreading factors increase without
bound at the same rate (, ) while their quotient
remains constant, the asymptotic covariance of the Gaussian
channel estimator Re Im tends in
probability to4

Re Im

Im Re

(26)
Re Im

Im Re
(27)

where

(28)

(29)

4We do not include the covariance of the noise power estimator for simplicity.
However, it should be stressed that noise and channel estimator are not decou-
pled and that the influence of this coupling is included in (26).

Fig. 4. Threshold symbol energy to noise power density
 as a function of
the traffic to training power ratio�=� .

and where is the symbol energy to noise power spectral
density associated with channel

(30)

and

The expression of the channel estimator covariances for the
Gaussian scheme are quite cumbersome and difficult to handle.
Great simplifications can be obtained assuming, in addition to
As2andAs3, that we have the following.
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As4) The power of each code sequence is fixed according to
its spreading factor so that the product remains
constant for .

This seems a logical working assumption since the larger the
spreading factor, the smaller the received power must be in order
to obtain a given quality. In other words, hypothesisAs4)guar-
antees a constant reception quality for each and every one
of the transmitted codes.

Simple algebra shows that underAs1–As4, the Gaussian
semi-blind channel estimator becomes asymptotically robust
(in the sense that the performance is independent of the model
chosen for the unknown data) and circularly symmetric with
covariance

(31)

Condition As4) is a structural restriction that guarantees the
model symmetry needed for the asymptotic robustness of the
estimator in the low efficiency case.

4) Performance Comparison (Low Spectral Efficiency):It
is easy to establish the following relationships between
the limiting covariances for the conditional, Gaussian, and
training-only ML methods underAs1–As4 when and

at the same rate (for a constant)

(32)

(33)

(34)

with

According to (32), under the asymptotic conditions speci-
fied, the semi-blind GML estimator performs better than the
training-only method. On the other hand, the inequality in (33)
indicates that the conditional method performs worse than
the Gaussian method. As a conclusion, the GML covariance
can be interpreted, under the present assumptions and asymp-
totic limits, as the performance bound for both conditional
and Gaussian methods, whereas the asymptotic conditional
Cramér–Rao bound can never be attained with second-order
approaches. All these conclusions are in perfect agreement with
the results presented in [10] in the context of direction-of-ar-
rival estimation. It should be stressed, however, that here, these
relationships are only valid for the low spectral efficiency
case and that the relative position of conditional and Gaussian
Cramér–Rao bounds will depend on system parameters such as
the number of codes and their repetition period.

Finally, it is observed from (34) that, quite surprisingly,
the conditional semi-blind method can perform worse than
its training-only counterpart at low values of the SNR. The
threshold symbol energy to noise power densityestablishes

(a)

(b)

Fig. 5. Asymptotic performance of the channel estimation algorithms as a
function of (a) the SNR and (b) the traffic to training power ratio.

a limit over which a performance gain can be expected from
using semi-blind conditional estimation schemes under our
asymptotic assumptions. For , the introduction of new
parameters (unknown symbols) in the system model will not
eventually pay off in terms of asymptotic performance. In other
words, the CML approach is using more information but only
to estimate an increasing number of parameters, which in turn
may jeopardize the overall asymptotic performance. In Fig. 4,

is represented as a function of the traffic to training power
ratio. As we see, the values of are low enough to guarantee
that in practical situations, the semi-blind conditional scheme
will perform better than the training-only estimator (values of
the traffic to training power ratio are expected to be higher than
one in actual WCDMA systems).

Fig. 5(a) represents the evolution of the trace of the different
covariance matrices ( , , and ) nor-
malized by the squared norm of the channel as a function of
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(a)

(b)

Fig. 6. Convergence of the deterministic formulas to the asymptotic ones as
the spreading factor (SF ) increases for a constant (a)
 = �10 dB and (b)

 = 20 dB andQ = 1.

for a constant . Fig. 5(b) represents the same quan-
tity as a function of the quotient for different values of .
The theoretical relationships presented above can be verified in
these two figures.

V. NUMERICAL VALIDATION

In this section, we evaluate, via simulations, the discrepancy
between the asymptotic covariance matrices for deterministic
training and spreading codes and those obtained under the
randomized assumption. We compare the trace of the different
covariances matrices normalized by the squared norm of the
channel with the normalized trace of the covariance matrices
under the assumption of deterministic codes and training
sequence for finite , , and .

Fig. 6 represents the convergence of the deterministic expres-
sions to the ones obtained under the assumption of random-
ized training and spreading sequences as, , in
a scenario with , , dB and .

(a)

(b)

Fig. 7. Convergence of the deterministic formulas to the asymptotic ones as
the spreading factor (SF ) increases for a constant (a)
 = �10 dB and (b)

 = 20 dB andQ = 3.

The channel impulse response was generated following an ex-
ponential power delay profile with time constant equal to the
duration of 1 chip and random phases uniformly distributed
within . The values corresponding to the covariances
obtained under the deterministic codes assumption were calcu-
lated averaging 50 outcomes with5 and using random-
ized codes. We represent the normalized trace of, ,

, , , , , , , ,
and (from top to bottom of the legend, respectively)
with dB and dB. It is observed that the
asymptotic expressions derived for the low-efficiency case are
good approximations of the semi-blind variances for spreading
factors of 16 or higher and become a bit too optimistic for lower
values of the . On the other hand, we see that the covariance
for the training-only scenario is, in general, much better approx-
imated by the asymptotic covariance in the high-efficiency case

5In the examples considered here,M = 10 was sufficient to guarantee the
convergence of these expressions.
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( ) than the one obtained under the low spectral efficiency
limit (note that is also the mean variance with respect to
training and code sequences for any fixed).

Fig. 7 illustrates the same evolution when the number of
codes is fixed to . As before, it is generally seen that
in practical situations, the covariance of the training-only
estimator is well approximated by the high spectral efficiency
situation ( ), whereas the formulas obtained for the low
spectral efficiency situation ( ) are more representative
of the behavior of the semi-blind estimators. This illustrates
the potential benefits of semi-blind techniques applied to
pilot-aided WCDMA contexts.

VI. CONCLUSIONS

We have derived asymptotic expressions describing the per-
formance of three different channel estimation algorithms in a
pilot-aided multi-rate framework. For the classic training-only
channel estimation method, we have been able to provide a for-
mula describing the mean asymptotic behavior as the number
of spreading periods ( ) tends to infinity. Investigating the re-
sulting covariance matrix, we have shown that the performance
of the algorithm tends to saturate as the SNR () increases. The
higher the channel length, the more inefficient training-only es-
timators become. Semi-blind techniques have been proposed as
means to improve this bad performance. First, we have shown
that the semi-blind channel estimation procedures can be de-
scribed in terms of simple equalizers and signal regenerators.
Then, their performance has been evaluated under asymptotic
conditions in the number of spreading periods when the
spreading factor or the number of codes tend to infinity.

APPENDIX A
PROOF OFPROPOSITION2

Consistency

Let us first discuss the consistency of the estimator. The ap-
plication of the strong law of large numbers (SLLN) guarantees
almost-sure point-wise convergence as

tr

On the other hand, assuming thatbelongs to a dense subset
of , it is easy to prove that the CML cost function is
almost surely asymptotically uniformly equicontinuous, namely

as , where is a ball centered on with radius
and where the dependence onhas been dropped for ease of

notation. First, applying the triangular inequality and the mean
value theorem, one can see that

(35)

where , lies on the segment joining and
, and ,

. Note that the right-hand side of (35) is bounded, given
a fixed ball radius . On the other hand, [17, Th. 4.2.3] implies
that

almost surely, where the vectors and are uniformly
bounded for all and . Now, since

, we conclude that for sufficiently
high, the right-hand side of (35) goes to zero as .
Asymptotic uniform equicontinuity follows. Now, applying
the stochastic version of the Ascoli–Arzela’s theorem [18, Th.
3.1], we conclude that

almost surely as increases without bound. This proves uni-
form convergence toward the limiting cost function

tr

Note that the two last terms are always positive or zero. The
minimum of the limiting cost function will therefore take place
when the two terms vanish, and this can only happen for
[the first term vanishes for , where takes any value
between , but the second only vanishes for ].

Asymptotic Normality and Covariance

Convergence in law to a Gaussian distribution follows from
consistency and the asymptotic normality of the gradient vector,
which can be expressed as
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Thanks to the consistency of the conditional ML channel esti-
mator and since channel and noise power estimators are decou-
pled, the asymptotic covariance matrix of the vector of the real
parameters Re Im can be obtained
as [19]

(36)

where

and where and stand for the minimization variables and the
true values corresponding to the real-valued channel estimator.
The gradient and Hessian with respect to the real parameters
can, in turn, be expressed as a function of the corresponding
complex derivatives

Re Im

Im Re

Re Im

Im Re
(37)

where , , and are defined, as shown later, following the
description of complex gradient given in [20]. Using conven-
tional formulas for matrix derivatives, it can be shown that (see
[16] for details)

(38)

where is the in-probability version of the corresponding
deterministic notation. On the other hand, applying the classical
formula for the expectation of four Gaussian-distributed random
matrices [21]

(39)

where . Since the result of the ex-
pectation conditioned ondepends quadratically on this vector,
the result is valid, regardless of the unknown symbols statistical
model assumption. Plugging (38) and (39) into (36), we obtain
the expression for the asymptotic covariance matrix given in
Proposition 2.

APPENDIX B
PROOF OFPROPOSITION3

Consistency

To prove strong consistency of the semiblind estimator, we
proceed as in the conditional case. First, the SLLN allows us to
prove almost sure point-wise convergence of the cost function
to the following limiting value.

tr

Now, to prove that this convergence is uniform in the parameters
, , we must verify the a.s. asymptotic uniform equiconti-

nuity condition, namely

with probability one, as , where is a ball
defined in the space generated by the whole set of parameters
centered on with radius . The proof is analogous to
the one in the CML case and is therefore omitted here.

The limiting cost function can be expressed as

tr

where is a constant independent of the parameters. We have
implicitly grouped into two terms that are always higher than or
equal to zero so that the global minimum is obtained when the
two terms null out. The following lemma, which is proven in
[22], is the key to understanding the behavior of the first term.

Lemma 4: For positive definite of dimension

tr

implies .
The first term will thus be zero when

which necessarily implies and . If the iden-
tifiability conditions hold, is the minimum of the
first term. When , this is also the minimizer of the second
term, and we can conclude that this is the global minimum of
the cost function.
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Re Im

Re Im

Re Re Im

Im Im Re

Re Im

Re Re Im

Im Im Re

Asymptotic Normality and Covariance

Asymptotic normality follows from consistency and the
asymptotic normality of the gradient vector, which can be
expressed as

tr

The asymptotic covariance matrix of the vector of real parame-
ters defined in Proposition 3 can be obtained as

(40)

(41)

where stands for the vector of actual values. Depending on the
statistical model chosen for the unknown symbols, the results of
the expectation in (40) and (41) will be different. In any case,
we can express these matrices in terms of complex derivatives as
shown in the equations at the top of the page. It is shown in [16]

that the complex derivatives can asymptotically be expressed in
compact form as

(42)

where , , , and are defined in Proposition 3. Be-
fore analyzing the covariance of the gradient, we introduce the
following lemma.

Lemma 5: Given a random vector such that
and have the statistical properties established in Section II and
a deterministic matrix of appropriate dimensions

tr

where denotes element-wise product.
Proof: See [16].

We just need to apply Lemma 5 to obtain
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where we have used tr tr (which is valid
for any square matrix of appropriate dimensions), where ,

, , and are defined in Proposition 3. Plugging this last
result and (42) into (40), we obtain the final covariance matrix.

ACKNOWLEDGMENT

The authors would like to thank the associate editor and the
anonymous reviewers for their helpful suggestions.

REFERENCES

[1] 3GPP Techn. Spec. 25.211. (1999, Dec.) Physical channels and mapping
of transport channels onto physical channels (FDD). [Online]. Available:
www.3gpp.org

[2] C. R. Rao,Linear Statistical Inference and Its Applications. New York:
Wiley, 1973.

[3] A. Gorokhov and Ph. Loubaton, “Semi-blind second order identifica-
tion of convolutive channels,” inProc. IEEE Int. Conf. Acoust., Speech,
Signal Process., Munich, Germany, Apr. 1997, pp. 3905–3908.

[4] J. Ayadi, E. de Carvalho, and D. T. M. Slock, “Blind and semi-blind
maximum likelihood methods for FIR multichannel identification,” in
Proc. IEEE ICASSP, Seattle, WA, May 1998.

[5] T. Söderström and P. Stoica,System Identification. London, U.K.:
Prentice-Hall, 1989.

[6] F. Gustafsson, “Blind equalization by direct examination of the input se-
quences,”IEEE Trans. Signal Processing, vol. 43, pp. 2213–2222, July
1995.

[7] A. Swami and B. M. Sadler, “Hierarchical digital modulation classifi-
cation using cumulants,”IEEE Trans. Commun., vol. 48, pp. 416–429,
Mar. 2000.

[8] E. de Carvalho and D. Slock, “Cramér–Rao bounds for semi-blind, blind
a training sequence-based channel estimation,” inProc. IEEE SP Work-
shop SPAWC, Paris, France, Apr. 1997, pp. 129–132.

[9] P. J. Brockwell and R. A. Davis,Time Series: Theory and
Methods. New York: Springer-Verlag, 1991.

[10] P. Stoica and A. Nehorai, “Performance study of conditional and uncon-
ditional direction-of-arrival estimation,”IEEE Trans. Acoust., Speech,
Signal Processing, vol. 38, pp. 1783–1795, Oct. 1990.

[11] E. de Carvalho and D. T. M. Slock, “Asymptotic performance of ML
methods for semi-blind channel estimation,” inProc. IEEE Asilomar
Conf., 1998.

[12] J. L. Bapat, “Partially blind estimation: ML-based approaches and
Cramér–Rao bound,”Signal Process., vol. 71, pp. 265–277, 1998.

[13] I. Ziskind and M. Wax, “Maximum likelihood localization of multiple
sources by alternating projection,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. 36, pp. 1553–1560, Oct. 1988.

[14] Y. Hua, “Fast maximum likelihood for blind identification of multiple
FIR channels,”IEEE Trans. Signal Processing, vol. 44, pp. 661–672,
Mar. 1996.

[15] E. Pité and P. Duhamel, “Bilinear methods for blind channel equal-
ization: (No) local minimum issue,” inProc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., Seattle, WA, 1998.

[16] X. Mestre. (2001, June) Asymptotic covariance matrices for semi-blind
ML channel estimation approaches in WCDMA contexts. [Online].
Available: http://gps-tsc.upc.es/comm/Xavi/publications.html

[17] W. F. Stout,Almost Sure Convergence. New York: Academic, 1974.
[18] B. M. Pötscher and I. R. Prucha, “Generic uniform convergence and

equicontinuity concepts for random functions,”J. Econometr., vol. 60,
pp. 23–63, 1994.

[19] E. L. Lehmann,Theory of Point Estimation. New York: Chapman &
Hall, 1991.

[20] B. A. D. H. Brandwood, “A complex gradient operator and its applica-
tion in adaptive array theory,”Proc. Inst. Elect. Eng. F, vol. 130, pp.
11–16, Feb. 1983.

[21] P. H. M. Janssen and P. Stoica, “On the expectation of the product of
four matrix-valued Gaussian random variables,”IEEE Trans. Automat.
Contr., vol. 33, pp. 867–870, Sept. 1988.

[22] T. W. Anderson, “Multivariate linear relations,” inProc. Second Int.
Tampere Conf. Statist.. Tampere, Finland, 1987, pp. 9–36.

Xavier Mestre (S’96) was born in Barcelona, Cat-
alonia, Spain, in 1974. He received the degree in elec-
trical engineering from the Universitat Politècnica de
Catalunya (UPC), Barcelona, in 1998.

The same year, he joined the Department of Signal
Theory and Communications at UPC, where he has
since been working as a research assistant.

Javier R. Fonollosa(S’90–M’92–SM’98) received
the Ph.D. degree in electrical and computer engi-
neering from Northeastern University, Boston, MA,
in 1992.

In 1989, he held a visiting appointment at the Euro-
pean Space Agency Centre in The Netherlands. From
the Fall of 1989 until 1992, he was Research Assis-
tant at Northeastern University and the University of
Southern California, Los Angeles, where, upon com-
pletion of the Ph.D. degree, he became Research As-
sociate. In 1993, he joined the Department of Signal

Theory and Communications, Universitat Politècnica de Catalunya, where he
became Associate Professor in November 1996.

Dr. Fonollosa has been a member of the IEEE Signal Processing for Commu-
nications (SPCOM) Technical Committee of the IEEE Signal Processing So-
ciety since 1998.


