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ML Approaches to Channel Estimation for
Pilot-Aided Multirate DS/CDMA Systems

Xavier Mestre Student Member, IEEEBNd Javier R. Fonollos&enior Member, IEEE

Abstract—This paper analyzes the asymptotic performance direct-sequence code division multiple access (DS/CDMA)
of maximum likelihood (ML) channel estimation algorithms in  technology. This is because classical DS/CDMA modulation
wideband code division multiple access (WCDMA) scenarios. We schemes can be easily generalized to incorporate and homog-

concentrate on systems with periodic spreading sequences (period_ . . L
larger than or equal to the symbol span) where the transmitted €M1Z€ the simultaneous transmission of several data streams at

signal contains a code division multiplexed pilot for channel distinct bit rates through the same phySical interface. Tradition-
estimation purposes. First, the asymptotic covariances of the ally, there have been three distinct approaches to generalizing

training-only, semi-blind conditional maximum likelihood (CML)  the classical DS-CDMA modulation scheme to a multirate
and semi-blind Gaussian maximum likelihood (GML) channel framework, namely

estimators are derived. Then, these formulas are further sim- . . . .
plified assuming randomized spreading and training sequences 1) multicode modulation, where users transmitting at high

under the approximation of high spreading factors and high bit rates make use of more than one spreading code trans-

number of codes. The results provide a useful tool to describe mitted simultaneously;

the performance of the channel estimators as a function of basic 2) variable spreading factor modulation, where the span of

system parameters such as nhumber of codes, spreading factors, or th bol in t f b f h,' - iabl d

traffic to training power ratio. e symbol in terms of number of chips is variable an
depends on the transmitting bit rate;

Index Terms—Conditional maximum likelihood (CML), ; ; ; e
Gaussian maximum likelihood (GML), semi-blind channel esti- 3) variable chip rate modulation, where users transmitting at

mation, wideband CDMA (WCDMA). a higher bit rate occupy a larger portion of the available
bandwidth.
Currently, standardized systems such as the frequency division

NOMENCLATURE duplex (FDD) mode of UMTS terrestrial radio access (UTRA)
a Scalar. transmit according to a modulation format usually referred to as
a Vector. wideband code division multiple access (WCDMA), which is
A A Matrix. basically designed as a combination of the multicode and vari-
AT Transpose oAA. able spreading factor strategies. This means that each user is
AH Conjugate transpose . allowed to make use of more than one waveform or code se-
A* Conjugate ofA. guence, while at the same time, the span of the bit interval in
I L x L identity matrix. number of chips is variable, depending on the transmission bit
Onx N M x N matrix of zeros. rate. Fig. 1 depicts an example for real-valued signals where
{A};; {i, j}th element ofA. three different data streams are mapped to three codes with dif-
vegqA)  Vector reshaping\ column-wise. ferent spreading factor but equal chip and repetition periods.
tr(A) Trace ofA. One of the most interesting features of these newly deployed
&5, Kronecker delta. systems is the introduction of a pilot signal that, serving channel

estimation purposes, is code division multiplexed and trans-
mitted at the same time as the traffic information (one example
of such a structure can be found in the uplink of the FDD mode
T HE UNPRECEDENTED growth of the demand forof yTRA; see [1]). While the performance of channel estimation
wireless services has recently called for the introductioflyorithms for systems in which a training sequence is time divi-
of third-generation mobile communication systems. Theggon multiplexed with the traffic data has been widely studied,
systems, which are specifically designed to accommodg@e attention has been paid to systems where it is code divi-
multiple and higher data rates, are largely based on multirafgn multiplexed. Given the importance that such systems may
have in the near future, it seems crucial to investigate some spe-
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work was supported in part by the Spanish and Catalan Governments urjderformance on, e.g., the spreading codes repetition period, the

Grants TIC2000-1025, TIC99-0849, CIRIT 2000SGR-00083, and F'T‘07000§'rgnal-to-noise ratio (SNR), the quotient between the pilot and
2000-649 and by the European Commission under IST Project I-METRA. Tlffle traffic signal powers or, the spreading factor utilized. This
associate editor coordinating the review of this paper and approving it for pub* g p ) p g :

lication was Dr. Kristine Bell. paper tries to provide answers to these questions in a theoretical
The authors are with the Department of Signal Theory and Commugjet simple manner. It will be shown that under some asymptotic

cations, Universitat Politecnica de Catalunya, Barcelona, Spain (e-mail: ... . . [ .

mestre@gps.tsc.upc.es: fono@gps.tsc.upc.es). conditions, very simple expressions describing the behavior of
Publisher Item Identifier S 1053-587X(02)01330-2. the analyzed channel estimation algorithms can be obtained.

. INTRODUCTION

1053-587X/02$17.00 © 2002 IEEE



MESTRE AND FONOLLOSA: ML APPROACHES TO CHANNEL ESTIMATION 697

gl 1o 0 10 SF, = N./N,(q) chips/bit. According to these definitions, the
SF1 = 4 chips | poonEmR total number of symbols mapped to a code sequence period
W i — (N chips) isN, = 32, Ns(a).
:’ | . 0 We assume that at the basestation, the signal is synchronously
SF2=8 Ch{f’b i mi ‘m i e . sampled at the chip rate (modulatmn mth no excess banQW|dth)
e i N and that symbol detection is made in observation windows
i | L ) T of M N, chips, whereM can be regarded as the number of
SF3 = 16 chips noom T om spreading periods in the observation interval. Stackiig
%mmuﬂmﬂmﬂﬁﬁtwﬁ%&w T samples of the received signal corresponding tortile code
¢ e period into a column vectat(m) € CN-*1, we can define the
¢ Pergd total received signal vector ase CMNex!
N = 16 dhips
Fig. 1. Example of multirate modulation as a combination of multicode and X = [XT(l) ce XT(M) ]T =x* 4+ Gs+n (l)

variable spreading factor schemes. A single user simultaneously transmits three
data streams mapped to three different codes, each having a different spreaw%re x*

factor but equal repetition period € CMNexlis the channel-filterednowntraining

sequenceG € CMN-xXM. is a matrix of received signatures,
s € CM->1 js a vector containing the complex-valued trans-
These simple expressions will prove most useful from a systefitted symbols, ana is the noise component. Her&{, is the
designer point of view in that they will provide a precise denumber of symbols received in an observation interval, which
scription of the expected performance as a function of physigglequal to the sund/, = Ele M.(q), whereM,(q) is the
system parameters. number of symbols corresponding to #tl code

From the whole range of channel estimation algorithms
available in the literature, we will focus on maximum likeli- L—-1
hood (ML) estimation procedures since under certain regularity M;(q) = [ SF w +MN,(q).
conditions, they provide asymptotically efficient estimates —_
(see, e.g., [2]). In particular, we will study both classical

trainin_g_—only techniques (bas_ed on the knoverQge of the_ PiRbte from (1) that the training sequence is transmitted code divi-
or fraining sequence exclusively) and semi-blind technlqugﬁm multiplexed—rather than time division multiplexed—uwith

[3], [4] (which make use of the training sequence and iMproyge atfic information. We denote by € CL*! the column

this estimation taking into account the signal structure). ctor containing the channel impulse response, which is as-
wil see that the.performa.nce gain obtamed'from the use gieq stationary on the observation interval and of ledgth
semi-blind techniques, which could be described as mOderWﬁere for simplicity, we only conside < N.. Accordingly

in classical systems with time dIVIS.IOI’.I mulnplexed.tralnmgge known part of the received signaf: can be expressed as
sequences, turns out to be dramatic in systems with a code

division multiplexed pilot.

Past symbols

k_ _ T 717
The rest of the paper is organized as follows. Section Il * =Th=[T(1)" - T(M)''h @
presents the multirate signal model and introduces the system t{((m—1N.+1) --- t((m—1)N,— L+2)
parameters and assumptions. Section Il describes the three #(m — )N, +2) - #((m—1)N, — L +3)

different channel estimation methods under consideration arjc(m) =
their asymptotic performance. In Section IV, the covariance :
of these estimators is particularized for some asymptotic t(mN,.) t(mN, — L+1)
cases assuming random training and code sequences. Finally, e CN-xL me=1-M ®)
Section V presents a numerical validation of the results, and ’

Section VI outlines some conclusions regarding the techniq
under analysis.

L{ﬁﬁeret(n) denotes the chip-level training sequence.

Let us now concentrate on the matrix of received signatures
G. This matrix is formed by stacking side by side the signa-
ture matrices corresponding to each of the code sequé&hces

Il. MULTIRATE SIGNAL MODEL [G1 o GQ] Thesﬂq, g=1---Qcan inturn be expressed

- o .as
The transmitting station is assumed to map the underlying
data sequence t@ distinct and synchronized spreading se-

guences with periodV, chips. Both the period of the spreading Gy =Cq (T, (9 @)

sequences and the chipping rate are assumed constant for D,(2) C (1) - 0

all the sequences. Let,(m) € C represent the underlying

complex symbol stream associated with e code sequence, _ 0 C(2) @)
and assume tha¥,(q¢), ¢ = 1---Q consecutive symbols are - o

mapped to each interval aV. chips. The spreading factor
associated with a particular spreading sequence is denoted as 0 - Ce(2) Cu(1) M x M, (g) blocks
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where® is the Kronecker product, an@, € CMNexM(0)L, 3) GML estimator, which arises from modeling them as
MatricesC, (1) andC,(2) are the upper and lower parts of the Gaussian-distributed random variables.
next convolution matrix In order to ensure channel identifiability, it is assumed that
a) the channel length is lower than or equal to the observation
|:Cq(1):| =[Cq1 Cqz -+ Cynu(q] € CPNXNDL window (L < MN.) and that b) the sequencgn) is per-
C,(2) ’ ’ b sistently exciting of order L or higher. These are sufficient

[ egr(1) 0 01 121 conditions to ensure identifiability in both training-only and
T semi-blind GML methods. As for the semi-blind CML esti-

cq,+(1) mator, it will also be assumed that c) thecodes are linearly

independent and that d) the number of symbols per code period

. . 2N . XL
Coor = | CarNe) ' €C ©®) is lower than the period itself in number of chipg8(< N.).
0 e egr(Ne) In any case, it is important to distinguish between the model
: for which each channel estimator is derived and the model as-
- 0L sumed taken when evaluating their asymptotic performance. In

this paper, and as far as the performance evaluation is concerned,
we will assume the following
Asl) The unknown symbols are circularly symmetric
i.i.d. random variables with zero mean, unit vari-
co(n), (r—18F, <n<rSF, ance E[sq(i)s;(j)] = 6i—jop—q, i = 1---Ms(q),
g, (n) = { Jj=1---My(p),p, q=1---Q, zero third-order mo-
ment and a finite fourth-order moment corresponding
Matrix D, (2) is obtained as th¢L — 1/SF,] columns on the to2 E|s, (i) % ¢.
right of C,(2) and contains the contribution from symbols trans- Note that no particular distribution is imposed. We will see
mitted prior to the observation interval. that under the appropriate set of assumptions, results are inde-
All this formulation is useful to understand the signal modgiendent of their particular statistical distribution.
in (1) but becomes a bit cumbersome when performing matrixNotation: In what follows, for a certain parameter vector,
manipulations. For this reason, we prefer to use the followirgg. h, we will distinguish between the minimization variables

with ¢, .(n) defined from the original code sequencgén),
g = 1---Q setting to zero all the samples outside tih
symbol interval, i.e.,

0, otherwise.

partitioning throughout the paper. hy, (training-only approach), (conditional approachh,
. (Gaussian approach) the actual estimaintsh. h,, and the
C=[C C - Cqle CHM N> ML vector of true valued. The same notation will be used for all
=[& S - Sw.] (6) the other parameters.

where now, each matri§&; € C~-XL contains the convolu- A. Training-Only Approach

tion matrix of the code sequence associated withtheymbol 1y training only estimator disregards the presence of the

interval. he sianal . i o traffic channels, which is equivalent to settiag= 0 in (1).
Returning to the signal model in (1), it is finally assumeqyq \|_ estimator for this signal model coincides with the con-

that the components of the noise vector are circularly symmetyic  iional least squares solution and can be expressed as
Gaussian distributed with zero mean and covaridigen’?| =

2T .. This seems a reasonable approximation since we are flt _ (THT)*l THy @)
. . . . o -
concentrating on a single-user scenario. The results obtained

here could, in principle, be generalized to the multichannel 8Sxamining the form of the training-only estimator in (7)

timation case, modifying the signal model in (1) to include thgng making straightforward calculations, one can state the
contribution from several users in the signal term. This is, howgjjowing.

ever, out of the scope of this paper. Proposition 1: Under the statistical assumptioAsl),
the random vecton/M (h,, — h) is asymptotically (inif)
ll. ML C HANNEL ESTIMATION METHODS circularly-symmetric Gaussian-distributed with zero mean and

. . . i — 15 M
In the following, we present some channel estimatiofPvariance equal @, = limy—. Cy;, where

methods based on the principle of ML. We will see that dif- M Hon—1 5 - o1
ferent ways of modeling the presence of the unknown symbols,Cto =MB;, + M (T T) T°GGTT (T T) (8)
transmitted at the same time as the training sequence, will lead

to distinct types of estimators with different asymptotic peﬁn

formance. In particular, we will concentrate on three different BM _ ;2 (THT)_l

types of estimators.
1) classical training-only (TO) estimator, which results from 1See [5, p. 177] for a definition of persistent excitation. Note that for training
ignoring the presence of the unknown symbols; sequences belonging to a finite alphabet, this condition implies that they cannot

. . . be periodical with period lower thah [6].
2) CML estimator, based on a model in which unknown dataz ihese statistical assumptions are verified by most of the modulation con-

are regarded as deterministic parameters; stellations used in digital communications, cf. [7].
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is the Cramér—Rao bound for the training-only scenario (cf. [8fp analyze the estimator equations in the neighborhood of the
Proof. Convergence in law to a Gaussian distribution folactual channel response to gain insight into the inherent process
lows from the central limit theorem for.-dependent processesof ML estimation.
[9, Th. 6.4.2] asM — oo (in our casem = 2 inthe sense that  In the CML semi-blind case, estimates of the channel im-
pulse response and the noise power can be readily obtained min-

M
THy — Z TH (m)x(m) imizing either (9) or (11)
m=1 "2 1 ~\H n ~
o, = x—7h.) P; (x—7h,
and E[x(m)x(m + t)] = 0Vt > m = 2). The covariance MN., ( ) G. ( )
matrix can readily be obtained from (7). n b, — (ﬁgﬁc)—l Rl

Note that due to the presence of the traffic signal (second term
in CM), the estimator becomes inefficient even at high SNRsingR, = 7 + 7, ., where7, , = (8. ® Ip) is a struc-
[thatis, the second term in (8) remains fixed whén— 0]. This  y,req reconstruction of the convolution matrix associated with
poor performance of the estimator can be improved with an &4 unknown component of the received signal. Fig. 2(a) is a
plicit m_odelmg of the traffic channels in the signal model of (1)representation in a recursive block diagram of the equation that,
In particular, one can model the unknown data either as det@jiyen properly initialized, gives the CML semi-blind estimation.
ministic parameters (conditional approach) or as random vagiyst, the known component of the signal is removed from the
ables (unconditional approach); see [10] and references thergiiservation, and the result is passed through a zero-forcing (ZF)
These two approaches will lead to two distinct estimators, thglyyalizer to obtain estimates of the unknown symbols. These
as already shown in [8], [11], and [12], do not perform equivgsstimates are then used to regenerate the unknown component
lently. of the received signal. The convolution matrix of the global re-
generated signzif{c is finally used to perform a least squares
channel estimation. This is a well-known interpretation of the

If we model the unknown data as deterministic parametesML process of estimation; see, for instance, [14] and [15].
the ML estimator for both data and channel impulse responsq et us now discuss the asymptotic performance of this esti-
can be obtained minimizing the following negative log-likelimator.
hood function Proposition 2: Under Asl), the normalized conditional
channel estimaton/Mh. is asymptotically {4/ — oc)
circularly symmetric Gaussian-distributed with covariance
limp;_.o C., where

B. Conditional (Deterministic) ML Approach

1
MN_log(no?) + — llx—7h. - G.s.|? 9)
o

C

whereG,. = C(I;, © h.) and subindexesin s, h. ando?

denote conditional model. The unknown symbols can be esti- 1 M
mated as C' =MBY + MBY i > xi.;8/'PgS; | MBY
R . i, j=1
5. = [Gf Gc} GH(x — Th,) (10) (12)
-1
. . . Xi,j =0° {(GHG) } ‘ (13)
whereh,. is the CML estimate of the channel impulse response, ji

andG. is equal toG. replacingh, with L. Plugging (10) for

. _ andBX is the conditional Cramér—Rao bound
the general cash. = h. into (9), we can reduce the dimen- ¢

sionality of the parameter space of the cost function 1 M, -1
MBM =5 | — [THPET + ) SIPES . (14
ne(he, 02) = M N, log(mo?) ¢ [M < N ; ‘e (14)
1
+3 (x —Th.)"P& (x —Th.) (11) Furthermore, these results hold, regardless of the assumption
¢ about the distribution of the symbols vector
wherePg_ = Iyn, — G.[GYG.]7'GY denotes the orthog- Proof: See Appendix A. ]

onal projection matrix onto the null space of the column&of The conclusion derived from the estimator covariance in (12)
The semi-blind CML channel estimator has to be obtaindgiclear. The conditional channel estimator is inefficient for finite

after an exhaustive search for the global minimum of (11). Howalues of the SNR. This is due to the finite number of chips per

ever, if we have a good initialization for the estimator (this coulsymbolSF;, from which it is not possible to obtain a consistent

be provided by a training-only estimation), we can get to ttgstimation of the unknown data a$ grows. This effect can be

CML solution forcing the gradient of different sets of paramalleviated using a Gaussian statistical model for the transmitted

eters to zero while assuming that the others are constant ($ygbols.

is the traditional alternating-maximizing approach proposed in _

[13]). Of course, depending on the initialization of the algc®: Gaussian ML Approach

rithm, the solution might converge to local minima rather than According to the Gaussian ML approach, symbols are mod-

the global one. In addition, depending on the actual size of teked as complex mutually independent circularly symmetric

matrices, solving the set of equations might be prohibitive fro@aussian random variables with zero mean and unit variance. A

a computational point of view. In any case, it seems interesti@aussian ML approach is preferred to a strictly unconditional
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X 4 N LA . - as a structured reconstruction of the unknown component of the
ﬁ@—' [G'G]'GY 5. T, signal
_ ZF-EQUALIZER ~  _ \ 1) u
T T Ij;,g = Z ész
~ R ~ =1
L— hef [RIRJ'RY [—x :
7 Y i where ¢; is the output of a minimum mean squared error

(MMSE) equalizer matched to the global impulse response

@

— £ & =hisrert (x - Tﬁg) . (19)
> Ix,g xg &
y § The noise power estimator can be calculated as one of the solu-

+ : .
—( ;)_ N . tions to
h N G nyg S Sg ........ H

T | MMSE-EQUALIZER

tr [C;}g - C;}QCE,QC;}Q} —0

lx
[
|

< X« + which is obtained forcing the derivative gf with respect tmg
0 to zero.

= P Ly Fig. 2(b) is a schematic representation of the equation that

> + <VE nyg hg gives the GML solution. We see from (18) that as it happened

with the CML estimator, the semi-blind GML can be interpreted
(b) as a combination of linear estimators and signal regenerators.
Fig. 2. Schematic representation of the (a) CML and (b) GML channén this case, the observation is passed through two different
estimators. branches. In the upper branch, the known component of the
received signal is first removed; the result is then used to ob-

ML estimator (where symbols would be modeled with a digain an estimation of the unknown symbols through a MMSE
crete uniform distribution) because we seek to obtain methoelsualizer (as opposed to the ZF equalizer in the conditional ap-
based on second-order statistics of the received signal, whiroach) in order to regenerate the unknown component of the
are always more affordable from the computational point oéceived signal. This regenerated signal is used to obtain a first

view. conditional mean estimate of the channel, which is denoted by
The negative log-likelihood function to be minimized can ba. In the lower branch, the estimator first removes the mean
expressed as value of the unknown component of the received signal (as-

. sumedo0 here), and the result is used to obtain a second con-

ng(o2, hy) =logdet(rC, ,) +1r (Cglgcx,g) (15) ditional mean estimate of the channel, which is represented as
. ]ﬁ’; since it is obtained from the known component of the signal.

where C, and C,, stand for the temporal covariance matriXinally, these two estimations are combined, and the resulting
associated with the random component of the signal and fiiss is removed after projection onto the inverse of the matrix

rank-one sample estimate, respectively x = Dl SHC;LS + THCMT.
= ) Let us now discuss the asymptotic performance of the esti-
C, =GG" + oIy, (16) mator asM — oo.
C,=(x—7h)(x—-Th)? 17) Proposition 3: UnderAs1), the normalized real-valued esti-
. mator

andC, , andC,_ , are defined replacing in the last equations
the true parameters?, h with the minimization variablesg, A i) - (7 T 2L41x1
h,. Note that unlike in the Conditional case, the estimation of “7 — M [aﬂ Re" (h”) Im (h”)} €R

channel impulse response and noise power are not decoupled. ) . . (20).
The GML channel estimator can be obtained as one of tife @Symptotically #/  — = oc) Gaussian-distributed with

solutions to the equation obtained forcing the gradient of (1§9variance depending on the statistical model for the un-
with respect to the channel vector to zero known symbols through one of their fourth-order moments

¢ = E[|s(n)[*]. The asymptotic (inM) covariance equals
-1

M, C; =limy_oo Cé”, where
" H -1 H -1 g ¢
h, =) sfCus,+7"C T
=1
CM = MBY +2M?(¢ - 2)BY
TH,E L (x—Thy ) +THC, L] a8) % %
[ u,g e, g \X g) wgX|  (18) M ReT(£M) Im7 (£M)
whereC, , is equal toC,, ,, replacing the minimization vari- - | Re(f") Re[F} +F§'] —Im[F}'—F}'] | B! (21)

ables with their GML estimates. Matrik, , can be interpreted Im(fM) Im[F} +F}] ReFY -FY]
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with Bé” representing the Gaussian Cramér—Rao bound

o R}  ml(el) 717
MBY = 1 |Rele}!) ReE} +EY] —Im[E} ~ ]
im(el!) Im[E} +E}] Re[E} -E]

M,
> wfsfic lsm) sfcts;

=1

1 1
BY = TUCT 4

M,
> sffcrlshn’ s crsy

i, =1

1
Ejgw :M

1 _ 2
e [(C et AN

M

1 B
M o_ E:H—l Ho=2 Herls;
f1 _M ‘_lsi Ca} G[G Ca} GQI]WS]G C“/’ SZh

M,
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n,m = —L 4+ 2---MN,, and independent of
the unknown symbols and the spreading sequences.

Note that undeAs2andAs3 the sequenceg(n)g=1---Q
are almost surely mutually linearly independent, and the training
sequence(n) is persistently exciting of all orders so that identi-
fiability is guaranteed with probability one whenevdrV, > L
(as well asV; < N, in the semi-blind CML case).

Two different limits will be considered: a limit when the
number of codes(f) tends to infinity while their period..)
remains constant (high spectral efficiency case) and a limit
as the period and spreading factors grow at the same rate for
a fixed number of codes (low spectral efficiency case). Due
to space limitations, we do not derive these asymptotic limits
here. See [16] for a complete proof of these results.

A. High Spectral Efficiency Case

The limit as the number of codég grows without bound for
a fixed code period can only be applied to the training-only and
GML semi-blind estimators because the CML estimator is not
defined forN, > N..

1) Training-Only Estimator:Under As2 and As3 and as
@ — oo, the covariance matrix of the training-only estimator
tends in probability t&

2 J—

1
FY = — sfc;lag neff _ 9 e
2 =7 Zl e, Cisl = T 4R (23)
T, 0= N —
he
. [G”C;lsihhHS]H cIlGo IMS} GCIls; MBS
b1 M, . wherew = (1/Q) ZqQ=1 oy
Pl =— y sfcrla
i, j=1 71(0) (L =1)
: [GHC;IthhTSiTC;TG* ® IMS} GTCrs: Ry = : : : e chxr
(22) 7h(L — 1) 7’h(0)
and
where® denotes the Schur—Hadamard product. .
Proof: See Appendix B. n )= W ERhk+1),  1=0---L-1
We see that in general terms, the GML semi-blind estimator is k=1
neither circularly symmetric nor asymptotically robust. FurtheBefining the global SNR as
more, given the complicated expressions in (22) and the intrinsic Wit + 5
dependence on the training and code sequences, it is difficult to Yo = M (24)
draw any conclusion about the behavior of the estimator. In the g

next section, we simplify these expressions, assuming that btiie normalized asymptotic covariance matrix for

training and codes are random variables.

IV. RANDOMIZED CODES AND TRAINING SEQUENCE

the
training-only case can be expressed as

chefi g a 1 /s«
L ek (3)
e %( o) TN\

Rh
b

In this section, we investigate the asymptotic behavior of the ) ) ) )
covariance matrices for semi-blind and training-only estimatidffhen the SNR increases without bound, the relative asymptotic

algorithms assuming the following.

As2) The spreading codes are circularly symmetric
vari-

i.i.d. random variables with zero mean,
ance Efcy(n)cg(m)] = (ag/QNe)bp—qbn—m,

covariance matrix tends to the constant value

Cult i(g) Ry,
SIS N ERS A N M ER

lim —2— =

(25)

n,m=1---N., q=1---Q, and finite fourth-order Due to the presence of the traffic channeisA 0) and the finite
moments that are independent of the unknown Sy,ﬁeriod of the code sequenc¥{ < ~0), the estimator can never

bols.
As3)

attain the Cramér-Rao bound, however high the SNR might be.

The training sequences are circularly symlnterestingly enough, the estimator seems to be inefficient even

metric i.i.d. random variables with zero mean, sy oking the Lebesgue dominated convergence theorem, it can also be seen

variance E[t(n)t*(m)] = (" /Ny,

that this is the mean value of the covariance matrix for any fi¢ed
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when dealing with frequency nonselective channéls= 1). where
This is a result that, due to the random code approximation, is H
L . . heff heff

too pessimistic. In practice, these codes are designed to be or- neff nepp C1 (el )
thogonal to the training sequence to ensure that efficiency is ob- Iy =Ey -
tained wher, = 1. In any case, it is worth bearing in mind that T
the approximation of the channel estimator covariance matrix ; ; efﬁff (efﬁff)
derived under random code sequences in (23) has to be handled Jpett —ghetd o =~ 7

277

he
carefully since it may be too pessimistic in certain scenarios. 2eq 1
2) Semi-Blind GML EstimatorAssuming thaAs2andAs3 |n [16], it is proven that
hold and that the number of codes increases without bound, the
quantitiese)!, e, E andE4’ tend, respectively, in proba- B < 1 Re [Cﬁf’ff} —Im [Ci‘jff}
bility to » 0 S 3
’ BT m[a] Re[ci]
heps  Ne [T 1
€ " = In A - 5 dw where for two square matriced, < B means thaB — A is
<— Sp(w) + 02> positive semidefinite.
o N q Fig. 3 represents the averaged trace of the channel estima-
{e?eff} _ i/ a— (w) 5 expljwh] duw tlpn covariance under the apprommgtlon qf high spectral effi-
k27 J o ) ciency for the two cases under consideration. In this example,
<ﬁc Sn(w) +o the channel impulse response taps were randomly chosen with
a uniformly distributed phase and an exponentially decaying
o power delay profile. The delay spread is given by the inverse
{Egeff} — 1 / ot a; of ¢, as shown in the figure. The higher the angular spread, the
ik 21 Jo ¥ Sp(w) + o2 hl.ghe'r the gain that can be obtained from using semiblind iden-
c tification techniques.
Ni Sn(w) B. Low Spectral Efficiency Case
+a——"F 5 We now analyze the asymptotic behavior of the different co-
<ﬁ Sp(w) + 02> variance matrices for a fixed number of codéy @nd a code
Ne period N, increasing without bound. The number of symbols
-exp[jw(k — 1) dw per periodV, (q) is assumed fixed for each code, which implic-
L a H(—w)H (w) itly implies that the different spreading factor$ ;) scale up
{Egeff} _ _/ & Ve . at the same rate a¥.. o
Wk 27 J a ) 1) Training-Only Estimator: Under the statistical assump-
<ﬁc Sn(w) +o ) tions As2 and As3, if the period of the spreading codes and

the corresponding spreading factors increase without bound at
the same rateN., SI;, — oo) while their quotient remains
where constant, the covariance of the training-only estimator tends in
probability to

-expljw(k — )] dw

L

H(w) = Y (D) expl—jul

2
le le g
=1 th)ff = MBtsz = J I

is the channel frequency response, &idw) = |H(w)|? its 2) Semi-Blind CML EstimatorAssume thatAs2 and As3
spectral power density. The values ¥, £/, F3’, andF3’ hold. Then, asV., SF, — oo, the covariance of the semi-blind
tend to somewhat complicated quantities that depend on onediL channel estimator tends in probability to

the fourth-order moments of the code sequengés) and are

2
thus omitted here for clarity. It suffices to say that their contribu- ClelS = MBS 4 ”h”—QNS Pi
tion to the actual covariance is relatively low for typical symbol Yz
kurtosis and that it vanishes at both high and low SNRs. rers I [0 a
. . i MB =—|P 1+— )P
3) Performance Comparison (High Spectral Effi- ¢ Ve RSt ot b

ciency): For comparison purposes, it is interesting to express _ _ ) N - )
the Gaussian Cramér—Rao bound associated with the redu#d§"er= is defined in (24), an@®y, = I, — Py = hh"/|[L|[*.

set of parameterg, = \/M[ReT[flg] |mT[f1g]]T’ namely Two ob_servatip_ns are in order. First, note that under these
asymptotic conditions, the covariance of the CML channel es-
MBletS timator does not depend on how the symbols are distributed
o _, across the different codes or what the power associated with
Re[Jgeff + Jgeff} —Im[Jgeff — Jgeff} each code is. Instead, it depends on the total number of trans-
= % mitted symbols per code periadd; and the global power asso-

Im [Jémff + Jff’ff} Re[JSﬁff - Jgﬁff} ciated with the codes. Second, we see now more clearly that
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" Performance (high spectral eff.), L=5, Nc=32, traffic/training pwr ratio=100 v, m(u/a')
10 N ' ' i ' I " —ce-t0 | 0 1 R
-+ CRB-GML : o T~ i
yn
-4
10°F 1 -6r
-8
o L
% s %\
> Lo =10
[S)
z Lo £
Lo ~12f-
10°F 9=10 \. 1
5 - 14}
4=0.1 \ -16f
-181
10’ L . L ! L . \ s 2 R C L SR
- - - 5 10 15 20 25 30 = =
15 10 5 0 . (@) 107 10" 10° 10! 10
x ofa

Fig. 3. Asymptotic performance of the training-only and semiblind GMIFig. 4. Threshold symbol energy to noise power densifyas a function of
channel estimation algorithms for the high spectral efficiency case. the traffic to training power ratio/ o*.

of vz, thus tending to zero faster than the Cramér—Rao boundsity associated with channgl

the SNR unit increases.

2
3) Semi-Blind GML EstimatorAssume once again thas2 vs(q) = ag||h] (30)
andAs3hold. Then, provided that the period of the spreading 02QN;(q)
codes and the corresponding spreading factors increase withg
bound at the same rat&(, SF, — oc) while their quotient Q )
remains constant, the asymptotic covariance of the Gaussiafiess _ 1 Z N.(g) [ 1 }
channel estimatop, = vM[Re'[h,] Im?[h,)]? tendsin 200 =7 1+ 7.(g)
probability tg 0
leff lefs , 6/2-1 Jesf L > Na(g) 7-(a) !
Co, =MBe " T " InF * o? 2 U (P )P
r H T H T Q
Re[hh” +hh”| —im b’ — by e Ly Lsh e ~o(q)
' H T H T RS Q L1+7(0)
[ im [nb" +hb"]  Re[hh! - nn”| 4=1
(26)  err_ L 3 Ay 75(a) 1
MBS 1 [REV2+ V3] —Im[Vy — Vz]} 27) s o2 = Q (147()? [[hf?
Ps 21 IM[Va+ V3] ReVy — V3] leff leff \ 2
where leff _ o €1 fleff n €1 2fleff
1 o2 2 geleft |t 2cledd 0
Vo =57 Py + — p= 0 0 2
°2 . o teff _ 1 (epr)?
- € - € 2
o leff 1 tef£\? 2 T2 e Jelt (61 ) el
; + ||h||2 ez’ — eleff (Cl' ) Q ’
- ° | Pu @8 pers 1 S Na(g) 7:(2)
5 + 2|2 <Cé€” - _lel,ff (Clleff) ) 0 = (147 (2)*
0 0 teff 1 < 75 () 1
2 € = — NS il
I (e =z (¢ A= 2 o (a5
0_2 260€ff hhT 9=
Vs=—— 2 1 & (@ 1
@l ol aerr 1 faersy?) | IR R - L AR
o=+ 2P (T~ (1) 0% 24 Q (T+7%()* [b]

(29) The expression of the channel estimator covariances for the
Gaussian scheme are quite cumbersome and difficult to handle.

4We do not include the covariance of the noise powerestimatorforsimplicitg;5 t simplificati be obtained . in addition t
However, it should be stressed that noise and channel estimator are not deta(£al Simplifications can be obtained assuming, in aadition to

pled and that the influence of this coupling is included in (26). As2andAs3 that we have the following.
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Channel Estimation Performance, L=5, Ns=32, wozt=100

As4) The power of each code sequence is fixed according -

its spreading factor so that the produgtS £, remains ° ' ' L CFHYB—TO
constant forg = 1--- Q. ol - Cov—%l\f\;l.l- 1
This seems a logical working assumption since the larger tt . - gSSZCML
spreading factor, the smaller the received power must be in orc wl ]
to obtain a given quality. In other words, hypothe&g!) guar- N
antees a constant reception qualityq) for each and every one ol . N ]
of the transmitted codes. = e
Simple algebra shows that undésl-As4 the Gaussian ¢ . , \‘\\_\
semi-blind channel estimator becomes asymptotically robu ¥ T \'\\?\\\\
(in the sense that the performance is independent of the mor | TN e
chosen for the unknown data) and circularly symmetric witl i S N ]
covariance 1 TN T
10 F e S E
C;eff :MBgff 2 . :
= Hh” WS(Q) +1 PJ‘ + Hh” (1 =+ i) PL. 19020 s =TS " o 5 1|o 15 20
e t b = at # (9B)
75(0) + — T @
(31)

Condition As4) is a structural restriction that guarantees th ™ ' '
model symmetry needed for the asymptotic robustness of 1
estimator in the low efficiency case.

4) Performance Comparison (Low Spectral Efficiencif):
is easy to establish the following relationships betwee
the limiting covariances for the conditional, Gaussian, ar
training-only ML methods undeAsl-As4when SF; and
N. — o at the same rate (for a constapy

MBY/f < Clff = MBI < Cieff = MBS (32)

ot

trCy i

MBI/ < clef! (33) 7}
eff 5 Qleff > ---  CRB-TO
MB:o > C¢ 7s(q) > ’Vth} (34) == Cov-CML
3 , R — B-GML
. MB/! < ClIT v (q) < yun e 8§B_gML
with
1 = 107" 10° 10’ 102
Yth = a - oley
at (b)

According to (32), under the asymptotic conditions spe fig. 5. Asymptotic performance of the channel estimation algorithms as a
fied, the semi-blind GML estimator performs better than thgnCtlon of (&) the SNR and (b) the traffic to training power ratio.
training-only method. On the other hand, the inequality in (33)
indicates that the conditional method performs worse thanlimit over which a performance gain can be expected from
the Gaussian method. As a conclusion, the GML covariangging semi-blind conditional estimation schemes under our
can be interpreted, under the present assumptions and asyagymptotic assumptions. Fof < -, the introduction of new
totic limits, as the performance bound for both conditiongdarameters (unknown symbols) in the system model will not
and Gaussian methods, whereas the asymptotic conditiogaéntually pay off in terms of asymptotic performance. In other
Crameér—Rao bound can never be attained with second-ordeirds, the CML approach is using more information but only
approaches. All these conclusions are in perfect agreement wiilestimate an increasing number of parameters, which in turn
the results presented in [10] in the context of direction-of-amay jeopardize the overall asymptotic performance. In Fig. 4,
rival estimation. It should be stressed, however, that here, thegg is represented as a function of the traffic to training power
relationships are only valid for the low spectral efficiencyatio. As we see, the values 9, are low enough to guarantee
case and that the relative position of conditional and Gaussiat in practical situations, the semi-blind conditional scheme
Cramér—Rao bounds will depend on system parameters suchviisperform better than the training-only estimator (values of
the number of codes and their repetition period. the traffic to training power ratio are expected to be higher than
Finally, it is observed from (34) that, quite surprisinglyone in actual WCDMA systems).
the conditional semi-blind method can perform worse than Fig. 5(a) represents the evolution of the trace of the different
its training-only counterpart at low values of the SNR. Theovariance matricesti’”/, C//, Cl// and MB!/7) nor-

[e]

threshold symbol energy to noise power densijtyestablishes malized by the squared norm of the channel as a functien of
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Tightness of the asymptotic formulas (Q=1), y,=-10dB Tightness of the asymptotic formulas (Q=3) ,=-10dB
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(b)

) L . Fig. 7. Convergence of the deterministic formulas to the asymptotic ones as
Fig. 6. anvergence of‘ the deterministic formulas to the asymptotic onestﬁg spreading factorS(F) increases for a constant (@) = —10 dB and (b)
the spreading factorS(¥") increases for a constant (g = —10 dBand (b) _ _— 20 dB andO = 3

= — Yo = and@ = 3.

v, = 20 dBand@ = 1.

for a constanty/a: = 100. Fig. 5(b) represents the same quarfhe channel impulse response was generated following an ex-
tity as a function of the quotient/« for different values of,.  ponential power delay profile with time constant equal to the
The theoretical relationships presented above can be verifiediiiration of 1 chip and random phases uniformly distributed
these two figures. within (=, «]. The values corresponding to the covariances
obtained under the deterministic codes assumption were calcu-
V. NUMERICAL VALIDATION lated averaging 50 outcomes with/ = 10 and using random-

In this section, we evaluate, via simulations, the discrepan&gd COdes-lVJYJ? represent the normalized trac€gf Cy; ',
between the asymptotic covariance matrices for determinis€Bto: MB,;'", C., CZ//, MB., MB/ Y, MB,, MBlgef_f’
training and spreading codes and those obtained under &§lA/Bg</7 (from top to bottom of the legend, respectively)
randomized assumption. We compare the trace of the differ&f{th 7= = —10 dB and~, = 20 dB. Itis observed that the
covariances matrices normalized by the squared norm of f&Ymptotic expressions derived for the low-efficiency case are
channel with the normalized trace of the covariance matric@80d approximations of the semi-blind variances for spreading
under the assumption of deterministic codes and trainif@ctors of 16 or higher and become a bit too optimistic for lower
sequence for finiteV., S F,, andQ. values of theS £'. On the other hand, we see that the covariance

Fig. 6 represents the convergence of the deterministic expréy-the training-only scenario is, in general, much better approx-
sions to the ones obtained under the assumption of randdfiated by the asymptotic covariance in the high-efficiency case
ized training and spreading sequences\as SFq* — ooin 5In the examples considered hefd, = 10 was sufficient to guarantee the
a scenario withVy; = 2, Q@ = 1, a/a’ = 6 dB andL = 5. convergence of these expressions.
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(Cheff) than the one obtained under the low spectral efficiencyotation. First, applying the triangular inequality and the mean
limit (note thatChef 7 is also the mean variance with respect tgalue theorem, one can see that
training and Code sequences for any fixgy 1

Fig. 7 illustrates the same evolution when the number @f.(h.) — n.(h.)| < = AW THPE (x—Th)
codes is fixed ta = 3. As before, it is generally seen that
in practical situations, the covariance of the training-only
estimator is well approximated by the high spectral efficiency
situation (2 — o), whereas the formulas obtained for the low

spectral efficiency situation\. — co) are more representative\yhereAh, = h, — h’, h,; lies on the segment joininiy. and
of the behavior of the semi-blind estimators. This |Ilustratq§/ andxsy; = 02{(GHG.) 1} 5, Cel = (x — Thy)(x —

the potential benefits of semi-blind techniques applied tph DA Note that the right-hand side of (35) is bounded, given

Z x{LARESHPE ClSiha|  (35)

i, j=1

pilot-aided WCDMA contexts. a fixed ball radius. On the other hand, [17, Th. 4.2.3] implies
that
VI. CONCLUSIONS
lim sup L = AhH’THPJ‘ (x—=Th.)

We have derived asymptotic expressions describing the pepd—oo V Mloglog M o*
formance of three different channel estimation algorithms in a < Ahlk,
pilot-aided multi-rate framework. For the classic training-only 1 1 )
channel estimation method, we have been able to provide a fQim sup —_— Z Xf,lg'Ahfo{PédC;lthcl
mula describing the mean asymptotic behavior as the numbéf—> Vv Mloglog M o ij=1
of spreading periodsi{) tends to infinity. Investigating the re- < Ahfk,
sulting covariance matrix, we have shown that the performance
of the algorithm tends to saturate as the SNR {ncreases. The almost surely, where the vectoks, and ko, are uniformly
higher the channel length, the more inefficient training-only efounded for allA and h.; € B(h{, 6). Now, since
timators become. Semi-blind techniques have been proposed/dd loglog M = o(M), we conclude that fo/ sufficiently
means to improve this bad performance. First, we have shotuigh, the right-hand side of (35) goes to zero &as— 0.
that the semi-blind channel estimation procedures can be dgymptotic uniform equicontinuity follows. Now, applying
scribed in terms of simple equalizers and signal regeneratdhg stochastic version of the Ascoli-Arzela’s theorem [18, Th.
Then, their performance has been evaluated under asymptgtit], we conclude that

M,

conditions in the number of spreading periadis when the 1 3

spreading factor or the number of codes tend to infinity. S;llp M [7e(he) —Me(he)| — 0
almost surely ag/ increases without bound. This proves uni-

APPENDIX A S .
form convergence toward the I|m|t|ng cost function
PROOF OFPROPOSITIONZ
Consistency 7.(h,, 02) = N.M log(ro ) —2 r[GYPE_ G|
Let us first discuss the consistency of the estimator. The ap- o P—
plication of the strong law of large numbers (SLLN) guarantees 0,2 (h —h)"77Pg, 7(h. — h).

C

Note that the two last terms are always positive or zero. The
1 powpl 1 ) minimum of the limiting cost function will therefore take place
g Me(he, 00) = 2re(he, 07) when the two terms vanish, and this can only happehfot h
[the first term vanishes fdi, = ¢’?h, whereg takes any value
betweer|0, 2), but the second only vanishes for= 0].

almost-sure point-wise convergenceids— oo

def

= N.log(mo?) [GTPS G]

1
oM
+ - I (he —h)"7"Pg 7(h. —h).  Asymptotic Normality and Covariance
Convergence in law to a Gaussian distribution follows from
On the other hand, assuming tiatbelongs to a dense subsetonsistency and the asymptotic normality of the gradient vector,
of C*1\ {0}, it is easy to prove that the CML cost function igvhich can be expressed as

almost surely asymptotically uniformly equicontinuous, namely 1, 1 éne
—=". = /—
1 V M 6hc h.=h
limsupsup  sup e (he) = ne(h)| = I o HpL
M—oo h/, h.eB(h,5) M :_0_2\/— T"Pg(x—"Th)
asé — 0, whereB(h'!, §) is a ball centered oh’/, with radiusé — Z xi ; SHPEC..S;h.

and where the dependence @hhas been dropped for ease of 4\/_ i j=1
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Thanks to the consistency of the conditional ML channel estitherey; ; = o2{(G2G)~1}, ;. Since the result of the ex-
mator and since channel and noise power estimators are deqmctation conditioned osiddepends quadratically on this vector,
pled, the asymptotic covariance matrix of the vector of the rette result is valid, regardless of the unknown symbols statistical
parameterg, = v M[Re"(h.) Im7(h.)]? can be obtained model assumption. Plugging (38) and (39) into (36), we obtain

as [19] the expression for the asymptotic covariance matrix given in
. . " 1 =) Proposition 2.
Cy, = E[(¢. — 9)(@. —9)"] =H.'Q.H, (36)
where APPENDIX B
82 PROOF OFPROPOSITION3
He= Miinoo S 6T Consistency

To prove strong consistency of the semiblind estimator, we
proceed as in the conditional case. First, the SLLN allows us to

P.=F
T
677c <677c )
bp. \ o, e.=¢ prove almost sure point-wise convergence of the cost function
to the following limiting value.

and wherep,, andy stand for the minimization variables and the
true values corresponding to the real-valued channel estimator.1

Q.= lim F

M—oo

2 — 2
The gradient and Hessian with respect to the real parameterg 1g(0g: y) = M My(7g, hy)
can, in turn, be expressed as a function of the corresponding def 1 . 1 1
complex derivatives = arles det(mCq,g) + Al (Cz,4Cx)
1 _
§%n. +47 (B - h)"T"CN T(h —hy).
bpcbc g = | o
"o = T Now, to prove that this convergence is uniform in the parameters
2 an(’ + UE _lm[n(’ — e 2 . . . . .
= o . o, hy, we must verify the a.s. asymptotic uniform equiconti-
M [Imlpd +77]  Reln! — 7] nuity condition, namely
T
611 <677‘:> limsup sup sup
b, \ Sy, M—co b, o/ {h,, a2} B({h], 0’2}, 5)
Pe=¢ . .
1
_ 2 [Relni(m)™ ()] —tm{nf(nf)" =i ()] +27110(05: Bg) = ny(0, W) =0
M imn(n)™ +nl(nl)"]  Relul(n) —nl(n.)"]

37) with probability one, ag — 0, whereB({h[, 5/?}, 6) is a ball
defined in the space generated by the whole set of parameters
wheren, "/, and7 are defined, as shown later, following thecentered or{h;, o—’g?} with radiusé. The proof is analogous to
description of complex gradient given in [20]. Using converthe one in the CML case and is therefore omitted here.
tional formulas for matrix derivatives, it can be shown that (see The limiting cost functiorﬁg(ag, h,) can be expressed as
[16] for details)
M,(02, hy) = [tr (C;},C,) —logdet (C;},C,) + MN,]

1 1 8.
= 5h::57h§ - +(h-h)?THC;L T(h - hy) +k
1 THPLT 4 i SHPLS, wherek is a constant independent of the parameters. We have
T Mo? G Mo2 < i G implicitly grouped into two terms that are always higher than or
=t equal to zero so that the global minimum is obtained when the
+ Op (M_l/Q) two terms null out. The following lemma, which is proven in
1., 1 &n [22], is the key to uncjgrstanQing the bghavio_r of the first term.
e Ty Sroh? . Lemma 4: For positive definiteA of dimensionM N,
=0, (Mfl/i’) (38) tr A —logdet A — MN, — 0

whereO,(.) is the in-probability version of the correspondingmplies A — Ty, .
deterministic notation. On the other hand, applying the classicalThe first term will thus be zero when
formula for the expectation of four Gaussian-distributed random

matrices [21] C. = GG +5’Iyn, = GyG) +0Iyn, =Csy
M. . P . .
1 1 which necessarily implies? = ¢? andG, = G. If the iden-
1 INHY Hpl g . g
Eln.(n)"] = 5 T"PgT + — Z tifiability conditions hold,h = ¢/%h, is the minimum of the
y ZFI first term. Whenyp = 0, this is also the minimizer of the second
(i + x4,5)S] PGS, term, and we can conclude that this is the global minimum of

E [UQ(UQ)T] =0rxz. (89) the cost function.
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T
6 1 [ o
Do = [ 53, &1V, ] ImT[Vg]}
o0, 09:0 M
1 277g 6V 6V T
5 Re' | —2 Im? | Y9
2 (b03)? [ bo? } m [ Sa2 }
8%y 2 6V,
504605 |, , M [5— ReH, . +H, ] —IMH, . —H, ]
6V,
|:6_ g,c +Hg nc] RqH%c _Hg,nc]

|
|
) Re{?%vf ETA
v, .
),

-1 <
2\ 607 6,=6 0,=0
by (Eng\"| o _2 e[V, VI +v,vI] —im[v, v v,V
60, \ 60, M 3 o _ re TaTe
6,= 9=
Mg H H
{5—3 o Im [V, V) +V, VL] Re[V,VY-v,V!]
Asymptotic Normality and Covariance that the complex derivatives can asymptotically be expressed in

Asymptotic normality follows from consistency and th&ompact form as

asymptotic normality of the gradient vector, which can be 1 82

7
expressed as - (50232 _ 60 Lo, ( 1/2)
0,=0
1 52 1
1 677 1 -1 1~ -1 _ Ur def H _ E]W 40 M—1/2
= — _ " e 2 ,
R M e M e, L, M ()
2
L der L0y 1 o M0, (M2
_V — . 2
VM T UM M Shi| M 6hiso? 0,0 p( )
g 1 6277!] def 1 _1/2
Wivi Zsf{(c;l—c;lémcgl)& ho M ewsh| 1 Hoone = E3" +0p (M )
1=1

\ (42)
- —T"C'(x—Th).
VM - ) wheree)!, eM, E}!, andE}! are defined in Proposition 3. Be-
fore analyzing the covariance of the gradient, we introduce the

The asymptotic covariance matrix of the vector of real parami!lowing lemma.
tersf, defined in Proposition 3 can be obtained as Lemma 5: Given a random vectat = Gs + n such thas
andn have the statistical properties established in Section Il and
~ ~ H
C;, =E {(og - o) (og - o) }

a deterministic matridK of appropriate dimensions

E [xxH Kxx }

=H;'Q,H,' (40)
5 = C,KC, + C, trKC,] + ((-2)G(G"KG o 1,,)G"
H, = A}im 0 g;T E [XXHKX*XT]
g =0 = C,KC. + C,K"CI + ((-2)G(G"KG" ®1,,)G"
Mg 6
Q, = lim E g (41) where® denotes element-wise product.
M—oo 60 60
6,=0 Proof. See [16]. ]
We just need to apply Lemma 5 to obtain
wheref stands for the vector of actual values. Depending on the 5
statistical model chosen for the unknown symbols, the results of 1| ony — M 4 (c— )M
the expectation in (40) and (41) will be different. In any case, 2M b3 6,=6 ’ ’
we can express these matrices in terms of complex derivatives as 1

shown in the equations at the top of the page. Itis shown in [16] M E [ngf] =E) +(¢-2)F)
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1 [15] E. Pité and P. Duhamel, “Bilinear methods for blind channel equal-
—_FE [VQVZ;] :Eé” + (C — 2)F§4 ization: (No) local minimum issue,” iffroc. IEEE Int. Conf. Acoust.,
M Speech, Signal ProcesSeattle, WA, 1998.

[16] X. Mestre. (2001, June) Asymptotic covariance matrices for semi-blind
ML channel estimation approaches in WCDMA contexts. [Online].
Available: http://gps-tsc.upc.es/comm/Xavi/publications.html

W. F. Stout, AlImost Sure ConvergenceNew York: Academic, 1974.

B. M. Pétscher and I. R. Prucha, “Generic uniform convergence and

equicontinuity concepts for random functiond,”"Economety.vol. 60,

where we have used (A ®T)] = tr[(A®I)?] (which is valid

for any square matriA of appropriate dimensions), whefg/ , [17]
tM F}, andF! are defined in Proposition 3. Plugging this last [18]
result and (42) into (40), we obtain the final covariance matrix.
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