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Abstract—In this paper, we investigate the average and
outage performance of spatial multiplexing multiple-input
multiple-output (MIMO) systems with channel state information
at both sides of the link. Such systems result, for example, from
exploiting the channel eigenmodes in multiantenna systems. Due
to the complexity of obtaining the exact expression for the av-
erage bit error rate (BER) and the outage probability, we derive
approximations in the high signal-to-noise ratio (SNR) regime
assuming an uncorrelated Rayleigh flat-fading channel. More
exactly, capitalizing on previous work by Wang and Giannakis,
the average BER and outage probability versus SNR curves of
spatial multiplexing MIMO systems are characterized in terms of
two key parameters: the array gain and the diversity gain. Finally,
these results are applied to analyze the performance of a variety
of linear MIMO transceiver designs available in the literature.

Index Terms—Channel eigenmodes, diversity gain, linear
MIMO transceivers, ordered eigenvalues, spatial multiplexing,
Wishart.

I. INTRODUCTION

MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO)
channels are an abstract and general way to model

many different communication systems of diverse physical
nature; ranging from wireless multiantenna channels [1]–[4],
to wireline digital subscriber line (DSL) systems [5], and to
single-antenna frequency-selective channels [6]. In particular,
wireless MIMO channels have been recently attracting a great
interest since they provide significant improvements in terms
of spectral efficiency and reliability with respect to single-input
single-output (SISO) channels.

The gains obtained by the deployment of multiple antennas at
both sides of the link are the array gain, the diversity gain, and
the multiplexing gain [7]. The array gain is the improvement in
signal-to-noise ratio (SNR) obtained by coherently combining
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the signals on multiple-transmit or multiple-receive dimensions
while the diversity gain is the improvement in link reliability
obtained by receiving replicas of the information signal through
independently fading dimensions. These gains are not exclu-
sive of MIMO channels and also exist in single-input multiple-
output (SIMO) and multiple-input single-output (MISO) chan-
nels. In contrast, the multiplexing gain, which refers to the in-
crease of rate at no additional power consumption, is a unique
characteristic of MIMO channels. The basic idea is to exploit
the multiple dimensions to open up several parallel subchannels
within the MIMO channel, also termed channel eigenmodes.
This allows the transmission of several symbols simultaneously
or, in other words, the establishment of several substreams for
communication.

In order to simplify the study of MIMO systems, it is cus-
tomary to divide them into an uncoded part, which transmits
symbols drawn from some constellations, and a coded part that
builds upon the uncoded system. Although the ultimate system
performance depends on the combination of both parts, it is con-
venient to consider the uncoded and coded parts independently
to simplify the analysis and design.

In this paper, we focus on the uncoded part of the system and,
specifically, on spatial multiplexing MIMO systems with perfect
channel state information (CSI) at both sides of the link. Spatial
multiplexing is a simple MIMO transmit technique that allows a
high spectral efficiency by dividing the incoming data into mul-
tiple independent substreams and transmitting each substream
on a different antenna [8], [1] (no CSI at the transmitter is re-
quired for this approach). When perfect CSI is available at the
transmitter, channel-dependent linear precoding of the data sub-
streams can further improve performance by adapting the trans-
mitted signal to the instantaneous channel eigenstructure. There
are different degrees of adaptation as have been considered in
the literature, namely the following.

i) Adapt only the linear precoder/power allocation among
the different substreams, keeping the number of sub-
streams and the constellations fixed. This is by far the
most widely considered scenario, e.g., [6], [9]–[16].

ii) Adapt the precoder/power allocation among the different
substreams, the number of substreams, and choice of
constellations, keeping the data rate fixed. This has been
only partially considered in a few papers. For instance,
the adaptation of the precoder and number of substreams
(with equal constellations) is considered in [17] and [18],
and the precoder, constellations, and number of sub-
streams are designed in [19] to minimize the transmitted
power under a BER constraint.
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This paper concentrates on case i), which embraces the
schemes that have received more attention in the literature and
for which no analytical performance analysis was available.
First, we analyze the high-SNR performance of the substreams
transmitted through the channel eigenmodes, when fixed
constellations are imposed beforehand and the channel is a
Rayleigh flat-fading MIMO channel. Since simple closed-form
expressions for the marginal pdf’s of the ordered eigenvalues
of the Wishart matrix are not known, we first derive a first order
polynomial expansion of these marginal probability density
functions (pdf’s). Then, based on this result, we study the
average and outage performance of each channel eigenmode
at high SNR following the methodology introduced by Wang
and Giannakis in [20]. To be more precise, we characterize the
curves corresponding to average BER versus SNR and outage
probability versus SNR in terms of the diversity gain, which
determines the slope of the curve at high SNR in a log–log
scale, and the array gain, which determines the horizontal shift
of the BER curve. We also extend this characterization to the
global performance that takes into account all the established
substreams for a fixed number of substreams according to
scenario i).

These general results are then applied to analyze the perfor-
mance of linear MIMO transceivers which are low-complexity
schemes composed of a linear precoder at the transmitter and a
linear equalizer at the receiver. The design of linear transceivers
in the context of i) has been studied for many years according
to a variety of criteria [6], [9]–[16]. Recently, a general and uni-
fying framework for the joint linear transmit-receive design was
developed in [15], embracing a wide range of different design
criteria.

The rest of the paper is organized as follows. Section II is
devoted to introducing the performance metrics of a general
digital communication system in a fading environment and to
presenting how these performance measures can be approxi-
mated in the high-SNR regime. Section III describes the signal
model corresponding to a spatial multiplexing scheme with
CSI. In Section IV, we derive a closed-form characterization for
the individual and global average BER and outage performance
at high SNR of spatial multiplexing MIMO systems. Then, in
Section V, we apply these results to analyze the performance
of linear MIMO transceivers by dividing the designs proposed
in [15] into diagonal schemes with fixed power allocation,
diagonal schemes with nonfixed power allocation, and nondi-
agonal schemes. Finally, in Section VI, we summarize the main
contribution of the paper.

II. PRELIMINARIES: PERFORMANCE METRICS OF

DIGITAL COMMUNICATION SYSTEMS

A. Average and Outage Performance

The ultimate performance metric of a digital communication
system is given in terms of the error probability, defined as the
fraction of symbols in error, or in terms of the BER, defined as
the fraction of bits in error. For fading channels, different real-
izations of the random channel have to be taken into account,

leading to the concept of average and outage error probabilities.
The average BER measures the bit error probability averaged
over different channel realizations, whereas the outage proba-
bility is the probability that the system performance is below a
given threshold.

In the presence of additive white Gaussian noise, the instan-
taneous BER of a digital communication system (with a linear
modulation) as a function of the instantaneous SNR, denoted
by , can be analytically approximated, when using a Gray
encoding procedure, as [21] (see the exact expression in [22]
and [23])

(1)

where is the Gaussian function defined as

(2)

and the parameters and depend on the constellation. For
instance, when using an -QAM modulation, and are given
by

(3)

(4)

The effect of the channel on the transmitted signal is, under
the flat-fading assumption, in the form of a random multiplica-
tive distortion [24]. According to this, the instantaneous SNR
is given by the product of a channel-dependent parameter and
a deterministic positive quantity , i.e.,

(5)

where is the average SNR at the receiver whenever .
As we are interested in the average BER incurred by the system,
we need to take the expectation over all possible channel states:

(6)

where is the pdf of the channel-dependent parameter .
The average BER in (6) has been analytically evaluated only

in certain simple cases, such as when the channel parameter is
Rayleigh distributed [25]. A general procedure for finding the
error of linearly modulated signals is given in [26], consisting
of deriving the pdf of an equivalent noise which comprises the
effects of the additive noise and the multiplicative distortion.
However, this requires the numerical computation of integrals,
and thus the resulting expressions do not help to gain insight
about the system behavior. In [27], the authors provide a unified
method for calculating these error rates based on an alternative
representation of the Gaussian -function. Again, the resulting
expressions contain integrals that must be numerically solved or
simply that are too difficult to work with.

The average BER is a useful performance measure when the
transmission interval is long enough to reveal the long-term
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ergodic properties of the fading channel. The ergodicity as-
sumption, however, is not always necessarily satisfied in
practical communication systems operating over fading chan-
nels, because no significant channel variability may occur
during the whole transmission. In these circumstances, the
most convenient measure to capture the performance of the
system is the outage BER, i.e., the minimum BER value guar-
anteed with a small given probability. However, the outage
BER is difficult to obtain analytically, and the performance of
communication systems over nonergodic fading channels is
instead commonly measured with the outage probability [28],
defined as the probability that the instantaneous SNR falls
below a certain threshold

(7)

Given the limited availability of closed-form expressions for
the performance measures in (6) and (7), there is an imperative
need to characterize the performance of a system in a simple and
insightful way. A convenient method to find simple expressions
is to allow a certain degree of approximation. The most common
approach is to shift the focus from exact performance to large
SNR performance as done in [20]. To be more precise, we are
interested in deriving high SNR closed-form expressions for the
performance measures in (6) and (7).

B. High-SNR Performance

In the high-SNR regime, the average BER function can be
approximated in most cases as [20]

(8)

where and are referred to as the diversity and coding
gains,1 respectively, and is the average SNR. The diversity
gain determines the slope of the BER versus curve at high
SNR in a log–log scale, and the coding gain determines the shift
of the curve with respect to the benchmark BER curve .
This leads to a simple parameterized average BER characteriza-
tion for high SNR that can provide meaningful insights related
to the system behavior.

As shown in [20], the average BER and the outage probability
of a communication system at high SNR with the instantaneous
SNR given in (5) depend only on the behavior of the pdf
near the origin and can be parameterized as stated
next.

Lemma 1 [20, Prop. 1]: The average BER of a communica-
tion system as defined in (6), in which the instantaneous SNR is
given by and the pdf of the channel-dependent param-
eter can be written as2 , is

(9)

where the diversity gain and the coding gain are given by

(10)

1The coding gain is also known as the array gain in the context of multiantenna
systems [29].

2We say that f(x) = o(g(x)) if f(x)=g(x)! 0 as x! 0 [30, eq. (1.3.1)].

(11)

and denotes the Gamma function defined as
[45, eq. (6.1.1)].

Lemma 2 [20, Prop. 5]: The outage probability of a com-
munication system as defined in (7), in which the instantaneous
SNR is given by and the pdf of the channel-dependent
parameter can be written as , is

(12)

where the outage diversity gain and the outage coding gain
are given by

(13)

(14)

Lemmas 1 and 2 offer a simple and unifying approach to eval-
uate the average and outage performance of communication sys-
tems over random fading channels and allow the interpretation
of the effect of the system parameters in the performance. These
results can be easily extended to the case where the instanta-
neous SNR is given by and is a fixed deterministic
parameter. The following corollary shows the generalization of
Lemma 1 (Lemma 2 can be generalized in the same way).

Corollary 1: The average BER of a communication system
as defined in (6), in which the instantaneous SNR is given by

and the pdf of the channel-dependent parameter
can be written as , is

(15)

where the diversity gain and the coding gain are given by

(16)

(17)

and is defined as3

(18)

Proof: See Appendix I.

III. SIGNAL MODEL: SPATIAL MULTIPLEXING

MIMO SYSTEMS WITH CSI

The signal model corresponding to a transmission through a
general MIMO channel with transmit and receive dimen-
sions is

(19)

where is the transmitted vector,
is the channel matrix, is the received vector,
and is a spatially white zero-mean circularly

3A closed-form expression for this integral does not exist for a general value
of the parameter d; however, it can be easily evaluated for the most common
values of d (integers).
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symmetric complex Gaussian noise vector normalized so that
. The channel matrix contains the complex

path gains between every transmit and receive antenna
pair. We adopt an uncorrelated Rayleigh flat-fading channel
model and, consequently, these coefficients are independent
identically distributed (i.i.d.) complex Gaussian random vari-
ables with zero mean and unit variance, i.e., .

Following the singular value decomposition (SVD) analysis,
the channel matrix can be written as

(20)

where and are unitary matrices, and is a diagonal ma-
trix containing the singular values of sorted in descending
order. This way, the channel matrix is effectively decomposed
into independent orthogonal modes
of excitation, which are referred to as channel eigenmodes [2],
[7], [31].

Assuming that the channel is perfectly known at the trans-
mitter and that data symbols per channel
use have to be communicated, the transmitted vector can be
written as

(21)

where gathers the data symbols (zero mean, unit energy
and uncorrelated, i.e., ), is formed with the

columns of associated with the strongest channel eigen-
modes and is a diagonal matrix con-
taining the power allocated to each established substream. The
transmitted power is constrained such that

(22)

where is the SNR per receive antenna. Assuming perfect
channel knowledge also at the receiver, the symbols transmitted
through the channel eigenmodes are recovered from the received
signal with matrix , similarly defined to , as

(23)

where is a diagonal matrix that contains the largest sin-
gular values in descending order, and the noise vector

has the same statistical properties as , possibly with
a reduced dimension. Each substream experiences then an in-
stantaneous SNR given by

(24)

where denotes the th largest channel eigenvalue (squared
modulus of the th channel singular value) and defines the
power allocation policy. Observe that most linear MIMO trans-
ceiver schemes proposed in the literature can be written as in
(24), e.g., [6], [12], and [15] (other schemes include an addi-
tional pre- and postprocessing of the data symbols and will
also be treated in Section V-D).

IV. HIGH-SNR ANALYTICAL PERFORMANCE OF SPATIAL

MULTIPLEXING MIMO SYSTEMS WITH CSI

In this section, we apply the results presented in Lemmas 1 and
2 to analyze the performance offered by the spatial multiplexing
MIMO systems with CSI described in Section III in terms of
array gain and diversity gain. We first obtain a parameterized an-
alytic expression for the average BER and the outage probability
of each individual substream, distinguishing between fixed and
nonfixed power allocations. Then, we derive the global average
BER and outage probability of the spatial multiplexing MIMO
system, taking into account all established substreams.

A. Individual Performance With Fixed Power Allocation

We consider the diagonalized MIMO system obtained in (23).
As the additive noise is assumed to be Gaussian distributed,
the instantaneous uncoded BER of the substream transmitted
through the th channel eigenmode can be analytically approx-
imated as

(25)

where , and are the constellation parameters, and
is the instantaneous SNR in (24). Assuming that the power al-
location is fixed, i.e.,

(26)

where is a positive constant independent of the channel with
, the instantaneous SNR of (24) can be rewritten

as

(27)

The average BER is then

(28)

where is the marginal pdf of the th largest eigenvalue
of . Due to the uncorrelated Rayleigh flat-fading assump-
tion, is complex central Wishart distributed [32, Sec. 3.7].
As the marginal pdf of the th eigenvalue of a Wishart matrix is
not known in closed form and only some results for the largest
and smallest eigenvalues are available in the literature (see, e.g.,
[33] and [34]), the average BER in (28) cannot be analytically
computed. However, the marginal pdf can be approxi-
mated for as shown in the following theorem.4

Theorem 1: Let the entries of the matrix be
i.i.d. complex Gaussian with zero mean and unit variance and
let and . The first-order
expansion of the marginal pdf of the th largest eigenvalue of
the complex central Wishart matrix is given by

(29)

4The Wishart distribution appears in other fields in signal processing (e.g.,
[35]–[38]), physics, and applied mathematics (see [34, Ch. 2] and references
therein); thus, our result could have applications to other problems.
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where

(30)

(31)

with . Matrix is defined
for as

(32)

and is defined for as

(33)

and , and .
Proof: See Appendix II.

Now, using Theorem 1 and following the approach of [20]
presented in Lemma 1, the average BER performance of the
substream transmitted through the th channel eigenmode can
be parameterized in terms of array gain and diversity gain as
follows.

Theorem 2: The average BER of a substream transmitted
through the th strongest eigenmode of a Rayleigh flat-fading

MIMO channel, when the power allocation is fixed as
in (26), is

(34)

where the diversity gain and the array gain are given by

(35)

(36)

and the parameters and model the fading distribution as
given in Theorem 1.

Proof: The proof follows from Lemma 1 and Theorem 1.
In Fig. 1, we provide the average BER curves (obtained

through numerical simulation) attained by the established
substreams through the eigenmodes of a MIMO channel with

. We assume all substreams active ,
a uniform power allocation , and all data
symbols drawn from a quadrature phase-shift keying (QPSK)
constellation. We can see that the result given in Theorem 2
predicts correctly the diversity and array gain and, thus, approx-
imates the average BER performance at medium to high SNR.
Observe that, when the diversity gain is high, as for the first
substreams in Fig. 1, the BER decreases with the
SNR so rapidly that the given approximation is only accurate
for very small BER values.

Theorem 2 can be easily particularized for the case of having
multiple antennas at only one side of the link ( or

), i.e., MISO systems and SIMO systems.

Fig. 1. Individual simulated average BER (dashed line) and parameterized av-
erage BER (solid line) of the substreams transmitted through the channel eigen-
modes (k = 1; 2; 3; 4) with n = 4 and n = 4.

Corollary 2: The average BER of the single substream that
can be established in a MISO system with transmit antennas
and one receive antenna or in a SIMO system with one transmit
antenna and receive antennas is

(37)

where the diversity gain and the array gain are given by

(38)

(39)

The performance attained by an MISO and SIMO system co-
incide when perfect CSI is available at the transmitter and the
receiver,5 since in both cases the signal components can be
coherently combined (either at the transmitter or at the receiver)
leading to the -fold diversity in (38). This equivalence has
been already pointed out in the literature, when analyzing the
capacity of MIMO channels [3]. It is insightful to further par-
ticularize Corollary 2 to a SISO channel , obtaining

and , i.e., no diversity gain and
no additional array gain.

Consider now the outage probability, given for the th estab-
lished substream by

(40)

which depends on the marginal pdf of the th largest eigenvalue
of as in the case of average BER.

Theorem 3: The outage probability of a substream using
the th eigenmode of a Rayleigh flat-fading MIMO
channel, when the power allocation is fixed as in (26), is

(41)

5Observe that without CSI at the transmitter this equivalence does not hold
anymore and the SIMO systems outperforms the MISO system.
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where the outage diversity and the outage array gain are given
by

(42)

(43)

and the parameters and model the fading distribution as
given in Theorem 1.

Proof: The proof follows from Lemma 2 and Theorem 1.

B. Individual Performance With Nonfixed Power Allocation

We have so far analyzed fixed power allocation strategies as
expressed in (26). We now consider power allocation strategies
that depend on the eigenvalues associated with the active
channel eigenmodes.

Theorem 4: Consider that the power allocated to a sub-
stream transmitted through the th strongest eigenmode of a
Rayleigh flat-fading MIMO channel is a function of
the strongest channel eigenvalues and the SNR, i.e.,

under the short-term power constraint in
(22), and that the power allocation satisfies

(44)

where , and are positive deterministic parame-
ters. Then, the average BER of the th substream is

(45)

where the diversity gain is given by

(46)

whenever6 and the array gain can be
bounded by distinguishing between the following two cases.

i) If there exists such that , the
array gain is bounded as

(47)

ii) If and there exists such that
, the array gain is bounded as

(48)

where is the array gain obtained when using a
fixed power allocation and is defined in (36).

Proof: See Appendix III.

6The condition d(� ) � d + 1 is satisfied by any reasonable power allo-
cation. Namely, if d(� ) < d + 1, the average BER performance is inher-
ently limited by the power allocation and not by the statistical properties of the
channel.

C. Global Performance

We now consider the global performance of the spatial
multiplexing MIMO system described in Section III, i.e., when
transmitting over the strongest channel eigenmodes. For this
purpose, we define first the global instantaneous BER as the
arithmetic mean of the instantaneous BER of the established
substreams:

(49)

Note that the global instantaneous BER in (49) takes into ac-
count the instantaneous BER performance experienced by each
one of the data symbols to be transmitted (i.e., the number
of substreams is fixed regardless of the power assigned to
each substream, which can even be zero for some power alloca-
tion strategies under poor propagation conditions). Finally, we
obtain the global average BER performance of the spatial mul-
tiplexing MIMO system by averaging the global instantaneous
BER in (49) over all possible channel states:

(50)

Since (see Theorem 2 for
fixed and Theorem 4 for non-fixed power allocations), the global
average BER is dominated by the average BER associated with
the th substream:

(51)

This result is summarized in the following theorem.
Theorem 5: The global average BER attained when trans-

mitting through the strongest eigenmodes of a Rayleigh flat-
fading MIMO channel with either a fixed power al-
location (see Theorem 2) or a nonfixed power allocation (see
Theorem 4) is

(52)

where the diversity gain and the array gain are given by

(53)

(54)

and is the array gain of the th substream given either
by (36) for fixed power allocations or by (47) or (48) for non-
fixed power allocations.

It is interesting to note that when particularizing Theorem 5
for , i.e., a beamforming strategy, we obtain the full
diversity of the channel , as has been widely observed
in the literature, e.g., [39] and [40]. The diversity order of the
case has been also previously documented
in [41].
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Fig. 2. Global simulated average BER (dashed line) and parameterized average
BER (solid line) of the spatial multiplexing MIMO system with CSI.

In Fig. 2, we provide the global average BER curve (ob-
tained through numerical simulation) of the spatial multiplexing
MIMO system with and , and with

and and . In all three cases,
the theoretical global average BER performance is correctly ap-
proximated by the parameterized characterization proposed in
Theorem 5.

The global outage probability is defined similarly to the
global average BER, i.e., we say that the global performance of
the spatial multiplexing MIMO system is below some certain
threshold, when the performance averaged over the established
substreams is below this threshold. Hence, the outage per-
formance, analogously to the average BER performance, is
dictated by the behavior of the th channel eigenmode and the
generalization of the individual outage probability characteri-
zation given in Theorem 3 to the global outage probability can
be easily obtained.

V. HIGH-SNR ANALYTICAL PERFORMANCE ANALYSIS OF

LINEAR MIMO TRANSCEIVERS

The performance of linear MIMO transceivers has been al-
ways analyzed numerically, due to the difficulty of finding a
closed-form expression for the average bit error probability. For
instance, in [12], we can find the simulated average BER curves
for linear precoding schemes designed under the weighted min-
imum mean-square error (MMSE) criterion in a Rayleigh flat-
fading channel. Other numerical results can also be found in
[6], [10], and [15]. The advantage of obtaining numerical re-
sults via computer simulation is that they provide the perfor-
mance in realistic environments. However, they do not give in-
sight on the behavior of the system as analytical expressions do.
In this section, we fill the gap by applying the results obtained
in Section IV to analytically characterize the high-SNR perfor-
mance of the linear MIMO transceivers given in the unifying
framework of [15].

Fig. 3. Linear MIMO transceivers system model.

A. System Model: Linear MIMO Transceivers

Suppose that the general MIMO communication system of
(19) is equipped with a linear transceiver (linear precoder and
linear equalizer) as shown in Fig. 3. The transmitted vector is
given by

(55)

where is the transmit matrix (precoder), and
gathers the data symbols to be trans-

mitted (zero mean, unit energy and uncorrelated, i.e.,
) drawn from a set of constellations. The average transmit

power is constrained to satisfy

(56)

where is the average SNR at each receive antenna. Similarly,
the estimated data vector at the receiver is

(57)

where is the receive matrix (equalizer).
The general problem of designing the optimal linear MIMO

transceiver under perfect CSI knowledge is formulated in [15]
as the minimization of some cost function of mean-square er-
rors (MSEs), since the other common system quality measures
such as the SNR, or the BER can be easily related to the MSE.
Assuming that data symbols have to be communicated at
each channel use, [15] shows that i) the optimum receive ma-
trix , for a given transmit matrix , is given by the Wiener
filter solution

(58)

and ii) the optimum transmit matrix , for a wide family of
criteria (Schur-concave and Schur-convex cost functions), has
the following form:

(59)

where has as columns the eigenvectors of
corresponding to the largest nonzero eigenvalues,

is a unitary matrix, and is a diagonal
matrix with diagonal entries equal to , that
represent the power allocated to each established substream
and satisfy (due to the power constraint in (56))

(60)



5454 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 11, NOVEMBER 2007

For Schur-concave objective functions, and the global
communication process including pre- and postprocessing is
fully diagonalized. For Schur-convex objective functions, how-
ever, is a unitary matrix such that has
identical diagonal elements (see [15] for details). In this case,
the communication process is diagonalized up to a very specific
rotation of the data symbols.

Given the transmit matrix in (59) and the receive matrix in
(58), the components of the estimated signal are equal to (pos-
sibly with an additional pre- and postprocessing of the data sym-
bols in the case of Schur-convex cost functions)

(61)

with instantaneous SNR given by

(62)

where are the largest nonzero eigen-
values of in decreasing order and the complex -dimen-
sional vector is a normalized equiva-
lent noise vector with i.i.d. zero-mean, unit variance, Gaussian
entries. In summary, linear MIMO transceivers transforms the
MIMO channel into SISO channels, in which each signal
component (possibly after a rotation) corresponds to a different
substream transmitted in parallel through a different channel
eigenmode.

B. Performance of Diagonal Schemes With Fixed Power
Allocation

Several design criteria (with a Schur-concave cost function)
found in the literature fall within the class of diagonal schemes
with fixed power allocations. Examples are the maximization of
the (weighted) sum of SNRs and the maximization of the (expo-
nentially weighted) product of the SNRs [15]. Furthermore, if
the short-term power constraint is substituted by a peak-power
constraint (see, e.g., [13]), the optimum spatial multiplexing
system transmits always at full power through each active
channel eigenmode independently of the channel state. For all
these schemes, the high-SNR individual performance is given
in Theorems 2 and 3, and the high-SNR global performance
(for a general number of active substreams) in Theorem 5.

C. Performance of Diagonal Schemes With Nonfixed Power
Allocation

Some other design criteria (with Schur-concave cost func-
tions) found in the literature, which still have a diagonal struc-
ture, use a nonfixed power allocation. For instance, we consider
first design criteria that lead to waterfilling power allocations of
the type7

(63)

where is chosen to satisfy the power constraint in (60) and
. These criteria include the minimization of the

7Similarly, one can consider a more general waterfilling power allocation of
the form p = (� � � � ) .

Fig. 4. Global simulated average BER of different MIMO linear transceivers
(dashed line) and parameterized average BER (solid line).

determinant of the MSE matrix, the minimization of the (expo-
nentially weighted) product of the MSEs, and the maximization
of the mutual information [15]. The global average BER per-
formance achieved with the waterfilling in (63) can be analyzed
combining Theorem 5 with the results for nonfixed power allo-
cations given in Theorem 4-ii). In addition, tighter bounds can
be obtained as presented in the following result.

Proposition 1: The global average BER attained by a diag-
onal MIMO linear transceiver when data symbols have to
be communicated and the power is allocated in a waterfilling
fashion as in (63) is

(64)

where the diversity gain is given by

(65)

and the array gain is bounded as

(66)

where is the global array gain when using a uniform power
allocation (see (54) in Theorem 5) and the parameters and

model the fading distribution as given in Theorem 1.
Proof: See Appendix IV.

In Fig. 4, we show the average BER attained by a linear
MIMO transceiver with a uniform power allocation over the

active substreams and with the waterfilling power alloca-
tion in (63). Note that the average BER performance is always
measured as the BER averaged over the data symbols to be
transmitted even when the waterfilling power allocation assigns
zero power (or a very small amount of power) to the worst sub-
streams. In particular, we provide the results for a MIMO system
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with 4 antennas, and active sub-
streams with equal QPSK constellations. The simulation results
in Fig. 4 demonstrate how the average BER curve for both power
allocation policies is correctly approximated by the results pre-
sented in Theorem 5 and in Proposition 1, respectively.

In addition, there are other diagonal linear MIMO trans-
ceivers with waterfilling-type power allocations that, in contrast
to the waterfilling power allocation in (63), do not asymptot-
ically allocate equal power to all the active substreams. For
instance, we consider the design that minimizes the (weighted)
sum of the MSEs [6], [9], [10], [12], [15] with power allocation
given by

(67)

where is chosen to satisfy the power constraint in (60). The
global average BER performance is analyzed in the following
proposition.

Proposition 2: The global average BER attained by a diag-
onal MIMO linear transceiver when data symbols have to
be communicated and the power is allocated in a waterfilling
fashion as in (67) is

(68)

where the diversity gain is given by

(69)

and the array gain is bounded as

(70)

where is the global array gain when using a uniform power
allocation (see (54) in Theorem 5).

Proof: It follows from Theorem 5 and Theorem 4-i) with
, since the exponent of is

greater than (see Appendix V).

D. Performance of Nondiagonal Schemes With Nonfixed
Power Allocation

In this section, we complete the performance analysis of
linear MIMO transceivers by focusing on the nondiagonal
scheme with the nonfixed power allocation obtained from
Schur-convex cost functions. We consider, for instance, the
minimum BER design with equal constellations (independently
derived in [16] and [15]). Other examples of design criteria
with a Schur-convex cost function are the minimization of the
maximum MSE, the maximization of the minimum SNR, or
the minimization of the maximum BER (cf. [15]).

When the cost function is Schur-convex, the global communi-
cation system including pre- and postprocessing is diagonalized
only up to a rotation of the data symbols, which ensures that all
substreams have the same MSE, and the optimal power alloca-
tion is independent of the particular cost function and coincides
with the power allocation in (67) (cf. [15]). Due to the rotation of
the data symbols, Theorem 4 can not be directly applied and the
global average BER performance is analyzed in the following
proposition.

Fig. 5. Global simulated average BER of different MIMO linear transceivers
(dashed line) and parameterized average BER bounds (solid line).

Proposition 3: The global average BER attained by the non-
diagonal MIMO linear transceiver derived from Schur-convex
cost functions when data symbols have to be communicated
is

(71)

where the diversity gain is given by

(72)

and the array gain can be bounded as

(73)

where is the global array gain when using a uniform power
allocation (see (54) in Theorem 5) and is defined as

(74)

where is given in (18) and the parameters and
model the fading distribution as given in Theorem 1.

Proof: See Appendix VI.
In summary, Propositions 1, 2, and 3 show that linear MIMO

transceivers with nonfixed power allocation policies (with or
without additional pre- and postprocessing of the data symbols)
do not provide any diversity advantage with respect to diag-
onal schemes with fixed power allocation policies but a pos-
sibly higher array gain, which results in non-negligible average
performance differences. This statement is confirmed by Fig. 5,
where we show the global performance of linear MIMO trans-
ceivers with antennas, all substreams active,
and all symbols drawn from a QPSK modulation for the fol-
lowing cases: i) diagonal scheme with uniform power alloca-
tion, ii) diagonal scheme with the power allocation that mini-
mizes the sum of the MSEs, and iii) the nondiagonal scheme
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obtained for Schur-convex cost functions. Similarly to Fig. 4,
the average BER performance is always measured as the BER
averaged over the transmitted data symbols even when the
corresponding power allocation assigns zero power (or a very
small amount of power) to the worst substreams. We also pro-
vide the parameterized upper and lower bounds derived from
Propositions 2 and 3. It turns out that the proposed array gain
upper bounds are in fact very tight and approximate perfectly
the high-SNR performance of the diagonal and nondiagonal de-
signs with the corresponding nonfixed power allocation.

VI. CONCLUSION

This paper has analyzed the performance of spatial multi-
plexing MIMO systems in terms of average BER and outage
probability in a Rayleigh flat-fading channel. First, the indi-
vidual performance of each one of the spatial substreams trans-
mitted through the channel eigenmodes has been characterized
in terms of the array and the diversity gains. Then, the global
performance of spatial multiplexing MIMO systems with fixed
number of substreams and fixed constellations has been also
considered, which happens to be dominated by the performance
of the worst active substream. The proposed parameterized char-
acterization fully identifies the high SNR behavior of the BER
versus SNR curve and the outage probability versus SNR curve
and, thus, provides a correct approximation for practical perfor-
mance values.

Based on this parameterized characterization, we have ana-
lyzed the global performance of most linear MIMO transceivers
existing in the literature with adaptive linear precoder but fixed
number of data symbols and fixed constellations. Independently
of the design criterion, it turns out that all linear transceivers
(even with a minimum BER approach) have a diversity order
limited by that of the worst eigenmode used

, which can be far from the full diversity of pro-
vided by the channel. This shows that fixing a priori the number
of independent data streams to be transmitted, a very common
assumption in the linear transceiver design literature, inherently
limits the average BER performance of the system. As a con-
sequence, it seems reasonable to optimize the number of sub-
streams (and thus the constellation size of each of them as-
suming constant data rate) jointly with the linear precoder for
each channel realization.

APPENDIX I
PROOF OF COROLLARY 1

This proof is strongly based on the proof given in [20] to
Lemma 1, thus some repetitive parts are omitted. Let be a small
positive number so that can be approximated by its first
order expansion for , then the average BER can be
written as

(75)

(76)

(77)

The terms (75) and (76) are shown in [20] to be a
and, computing the integral in (77) by interchanging the inte-
gration order, it follows

(78)

where is defined as

(79)

and this completes the proof.

APPENDIX II
PROOF OF THEOREM 1

Let the entries of the matrix be i.i.d. com-
plex Gaussian with zero mean and unit variance and let

and . The joint pdf of
the ordered strictly positive eigenvalues of the complex cen-
tral Wishart matrix , equals
[42, eq. (95)]

(80)

where the normalizing constant is given by
.

The marginal pdf of the th eigenvalue, denoted by ,
is obtained from the joint distribution of the ordered eigenvalues

as

(81)

Thus, the derivation of the marginal pdf involves the integra-
tion with respect to the eigenvalues larger than and smaller
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than . The difficulty lies in the fact that both groups of inte-
grals must be calculated over an ordered domain. Based on the
continuous counterpart of the Cauchy–Binet theorem [43, Sec.
2.1.10], the authors of [37] showed how to transform a multiple
integral over an ordered domain with a particular structure into
a determinant of a matrix, whose elements are given by simple
integrals. Due to the importance of this result in the proof of
Theorem 1, we present it in the following lemma.

Lemma 3 [37, Cor. 2]: Given two arbitrary ma-
trices and with elements be
and , and an arbitrary function , the
following identity holds:

(82)

where and is an
matrix with elements

(83)

The proof of Theorem 1 basically consists of rewriting the
joint pdf of the eigenvalues in order to be able to apply Lemma
3 twice to obtain a more tractable group of integrals. Then, we
derive the first-order expansion of these new integrals and finally
of the marginal pdf.

The joint distribution of the ordered eigenvalues of (80)
can be rewritten as8

(84)

We define the Vandermonde Matrix of order
, as the matrix given by

...
...

. . .
...

(85)

and we denote by the set of eigenvalues larger than , i.e.,
, and by the set of eigenvalues smaller than

8For the sake of notation, we follow the common assumption that an empty
product is the unity, and that the determinant of an empty matrix equals one.

, i.e., . The determinant of a Vandermonde ma-
trix of order can be calculated as [44, eq. (6.1.33)]

(86)

Then, the pdf in (84) can be expressed alternatively in terms of
the Vandermonde matrix of order , and the Van-
dermonde matrix of order , as

(87)

where

(88)

(89)

First, we integrate the joint pdf of the ordered eigenvalues over
the domain of , defined as

(90)

Applying Lemma 3, the previous integral can be computed as

(91)

where

(92)

Then, the marginal pdf of is obtained by integrating
over the ordered domain of , defined as

(93)
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where

(94)

The determinant of a generic matrix is given by

(95)

where the summation over is for all per-
mutations of the integers and denotes the sign
of the permutation. Expanding the determinant of ,
we obtain that

(96)

Now, we rewrite the product of integrals over as a mul-
tiple integral over in the domain

(97)

where

(98)

The integral over can be solved applying again Lemma 3:

(99)

where

(100)

Then, expanding the polynomial as

(101)

we have that

(102)

where . The integral in (102) has the same
structure as the upper incomplete gamma function, defined as
[45, eq. (6.5.3)]

(103)

As we are only interested in the first-order expansion of
in , noting that, for

(104)

where tends to zero as , we can expand in
(102) and neglect the terms with and , since they are also

terms as . Hence, it follows that

(105)

Now, expanding the determinant of , the marginal pdf
of is given by

(106)



ORDÓÑEZ et al.: HIGH-SNR ANALYTICAL PERFORMANCE OF SPATIAL MULTIPLEXING MIMO SYSTEMS WITH CSI 5459

All the integrals over have the same struc-
ture as the lower incomplete gamma function defined as [45,
eq. (6.5.2)]

(107)

Noting that for ,

(108)

the term with the lowest exponent of in (106) is
found for all having the lowest possible exponent. This oc-
curs for , i.e., for in the summation of
(106). Thus, it follows that

(109)

Then, rewriting the multiple integral over as a product of
single integrals, we have that

(110)

where the matrix is given by

(111)

The integral in (110) can be evaluated using (107) and (108) as

(112)

with . Substituting back (112) into
(110), we obtain that

(113)

where the matrix is defined as
and

(114)

Finally, substituting (94) into (113), the marginal pdf of is
given by

(115)

and the proof is completed.

APPENDIX III
PROOF OF THEOREM 4

The average BER of the th substream with
can be expressed as

(116)

where denotes the BER aver-
aged over the channel states that imply and

is analogously defined. Using the
expression for given in (44), the average BER
can be rewritten as

(117)

(118)
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In the following, we distinguish between two cases: i) when
for a given and ii) when

for a given and .

i) If there exists such that , the
term in (118) is , since it holds that

(119)

Using the short-term power constraint in (22), the power allo-
cated to the th substream is upper-bounded as and,
hence, satisfies

(120)

The upper and lower bound in (120) can be analyzed applying
Theorem 2. Both result in the same diversity gain,

and

(121)

Finally, the average BER is

(122)

and the array gain bounds given in the theorem are obtained
by deriving the array gain associated with the bounds in (120)
recalling Theorem 2.

ii) If and there exists such that
, the term in (118) can be bounded as

(123)

Then, proceeding as in case i), it follows that

(124)

and the array gain lower bound given in the theorem is obtained
by combining the array gain corresponding to

with the term in (123). Similarly, we can lower-bound
the average BER as

(125)

and the array gain corresponding to is the
array gain upper bound given in the theorem.

APPENDIX IV
PROOF OF PROPOSITION 1

Observe that the waterfilling in (63) tends to a uniform power
allocation over the active substreams as , i.e.,

(126)

whenever . Hence, the average BER at high SNR can
be expressed as

(127)

where is the average BER when using a uniform
power allocation and denotes the probability
of not transmitting power through the th channel eigenmode.
This probability is upper-bounded as

(128)

where the last equality comes from Theorem 1. Then, sub-
stituting by its parameterized characterization
applying Theorem 2 and by its upper bound
derived in (128) back in (127), it follows that

(129)
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where denotes the global array gain achieved with a uniform
power allocation. Finally, the array gain lower bound can be
directly obtained from (129) and the upper bound simply comes
from setting in (127). Note that this proof
is in essence the same as the proof of Theorem 4-ii), but here we
use the asymptotic equivalence in (126), instead of bounding the
power allocation.

APPENDIX V
PROOF OF PROPOSITION 2. EXPONENT OF

We want to prove that

(130)

or, equivalently

(131)

with arbitrarily close to , since
. Noting that

can be bounded as

(132)

it follows that

(133)

where we have omitted the term , be-
cause it does not affect the lower bound of the exponent when-
ever . Then, by defining , we can rewrite
(133) as

(134)

where is the pdf of a product of two random variables and
is given by [46, Sec. 4.4, Th. 7]

(135)

We are interested in as and hence we only need
to derive the joint pdf as . Using
the same procedure as in the proof of Theorem 1 (see Appendix
II), it can be shown that

(136)

where is a function of . Then, substituting back
this result in the expression of in (135), it follows that

(137)

where is a fixed constant in terms of . Finally, the exponent
of can be bounded as

(138)

and this proves that .

APPENDIX VI
PROOF OF PROPOSITION 3

The minimum BER scheme distributes the available power
over the active substreams in a waterfilling fashion as in
(67). Since the exponent of the probability of not allocating
power to the th substream is greater than
(see Appendix V for details), we can focus just in the case that

.
First we lower-bound the instantaneous SNR of the minimum

BER design using the uniform power allocation, because it leads
to a higher sum MSE than the power allocation in (67):

(139)

(140)

where in (139) we have forced all substreams to experience the
same MSE (cf. [15]) and (140) follows from lower-bounding
each by . The lower bound in (140) corresponds to the
instantaneous SNR achieved by the th substream of a diagonal
scheme with a uniform power allocation and, hence, we can
lower-bound the array gain by .

Let us now consider a non-diagonal linear MIMO transceiver
that allocates infinite power to all the substreams except to the

th one, to which it assigns . Due to the power con-
straint in (60), the instantaneous SNR of the BER minimizing
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design can be upper-bounded by the instantaneous SNR of this
scheme:

(141)

Then, using Corollary 1 with the upper bound in (141), it follows
the array gain upper bound given in Proposition 3.
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