

Pyroelectric conversion: Harvesting Energy from Temperature Fluctuations

Dr. Àngel Cuadras

Instrumentation, Sensors and Interfaces Group Castelldefels School of Technology

Universitat Politècnica de Catalunya (UPC)

COLLABORATIONS

- University of Brescia. (Dept. Electronics for Automation and INFM)
 - A. Ghisla, V. Ferrari, M. Ferrari
- Instrumentation, Sensors and Interfaces Group Castelldefels School of Technology
 - Dr. Gasulla, Dr. Pallàs

INTRODUCTION

Thermal energy

- •Present everywhere
- Thermodynamical restrictions

Sun

Fire

Instrumentation, Sensors and Interfaces Group Industry Hot Pipes Engines

Thermal to electrical conversion

- Thermoelectricity: thermal gradients
- Pyroelectricity: from thermal time-dependent fluctuations

OUTLINE

- History
- Pyroelectric Effect
- Materials
- Applications: Sensors and Harvesters
- Experimental harvesters
- Conclusions

HISTORY

- Phenomenon observation
 - Classic Greeks: Theophrastus (314 BC)
 - XVIIIth and XIXth: phenomenon observation
- Description and quantification
 - Classical explanation: Lord Kelvin
 - Quantical explanation: Born
- Researchers:
 - Schrödinger, Röntgen and P. Curie, among others
- Applications:
 - Sensors: Yeou Ta...
 - Harvesters investigated by Olsen et al., Ikura...

• Crystalline structures

Cubic structure

Instrumentation, Sensors and Interfaces Group

- Crystalline structures
- Point symmetry

Tetragonal structure

- Crystalline structures
- Point symmetry

Mechanical stress
 Structure
 Thermal stress
 ●Electrical stress

Tetragonal structure

Piezoelectric

- Crystalline structures
- Point symmetry

Structure Deformation Δ

- Mechanical stress
- •Thermal stress
- •Electrical stress

Tetragonal structure

Instrumentation, Sensors and Interfaces Group

- Crystalline structures
- Point symmetry

Structure Deformation Δ

- Mechanical stress
- •Thermal stress
- •Electrical stress

- Crystalline structures
- Point symmetry

Structure Deformation Δ

- Mechanical stress
- •Thermal stress
- •Electrical stress

Cubic structure

PYROELECTRIC EFFECT

•Temperature increase

Polarization

•Dependence of p on T $p_s = \frac{dP_s}{dT}$

•Maximum temperature \rightarrow Curie temperature, phase transition

Induced current as a function of T

$$I = \frac{dQ_s}{dt} = \frac{dP_s}{dt} = Sp_s \frac{dT}{dt}$$

PYROELECTRIC MATERIALS

• Crystal materials

- CaTiO₃,LiTaO₃,PbTiO₃
- Triglycine sulfate (TGS)
- Growth methods: Czochralki, water dissolution
- Ceramics
 - PZT Lead zirconate titanate
 - Growth methods: Screen printing
 - Poling
- Polymers
 - PVDF-Polyvinylidene Difluoride
 - Growth methods: Chemical processing

LiTaO₃

MATERIALS DESCRIPTION

- Pyroelectric coefficient (p)
 - Thermal energy conversion to electrical conversion
- Thermal capacitance (c_V)
 - Thermal energy stored in the lattice
- Electrical permittivity $(\varepsilon = \varepsilon_0 \varepsilon_r)$
 - Electrical energy stored in the lattice

0.3

• Figure of Merit
$$FoM = \frac{\mu}{C}$$

Material	<i>р</i> (10 ⁻⁴ С m ⁻² К ⁻¹)	[€] r (1 kHz)	T _C (⁰C)	с _v (J ст ⁻³ К ⁻¹)
TGS	3.5	35	49	2.5
LiTaO ₃	2.3	46	665	3.2
PZT	1.6	1350	320	

12

80

PVDF

2.4

OUTLINE

- History
- Pyroelectric Effect
- Materials
- Applications: Sensors and Harvesters
- Experimental harvesters
- Conclusions

APLICATIONS: SENSORS

- Proposed by Yeou Ta in 1938
- Application: IR sensors, burglar alarms
- Advantages
 - Wide thermal and electromagnetic sensitivity
 - Fast response (0 to 10 Hz)
 - Low-cost
 - Good signal to noise ratio
 - Work at ambient temperature
- Scientific and commercial development

APPLICATIONS: HARVESTERS

R. B. Olsen, D. A. Bruno, and J. M. Briscoe,

"Pyroelectric Conversion Cycles," J. Appl. Phys. 58 (1985) 4709

PYROELECTRICITY: YES OR NOT?

NOT?

- Low power generation
- Low conversion efficiency
- Temperature fluctuations
- Low cost
- Infinite thermal sources

Estimation:

$$S = 10 \text{ cm}^2$$

$$\lambda = 10^{-4} \text{ Cm}^2 \text{K}^{-1} \Rightarrow I = 1 \text{ }\mu\text{A}$$

$$dT/dt = 10 \text{ K s}^{-1}$$

MODELING CONVERSION

Harvester critical parameters

 R_{T} and C_{T} : thermal conductivity and thermal capacitance

 $R_{\rm e}$ and $C_{\rm e}$: electrical losses and electrical capacitance

Efficiency (< 1 %)

OUTLINE

- History
- Pyroelectric Effect
- Materials
- Applications: Sensors and Harvesters
- Experimental harvesters
- Conclusions

EXPERIMENTAL SETUP

Heating

- 298 K to 370 K
- Warm air
- Halogen lamp

Current Measurement

Thermal measurement

- •SMD Thermistor
- •Fast thermal response
- •Sensitivity up to 0.01 K

Voltage measurement Electrometer Keithley 616

Resistance measurement

Electrometer Keithley 616

R up to $10^{14} \Omega$

PZT STUDIED HARVESTERS

PZT FORMATION

Random orientation of dipoles

DC field application: poling

Dipole orientation

Remanent polarization

PZT CONVERTERS

Air Heating:

- Step function
- Large thermal inertia

Pyrocurrent follows dT/dt

 $I_{max} = 0.3 \text{ mA}$

Generated charge density

 $Q = 0.75 \text{ C} \cdot \text{cm}^{-2}$

PZT CONVERTERS

Air Heating:

- Step function
- Large thermal inertia
 Pyrocurrent follows

dT/dt

 $I_{max} = 0.3 \text{ mA}$

Generated charge density

 $Q = 0.75 \text{ C} \cdot \text{cm}^{-2}$

PZT CONVERTERS

PVDF CONVERTERS

Measurement Specialties Inc.

Piezoelectrical Film

PVDF large area technology

Sample ID	Thickness (μm)	Area (cm ⁻²)	C (nF)
A1	70	3.6	0.740
A2	40	7.44	2.78

PVDF CONVERTERS

- Warm air flow/fan
- Temperature fluctuation
 (298 K → 335 K)
- Peak current
- Generated Charge density
 Q = 0.24 C·cm⁻²
- Symmetry in heating and cooling

IMPROVING HARVESTERS

- Cell association
- Energy storage
- Thermal cycling

PARALLEL ASSOCIATION

000 Lip(

ENERGY STORAGE

- •Low power systems strategy
- •Rectification + storage

- Impedance matching overcome
- •Energy loss at diodes
- •Capacitor charge

THERMAL CYCLING

$$V_{o}(N) = \frac{Q_{S}}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] \qquad V_{o,\max}(N \to \infty) = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] \qquad V_{o,\max}(N \to \infty) = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] \qquad V_{o,\max}(N \to \infty) = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{L} + C_{e}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{E}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{E}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{E}}\right)^{N} \right] = \frac{S \cdot \rho \cdot \Delta T}{2C_{e}} \left[1 - \left(\frac{C_{L} - C_{e}}{C_{E}}\right)^{N}$$

BEYOND PYROELECTRICITY

•Materials sensitive to external influences.

•Generated current from a PZT when illuminated.

•Current is not proportional to dT/dt.

•Combination of different effects in a single harvester

- •Piezoelectrical response when undergo mechanical stresses
- •Semiconductor heated with light

CONCLUSIONS

- Pyroelectricity has been revisited
- PZT and PVDF cells have been developed and modeled.
- Parallel association increases the current.
- Energy can be effectively transferred and stored in capacitors.
- Further research in order to effectively power low power systems.

QUESTIONS?

Av. Canal Olimpic s/n 08860 Castelldefels (Barcelona), Spain,

angel.cuadras@upc.edu

Castelldefels School of Technology (EPSC), Universitat Politècnica de Catalunya (UPC)

