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Abstract

This paper presents a simple and fast solution to the problem of finding the time variations of the forces that keep the
object equilibrium when a finger is removed from a three contact point grasp or a finger is added to a two contact point grasp,
assuming the existence of an external perturbation force (that can be the object weight itself). The procedure returns force set
points for the control system of a manipulator device in a regrasping action. The approach was implemented and a numerical
example is included in the paper to illustrate how it works.

I. I NTRODUCTION

The search for flexible end effectors and the development of grasping and manipulation strategies according to different
criteria has become a growing research area during the last two decades [2] [3] [6] [9]. One of the problems within this
research field lies is the regrasping of an object, i.e. the variation of the contact points on the grasped object while some
grasp properties are kept. This particular problem impliesfinding the original and final grasp contact points, determine
the finger movements, and compute the proper forces to be applied by the fingers when a contact is removed or a new
contact is established in order to keep the equilibrium conditions and satisfy the dynamic constraints of the system [11] [10].
Regrasping operations are needed is typically needed when the pick-up grasp configuration is not compatible with the actions
to be done with the object or the object placement itself, forinstance due to physical constraints in the environment or due
to the non-holonomic constraints of the finger contacts, or due to the limits in the articulation ranges of the grasping device.

Different approaches have been presented in the regraspingproblem, a detailed description including a discussion about
the use of two manipulators can be found in [5]. Some relevantworks are those of Tournassoud et al. [11], who proposed
a system based on polyhedral models for manipulators equipped with parallel jaw grippers, and Kerr et al. [4] who used
a multi-finger hand (these end-effectors are expensive and rarely found in industrial manipulators, but are useful in non
repetitive tasks in unstructured environments due to theirhigh dexterity). Recent works done in regrasp [1] [7] [8] are
focused on algorithms to determine the sequence of grasps configurations to go from an initial state to a desired final state,
but they did not deal with the forces needed to perform the regrasp, which is the central point of this paper.

After this brief introduction the paper is organized as follows. In Section II the problem to be solved is described and
formalized. In Section s-problem-analysis the problem is analyzed, the behavior of the system dynamics is characterized, and
a graphical tool used to find the solution of the problem is introduced. The proposed solution is described in Section IV, and
an example is presented in Section V to illustrate how it works. Finally, the last section of the paper gives some conclusions
and describes ongoing and future works.

II. PROBLEM STATEMENT

The problem to be solved can be resumed as follows: Given a three contact point grasp of a flat object that balances an
external perturbation force (it may be the own object weight), we want to remove one of the contacts while keeping, during
the action, the balance of the external force, or, as inversesituation, given a two contact point grasp add a third contact point
where a third finger helps in the balance of the external perturbation. Then, the problem to be solved is the determinationof
the time variation force set point functions for the contactforces that allow the third contact to be removed/added without
loosing the force equilibrium during the process.

This type of problems is found in regrasping manipulation ofobjects, when a finger is removed from one contact point on
the object surface to be place in another one. In this particular case the problem stated appears twice, one when retreating
the finger and second when replacing it in the desire new contact point.

The following nomenclature will be used throughout the paper.

SA SB: two grasp states in equilibrium (forces applied at the contact points balance any external force)
CM : Center of mass of object.
fext : External force acting on the object (may be the own object weight).
Pi : Contact point i on the object.
ri : Pi location referenced to CM.
Li : Iso-torque lines parallel tori.
di : Distance between Li andri.
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f i : Force applied onPi.
Ci : friction cone atPi (set of possible forcesf i applicable atPi).
τ i : Torque around CM produced by fi applied onPi.
wi : Generalized forcewi = (f i, τ i).
Π0 : Force plane in the wrench space (i.e. null torque plane).
Πi : Plane in the wrench space containing anywi generated atPi.
SΠi : Subset ofΠi containingwi generated atPi due to forcesf i inside Ci.
SΠi

−1 : Inverse of SΠi through the cone origin.

Let SA be a grasp with three contact pointsPi, i = 1, 2, 3, on the object boundary (Figure 1a) andSB be another grasp
with only two contact points, which are pointsP1 andP2 from SA (Figure 1b). It is assumed that inSA andSB the finger
forcesf i applied atPi balance an external perturbation forcefext, i.e. the summations of the forces and moments applied
on the object are null.

The problem to be solved can now be stated as the search of the time variation of the finger forcesf1(t) andf2(t) that
balancefext while f3(t) varies from its value inSA to zero inSB or vice versa.f1(t), f2(t) andf3(t) are the setpoints
values for the finger control system during a manipulation action.
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Fig. 1. Initial (a) and final (b) grasp states.

III. PROBLEM ANALYSIS

A. Torques generated by contact forces

A force f i applied atPi produces, with respect to the object center of mass CM, a torqueτi = f i × ri, whereri describes
the position ofPi with respect to CM.

Consider a lineLi parallel tori (see Figure 2). Anyf i applied atPi such that the vectorf i represented with the tail
at Pi has its head on Li produces the same torqueτi, thus we refer to the linesLi as iso-torque lines. The value ofτi

associated to a givenLi is the product of‖ri‖ (which is constant for a given pointPi) times the distance di betweenLi and
Pi, thusτ i linearly varies with respect to di. This linearity means that, in the wrench space, all the wrencheswi = (f i τi)
(i.e. the wrenches produced by a forcef i applied atPi) define a planeΠi (see Figure 3). SincePi is a contact point on
the object boundary,f i cannot have any direction, it is constrained to lie inside the friction coneCi, and therefore only a
subset ofΠi, calledSΠi, can be actually generated.SΠi is the projection along theτ -axis of Ci over Πi (Figure 3).

B. Wrench loops

The system equilibrium under wrencheswi in the 3D space due to forcesf i applied onPi, would be graphically analyzed
and characterized. The equilibrium condition is that

∑
wi = 0; graphically, this condition can be seen as a closed loop path

in the 3D wrench space drawing all the vectorswi with the tail attached to the head of another one. From now on,this
loop will be called “wrench loop”, and the set of all the possible wrench loops produced by the possible wrenches generated
at the contact points will be called”Generic Wrench Loop”(GWL). The GWL can be graphically constructed as follows
(remind thatwi are free vectors so they can be translated in the wrench spacewith no lose of significance).
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Fig. 2. Lines of constant torqueτi due tofi applied atPi.

1) Consider first the vector representing the external forcefext = (fextx
fexty

0) (the vector with the tail at the origin
in Figure 4).

2) The second vector to be considered is the wrenchw1 due tof1 applied onP1. Sincef1 ∈ C1 thenw1 ∈ SΠ1, thus
the entireSΠ1 is represented displacing its vertex fromP1 to the head offext (Figure 4).

3) The third vector to be considered in the path loop is the wrenchw2 due tof2 applied onP2. As in the previous step,
f2 ∈ C2 thenw2 ∈ SΠ2, and the entireSΠ2 can be represented displacing its vertex fromP2 to the tail offext (i.e.
the origin of the wrench space)(Figure 4), but this links thetail of the vectorsw2 with the tail of fext; in order to
make the head ofw2 to match the tail offext, the vectors inSΠ2 are replaced by their negated ones, which define
the setSΠ−1

2 (the inverse ofSΠ2 under the adding operation) represented by the dark cone in Figure 5 (for clarity
purpose, from now on the planeΠ0 is not represented in the figures).
Note thatSΠ1 ∩ SΠ−1

2 is the set of points that define all the combinations ofw1 andw2 that balancefext (see the
enlargement in Figure 5), i.e. they indicate the combinations of forcesf1 andf2 applied atP1 andP2 that balance
fext and therefore a valid set of forces that generates equilibrium in SB . We refer toLSB = SΠ1 ∩ SΠ−1

2 as the
equilibrium loci for SB .

4) Finally, the vectorw3 due to thef3 applied atP3 is added. Assuming that the value ofw1 is known (it is a point
inside SΠ1), SΠ3 can represented displacing its vertex fromP3 to the head of the given value ofw1 inside SΠ1.
Doing this,LSA = SΠ3 ∩SΠ−1

2 is the set of points that define all the combinations ofw2 andw3 that balancefext

for the givenw1, generating a wrench loop and allowing therefore the equilibrium of SA (see Figure 6).
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IV. PROPOSEDSOLUTION

The graphical representation of the GWL is used now to determine the temporal evolution ofw1, w2, andw3, to change
from SA to SB . The simplest variation of a wrenchwi within the corresponding regionSΠi to move from the value inSA

to the value inSB , is to make it follow a straight line. Consider then thatw1 varies on a straight segment Path1 in SΠ1 and
w2 on a straight segment Path2 in SΠ2. Figure 7) shows an example of the vectorsw1, w2 andw3 corresponding toSJ

(white vectors), vectorsw1 and w2 corresponding toSB (white dashed line vectors), as well as Path1 and Path2. This is
always possible, constrainingw3 to lie on the plane defined by Path1 and Path2, moreover, ifw3 keeps the same direction
while its module is reduced thenw1 andw2 will move along Path1 and Path2 in a proportional way.

Then, using the supraindex A and B to indicated the values ofwi in statesSA andSB respectively, and lettingT (t) be
a function that smoothly varies in time between one and zero,we can express the time variations ofwi as

w1(t) = wB
1 + (wA

1 − wB
1 ) T (t) (1)

w2(t) = wB
2 + (wA

2 − wB
2 ) T (t) (2)

w3(t) = wA
3 T (t) (3)

Note thatw1 andw2 move along Path1 and Path2 as linear functions ofT (t) while w3 decrease to zero keeping its direction.

V. EXAMPLE

The proposed approach has been implemented and we describe here an example to illustrate how it works. The problem
to be solved is the force transition for the object and the statesSA andSB shown in Figure 1.

Given the external forcefext = [−1.5 − 3.5], and the contact pointsP1 = [−4 − 4], P2 = [4 − 5] andP3 = [0 8], the
applied forces that produce equilibrium atSA andSB are:

fA
1 = [3.7897 3.0034]

fA
2 = [−3.0096 4.4156]

fA
3 = [0.7199 − 3.9190]

fB
1 = [1.8557 2.4555]

fB
2 = [−0.3557 1.0445]

With this forces and contact points the following wrenches are produced:

wA
1 = [3.7897 3.0034 3.1448]

wA
2 = [−3.0096 4.4156 2.6145]

wA
3 = [0.7199 − 3.9190 − 5.7593]

wB
1 = [1.8557 2.4555 − 2.3930]

wB
1 = [−0.3557 1.0445 2.3930]



Using these values in equations (1), (2) and (3), and a splinewith five control points to defineT (t) such thatT ′(t0) = T ′(tf )
= 0 wheret0 and tf are the initial and final instants. (T (t) is shown in Figure 8), the functionsw1(t), w2(t) andw3(t)
that allow the object equilibrium were obtained. The results are graphically shown in Figure 9a that shows the variationin
the magnitude off i(t), i = 1, 2, 3, and Figure 9b that shows the variation in the angles betweenthe object normal direction
andf i(t). Note thatf3(t) has no variation in its directions while its module decreases to zero, and that the directions of
f1(t) andf2(t) remains all the time inside the friction cone limits.

As an additional verification of the system equilibrium, we checked whetherfT
ext − GfT

g = 0 is satisfied, beingG the
grasp matrix andfg = [fP1

1 , fP2

2 , fP3

3 ]T and fPi

i the forcesf i expressed in a coordinate system fixed atPi; and the
condition was satisfied∀t.
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VI. CONCLUSIONS ANDFUTURE WORKS

A fast non iterative solution to the problem of finding the force variations that keep the object equilibrium when a finger
is removed from a three contact point grasp (or added to a two contact point grasp) has been proposed and implemented.
The approach is simple and efficient.

The ongoing work includes the determination of a procedure to change from a three contact point grasp,SA, to another
grasp,SN , with three different contact points (doing in this way a full regrasp of the object), by automatically solving
intermediate consecutive graspsSj that differ in only contact point, and doing object rotations when necessary (in particular
when the external force is due to the object weight). Note that the rotation of the object is equivalent to a change in the
direction of the external force, and therefore the finger forces that balance it must be recomputed. The whole procedure
generates position and force set points for the control system of the grasping device. The problem includes the following
subproblems:
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1) Automatic determination of the grasp states that balancethe external force with only two fingers between to intermediate
consecutive graspsSj with three contact points (i.e. automatic determination ofthe grasp stateSB in this paper). The
search can be done using a GWL that describes the forces of the two fingers that do not change, and selecting a proper
point on the corresponding regionLSj (equivalent toLSB in Figure 5).

2) Automatic determination of the force variations to keep the equilibrium when the object is rotated. Again, this can be
done playing with the GWL representation.

3) Automatic determination of the intermediate consecutive graspsSj and, if necessary, the rotations of the object to
allow the change of a given finger as well as to improve the energy requirements or the system robustness.

A more ambitious future work is to extend the approach to 3D objects considering four frictional contact points.
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