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Synthetic aperture radar (SAR) interferometry is employed to obtain 
topographic information. Owing to noise, interferometric information 
has to be filtered. The wavelet transform can be employed to filter the 
interferometric phase, maintaining the spatial resolution, but new 
signal models have to be studied in this domain for further processing. 
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Introduction: Synthetic aperture radar interferometry (InSAR) is an 
established technique to obtain information about the earth's surface 
topography. The interferometric phase is calculated as the phase 
difference between two complex SAR images from the same area, 
but taken from slightly different positions. Owing to the lack of 
interferometric coherence ( y  I between both SAR images, the inter- 
ferometric phase is noisy. In addition, the interferometric phase is 
only known within the interval [-z, n), it being necessary to unwrap 
it to recover unambiguously the height information. The unwrapping 
process is also affected by phase noise, since it induces phase 
residues. Phase filtering is thus necessary to reduce noise effects. 

In the last decade, the wavelet transform (WT) has shown a big 
potential for image processing applications. In the field of SAR data 
processing, the use of the WT is emerging since it allows processing of 
SAR imagery, keeping the spatial resolution and image details. 

Since the physics behind SAR data is completely different from that 
of optical images, any data processing has to take this into account. 
Thus, it is necessary to review or even to define new noise models 
adapted to this problem. In this Letter, we provide a study of a signal 
model for the interferometric phase in the wavelet domain. This model 
is validated with real interferometric data. 

frequency plane. N, has a one-to-one relation with the coherence I yJ  
providing, thus, the same information [3,4]. 

For a constant interferometric phase and homogeneous noise (i.e. 
constant Iy l ) ,  the parameter Nc, as well as the terms COS(C$;) and sin (4:) 
are constant. Therefore, signal randomness is only due to v," and v,". The 
discrete wavelet transform (DWT) can be seen as the addition of 
(weighted) random variables. By the central limit theorem, the weighted 
sum of identically distributed random variables can be approximated by 
a Gaussian distribution. Therefore, v," and v," are approximately 
Gaussian distributed. To test it, avoiding any interference from the 
phase d;, a constant slope producing 20 pixel fringes, corrupted with a 
noise equivalent to a coherence IyI = 0.6, has been simulated. Table 1 
shows a statistical test applied over the real part of the interferometric 
complex phase in the wavelet domain. As shown, since the useful signal 
is concentrated in the low frequency band (LL), the wavelet bands 
(HL, LH and HH) present a kurtosis close to 3 and the significance 
levels for the Kolmogorov-Smimov (KS) test, assuming a Gaussian 
distribution, are high. These results demonstrate that v," and v," can be 
described by a Gaussian distribution. The same agreement is observed 
for any other value of I y l ,  and for the imaginary part of the complex 
interferometric phase in the wavelet domain. The LL band deserves 
special attention. In this case, as there is signal content, the signal 
model will be represented by the real and imaginary parts of exp (j&') 
plus a Gaussian noise. Therefore, in this case, the amplitude lpl +jp21 
has a Rice distribution. This result is equally valid for the rest of the 
wavelet bands. The amplitude in the wavelet domain will be Rayleigh 
distributed for IyI = 0,  in a particular space-frequency region, and Rice 
distributed for IyJ  > 0 

Table 1: Kurtosis and KS significance levels (Gaussian assump- 
tion) for real part of simulated complex interferometric 
phase ramp in wavelet domain 

I Horizontal band (HW I Vertical band (LH) I Diaaonal band (LW I 

I I I I I I 

Scale 3 I 3.08 I 82.87 I 2.95 I 85.32 I 3.00 I 82.87 

Complex interferometricphase signal model: The topographic model 
assumed previously (i.e. constant slope) does not take into account 
spatial details, which are important, for instance, in urban areas. Since 
no information is available about the distribution of the 'true' 
topographic phase 4x, an a priori model for the spatial details is 
not available in the spatial domain. This drawback can be overcome in 
the wavelet domain. As mentioned in the preceding Section, the DWT 
can be interpreted as a weighted sum of random variables. Therefore, 
DWT2D{N, cos(&)} and DWT2D{Nc sin(&)} can be supposed to be 
determined as a first approximation, by a Gaussian distribution. Tests 
with real data (see Tables 2 and 3) show that wavelet statistics have 
kurtosis higher than 3. To take into account this deviation from 
Gaussian behaviour, a double stochastic model is proposed for the 
wavelet coefficients x :  Complex interferometricphase noise model: Earth topography can be 

represented locally by a constant slope [I], thus the interferometric 
phase 4, can be assumed to be a constant phase ramp. In the spatial 
domain the measured interferometric phase complies with the model 
dZ = q5x + v [2], where v is a phase noise term. The real and imaginary 

( 5 )  

parts of the measured phase 4z coded in the unit circle, defined as the 
complex interferometric phase, can be modelled by [3, 41: where P , ( X ~ ~ ~ )  represents the Gaussian distribution of the wavelet 

coefficients and ~ , d ( r ~ )  is a generalised gamma distribution (GGD) 
(1) 
(2) 

modelling the vahabili6 of the-variance through the phase image. px(x) 
cannot be obtained in a general form. Numerical integration of (9, see 
Fig. 1, indicates that px(x) can be assumed to be a GGD model. To test 

the wavelet transforms of which are [3]: the validity of this model, two real interferometric phase images taken 
with the German sensor E-SAR from DLR have been employed. The 
first image is an X-band interferogram of Mount Etna (Italy) and the 
second one is an L-band interferogram of the Oberpfaffenhoffen test 
site (Germany), were man-made structures are present. These two 
interferometric phases were filtered with the algorithm presented in 
[3], which is based on maintaining the spatial resolution. Tables 2 and 3 
present the kurtosis and the KS test significance levels, assuming a 
GGD model, applied to the real part of the filtered complex interfero- 

/I, = DWT,,{COS(~,)] = 2'Nc  COS(^:) + V: 

p2 = DWT2D{sin(&)] = 2'Nc sin(+,") + vy 
(3) 
(4) 

where i represents the wavelet scale. v," and v," are noise terms 
independent from the wavelet scale. The phase term 4: represents 
the interferometric phase in the wavelet domain, which contains the 
same information as q5= The WT is able to localise dx in the space- 
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metric phase in the wavelet domain. These results show that the GGD 
model is well adapted to real data. Tables 2 and 3 also show that the 
Oberpfaffenhofen image presents higher kurtosis values. This result is 
explained by the fact that this image contains more spatial details (as 
buildings or roads) than the Mount Etna image, which contains only 
topographic information. 

Horizontal band (HL) 
Kurtosis KS 

significance 

- 1  

I I I I 

-0.4 -0.2 0 0.2 0.4 
a 

r20.0 

Vertical band (LH) Diagonal band (HH) 
Kurtosis KS Kurtosis KS 

simificance significance 

I 
I I I , I I I I 

-0.100-0.075 -0.050-0.025 0 0.025 0.050 0.075 0.100 
b 

Fig. 1 Distribution comparison between GGD model and numerical 
integration of double stochastic model 
a Low kurtosis 
b High kurtosis 
_ _ ~  GGD model 
~ double stochastic model 
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significance significance 
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I l;vel(%) I I Gvel(%) I I I;vel(%) 
Scale 1 I 10.51 I 70.61 I 11.30 I 77.16 I 12.88 I 56.61 

Scale 2 I 6.39 I 86.51 I 6.42 I 79.89 I 6.12 I 98.33 

Scale 3 I 4.42 I 97.34 I 5.62 I 60.95 I 3.92 I 80.70 

Table 3: Kurtosis and KS significance levels (GGD assumption) 
for real part of Oberpfaffenhofen complex interfero- 
metric phase in wavelet domain. 

Scale 1 I 22.50 I 10.53 1 21.44 I 31.14 I 26.95 I 14.76 

Scale 2 I 13.82 I 16.24 I 11.51 I 53.28 I 12.68 I 91.26 
I I I 

Scale 3 I 9.25 I 85.52 I 13.09 I 37.32 I 8.56 I 11.75 

Conclusions: We have developed a stochastic model for the complex 
interferometric phase in the wavelet domain. In the first part of this 
Letter, assuming the topography locally as a constant slope, a 
reference signal model is proposed and validated. To increase its 
flexibility, a double stochastic signal model, which leads to a GGD 
model, is tested for the wavelet coefficients. In the wavelet domain, 
complex phase noise is Gaussian distributed, whereas the useful 

signal complies with a GGD model. The GGD assumption for wavelet 
coefficients agrees with observations reported by other researchers. 
Finally, this representation can be employed as a priori information 
for further processing inside the wavelet domain. 
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Adaptive array antenna based on radial 
basis function network as multiuser 
detection for WCDMA 

Chang-Jun Ahn and Iwao Sasase 

An adaptive array antenna is proposed based on the radial basis 
function (RBF) network as a multiuser detector for a WCDMA 
system. The proposed system calculates the optimal combining 
weight coefficients using sample matrix inversion with a common 
correlation matrix algorithm and obtains the channel response vector 
using the RBF output signal. 

Introduction: Wideband code division multiple access (WCDMA) 
communication systems have recently attracted considerable attention 
as mobile cellular and IMT-2000 communication systems due to their 
ability to suppress a wide variety of interfering signals including 
narrowband interference, multiple access interference (MAI), and 
multipath interference (MPI). One of the approaches for improving 
WCDMA system performance is the use of spatial filtering at a base 
station with an adaptive antenna array. The adaptive array antenna is 
widely accepted, since it provides many promising features such as 
high capacity, high spectrum efficiency, and more degrees of freedom 
to adjust cell coverage characteristics, leading to more efficient use of 
radio resources. To obtain the optimal combining weight coefficients 
used in this technique, several adaptive algorithms such as the sample 
matrix inversion (SMI) and least mean square (LMS) algorithm have 
been proposed. In array antennas using these conventional 
algorithms, weight processing is individually carried out for each 
user. Therefore, the base station must have many independent weight 
processors, which increase computational complexity. To solve this 
problem, a sample matrix inversion with a common correlation matrix 
(CCM-SMI) has been proposed. This algorithm has low computa- 
tional complexity, fast weight convergence, and good BER perfor- 
mance at the base station in a multiuser environment. However, the 
CCM-SMI-based adaptive array antenna system has a poor channel 
response vector (as does SMI) due to the active multiuser. Since the 
MF output signal includes MA1 with increasing users, the system 
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