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Maximum-Likelihood Estimation of Specific
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Abstract—Precise estimation of propagation parameters in
precipitation media is of interest to improve the performance
of communications systems and in remote sensing applications.
In this paper, we present maximum-likelihood estimators of
specific attenuation and specific differential phase in rain. The
model used for obtaining the cited estimators assumes coherent
propagation, reflection symmetry of the medium, and Gaussian
statistics of the scattering matrix measurements. No assumptions
about the microphysical properties of the medium are needed.
The performance of the estimators is evaluated through simulated
data. Results show negligible estimators bias and variances close
to Cramer–Rao bounds.

Index Terms—Maximum-likelihood (ML) estimation, propaga-
tion parameters, weather radar.

I. INTRODUCTION

A TTENUATION experienced by radiowaves that propagate
through a precipitation medium has been studied since

the first radar systems became operational. The most recent de-
velopment of polarimetric radars has also focused attention on
cross-polarization effects suffered by waves propagating in a
rain medium.

The expansion of communications systems that employ dual
polarizations in the same frequency band, and polarimetric
weather radar services for remote sensing of precipitation has
enforced the study, the characterization, and the modeling of
propagation through precipitation media.

Rain effects on wave propagation can basically be consid-
ered coherent, at least in the microwave and millimeter-wave
regions [1]. Modeling and analysis of rain effects on coherent
wave propagation have been addressed by different authors. Of
particular interest is the review and comparison of the different
coherent models developed by Olsen [2], where attention is fo-
cused on the similarities and differences between several gen-
eral formulations for precipitation media with random scatterer
orientations, and the implications of realizing different assump-
tions and considerations about the microphysical properties of
the medium (distribution of sizes, orientations, etc.) on the ex-
pressions for the propagation constants. The role of multiple
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scattering in these formulations is also discussed. It is of interest
to point out that all assumptions realized about the distribution
of sizes and orientations with the different formulations lead to
orthogonal characteristic polarizations. Later, it was proved [3]
that this orthogonality is a consequence of the reflection sym-
metry that rain media usually present. Therefore, orthogonality
of characteristic polarizations will be assumed in the rest of the
paper.

Estimation of propagation parameters has also been discussed
by different authors. To estimate the differential propagation
phase shift, several methods based on the analysis of the copolar
correlation phase have been proposed. Of importance are those
described in [4]–[7]. Estimation of specific and differential at-
tenuation has relied on physical models relating the specific at-
tenuation at orthogonal polarizations with directly measurable
quantities, basically the reflectivity, the differential reflectivity,
and the specific differential phase [8]–[11]. An interesting re-
view and comparison of these methods can be found in [12].

In this paper, a new approach to propagation parameter
estimation based on the maximum-likelihood (ML) statistical
theory is considered. ML estimates are usually of interest
because they present two important properties.

1) In the limiting case of a large number of samples, and
under certain general regularity conditions, they are un-
biased.

2) If the estimates are unbiased, they have minimum vari-
ance, and this variance achieves the Cramer–Rao bound.

To obtain ML estimators of the differential propagation
parameters statistical characterization of the scattering matrix
measurements is required. It is generally accepted that scat-
tering matrix measurements from rain are well described by a
multivariate complex Gaussian distribution. This distribution is
completely defined by the covariance matrix. Section II is de-
voted to model the polarimetric covariance matrix considering
propagation effects. In Section III, statistical characterization
of received polarimetric data is briefly reviewed. Then, in
Section IV, ML estimates of specific attenuation and specific
differential phase are obtained. After, a sensitivity analysis of
the calculated ML estimators to different measurement errors
and some results based on simulations are presented. Finally
some conclusions are made.

II. PROPAGATIONEFFECTS ONSCATTERING AND COVARIANCE

MATRIX ELEMENTS: BASIC THEORY

Based on the previous brief review and discussion, propaga-
tion effects on the scattering and the covariance matrices will be
modeled, assuming coherent propagation through an anisotropic
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medium that presents reflection symmetry. With this assump-
tion, the characteristic polarizations of the medium are orthog-
onal and linear [3]. In general, it will be considered that they
are rotated an angle from vertical–horizontal polarizations as
depicted in Fig. 1.

Monostatic radar configuration and homogeneity and reci-
procity of the medium are also assumed. Besides this, we con-
sider the following.

1) The polarization basis used for transmitting/receiving is
that defined by the characteristic polarizationsand
(in most practical situations, the mean canting angle is
zero, and the characteristic polarizations are vertical and
horizontal).

2) The wave propagates with a propagation constantor
depending on the transmitted polarization.

3) The above propagation constants can be expressed as

(1)

(2)

where is the free-space propagation constant,
and expressions for and as functions of the micro-
physical characteristics of the rain medium have been pro-
vided by different authors [2], [13].

With these premises, fields at points B and C, separated by
distance , can be related as follows:

(3)

Now, if backscattering from a single particle at point C is
characterized by means of the scattering matrix

(4)

the backscattered field received at point B can be expressed as

(5)

Fig. 1. Characteristic polarizations with respect to H–V polarizations.

Then, the backscatter vector, which includes scattering and
propagation effects, is defined as

(6)

However, there is general agreement in that second-order mo-
ments of backscattered fields should be taken into account to
consider scattering characteristics of complex targets like rain.
Therefore, the covariance matrix [14], defined as the ex-
pected value of the Kronecker product of the backscatter vector,
presents an appropriate tool to characterize the polarization be-
havior of complex targets. It can be expressed as in (7), shown
at the bottom of the page, where

Re (8)

Re (9)

and they indicate one-way specific over-attenuation experienced
by the characteristic polarizations with respect to free-space
propagation and

Im Im (10)

is the specific differential phase for one-way propagation as
defined in [15]. The quantities , , , and

are well-known terms that represent, respectively,
the copolar power for transmitting/receiving with polarization

(channel ), the copolar power for transmitting/receiving
with polarization (channel ), the cross-polar power for
transmitting/receiving with orthogonal polarizations and

(cross-polar channel), and the copolar correlation between
voltages at channels and . It is important to realize that
the total phase of the copolar correlation term results from

(7)
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Fig. 2. Radar range gates for propagation parameter estimation.

adding two contributions: , the copolar
backscattering phase, and , the differential phase due
to propagation in rain. Note that the off-diagonal elements of
the covariance matrix that equal zero are due to the reflection
symmetry property as was described in [3].

Separating propagation effects from scattering effects the co-
variance matrix can be rewritten as

(11)

where

(12)

(13)

In a practical radar situation, such as that depicted in Fig. 2,
the rain medium is located at a distanceaway from the radar,
and range samples can be obtained. It is assumed that the
spacing of samples in range is equal to the pulse depth. For
a statistical characterization of the data, the polarimetric covari-
ance matrix from each range gate is needed. Based on the pre-
vious development and considering that differential propagation
effects take place only for distances greater than, where rain
is present, the polarimetric covariance matrix that characterizes
measurements from theth range gate can be expressed as

(14)

with (15) and 16, shown at the bottom of the page. Note that free-
space propagation has been assumed for distances less than.

III. STATISTICAL CHARACTERIZATION OF BACKSCATTERING

MATRIX MEASUREMENTS

In this section, statistical characterization of polarimetric
backscattering from rain considering uncorrelated signals in
time and range will be considered. ML estimators of specific
differential phase and attenuation will be derived with these
assumptions. Since range gates are centered on the resolution
volumes and the spacing of the range gates equals the depth of
the resolution volume, assuming uncorrelated data in range is
a reasonable approximation. However, data in time is certainly
correlated. Effects of time correlation and other measurement
errors on the ML estimators to be derived will be considered
in Section V.

It is assumed that measurements of the backscattering matrix
elements ( , , ) at any time instant and from any
range gate can be considered as realizations of a random vari-
able with a multivariate complex Gaussian distribution. There-
fore, the probability density function (pdf) that characterizes the
statistical behavior of the backscattering matrix-time sample
from the th range gate is

(17)

where represents the covariance matrix corresponding to
the th range gate given in (14), and is used to denote matrix
determinant.

If measurements of each element of the backscattering ma-
trix are obtained from each one of therange gates, and uncor-
related data in time and range are considered, the pdf that char-

(15)

(16)
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acterizes the statistical behavior of the complete dataset may be
written as

(18)

where

(19)

(20)

(21)

(22)

(23)

(24)

IV. ML E STIMATES

Though the objective of the present paper is to obtain ML
estimators for the differential propagation parameters, ML of
covariance matrix is first considered to show that accurate
estimation of polarimetric covariance matrix also requires pre-
vious estimation of propagation parameters.

In Section III, the statistical behavior of the measured data
(backscatter matrix elements) was described. It was found that
the data statistics are completely specified by the covariance
matrix. The model that will be considered for the covariance
matrix was described in Section II. Actually, its elements are
functions of the parameters of interest that will be estimated,
which are the following:

1) those corresponding to propagation effects, namely

and

2) those corresponding to backscattering, i.e., the elements
of , namely

and

Now, to obtain the ML estimators, the log-likelihood function
is readily calculated from the pdf specified in (18)

tr (25)

where is the sample covariance matrix corresponding to
the th range gate and can be expressed as in (26), shown at the
bottom of the page. Performing the derivatives of the log-like-
lihood function with respect to the parameters to be estimated,
equating to zero and solving the resulting equations, the ML es-
timators for those parameters are found. Some matrix relations
used in the derivations are provided in the Appendix.

A. ML Estimate of

To obtain the ML estimate of , the gradient with respect
to of the log-likelihood function must be calculated and
equated to zero, which yields

(27)

Solution of this equation directly supplies the ML estimate of
as

(28)

As previously stated, estimation of requires knowledge
or previous estimation of the propagation parameters. Their es-
timation is considered in the next subsections.

B. ML Estimates of Specific Differential Phase

The ML estimate of the specific differential phase can be ob-
tained after differentiating the log-likelihood function with re-
spect to and equating to zero, which results in the following
equation:

Im (29)

where, for notation compactness, the following have been de-
fined:

(30)

(31)

(32)

(33)

To find the solution of this equation, the copolar backscatter
phase must be estimated in the case that its true value is

(26)
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unknown. Following the same procedure, the ML estimate of
becomes

(34)

Now, considering that

(35)

with

(36)

the right-hand side of (35) can be interpreted as the Fourier
transform of the discrete sequence ; note that this
sequence is a function of the measurements at both copolar
channels, and so it is the Fourier transform.

Thus, (29) can be rewritten as

Im (37)

Some simple algebraic manipulations lead to the solution of
this equation. In fact, the ML estimate of is

(38)

where “ ” should be read as “the value of the argu-
ment ( ) that maximizes.” The ML estimate for is

(39)

That is, the ML estimate of is directly proportional to
the argument that maximizes the magnitude of the Fourier trans-
form of the range sequence of copolar correlation terms previ-
ously corrected for differential attenuation, and the ML estimate
of is the negative of the phase of the previously computed
Fourier transform evaluated at .

It is known that sample estimates of the covariance matrix
elements corresponding to a particular range gate are unbiased
[17]. This fact allows us to conclude that the ML estimates of
the specific differential phase and the copolar backscatter phase
are asymptotically unbiased and, therefore, their variances
asymptotically reach the Cramer–Rao bound. Computation of
the Fisher information matrix and its later inversion leads to the
following expressions for the Cramer–Rao bounds:

var CR

(40)

var CR (41)

Figs. 3 and 4 show the square root of the Cramer–Rao bounds
normalized to the number of samples per range gate as a func-
tion of the path length for different values of the copolar correla-
tion coefficient and different values of range extent of the resolu-
tion volume. As an example, it can be observed that the specific
differential phase shift can be calculated to an accuracy greater
than 0.5 degrees/km for a path length of 2 km and a range extent
of the resolution volume of 50 m. In general, the Cramer–Rao

Fig. 3. Square root of the Cramer–Rao bound normalized to the number of
samples per range gate of�
 as a function of the path length for different
values of copolar correlation and range extent of the resolution volume.

Fig. 4. Square root of the Cramer–Rao bound normalized to the number of
samples per range gate of� as a function of the path length for different
values of the copolar correlation coefficient.

bounds decrease as the path length and the copolar correlation
increase. The specific differential phase Cramer–Rao bound de-
creases as the range extent of the resolution volume decreases.

C. ML Estimates of and

If the complete available polarimetric dataset is considered to
estimate overattenuation of the characteristic polarizations with
respect to free-space propagation, then the log-likelihood func-
tion given in (25) must be differentiated with respect to and

. This would lead to a set of polynomials in two variables
( and ) of high degree (greater than). Furthermore,
the polynomial coefficients are quite involved functions of the
elements of and . Thus, finding ML estimates of
and would require calculating the roots of these polyno-
mials. Previous estimation of elements and would be
necessary. But ML estimation of these parameters also requires
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Fig. 5. Roots of 100 polynomials forN = 64, K = 30, and

 = 0.3 dB/km.

estimation of and . Though numerical methods may be
used to get a joint solution for , , , and , the re-
sults would probably be very sensitive to the initial parameters
selection and the numerical method applied. Also, the compu-
tational cost of the solution would be very large.

In order to get practically implementable estimates of
and , its ML estimation from data corresponding to only one
polarimetric channel was considered. Consequently, estimation
of will be based on the sample matrix . Its pdf can be
obtained from the pdf given in (18) after integration with respect
to and . This results in

(42)
From this, the log-likelihood function can be calculated as

(43)
After computing the gradient of the log-likelihood function

with respect to and , and equating the result to zero in
order to solve for the ML estimates

(44)

and

(45)

are produced. Substitution of (45) in (44) gives

(46)

which shows that ML estimation of will require to find the
zeros of the polynomial given in (46).

Fig. 6. Square root of the Cramer–Rao bound normalized to the number of
samples per range gate of
 as a function of the path length for different
values of range extent of the resolution volume.

In the limiting case of an infinite number of samples from
each range gate, taking into account that

and letting , (46) can be expressed as

(47)

It can be shown that this polynomial possesses a real root
at . Also, it can be shown that the magnitude of all
polynomial roots equals . Their angles depend only on the
number of resolution range gates considered.

In a real situation, with a finite number of samples, the co-
efficients of the polynomial given in (46) ( ) would be
“around” their expected values ( ), and therefore, its roots
will be in the neighborhood of the polynomial’s roots given in
(47).

Though, the absolute value of all roots of the polynomial
given in (46) is close to , extensive simulations carried out
by the authors for different values of parameters ( ) have
shown that the minimum variance corresponds to the real pos-
itive root of the polynomial to be solved. As an example, in
Fig. 5, the roots corresponding to 100 simulated polynomials
with parameters , , and 0.3 dB/km are
shown.

The ML estimate of will be expressed as

(48)

where denotes the real positive root of the polynomial. This
means that the ML estimate of is directly proportional to
the positive real root of the polynomial given in (46).

Moreover, from (46) and (47) it can be concluded that the ML
estimator for is asymptotically unbiased and its variance
asymptotically achieves the Cramer–Rao bound given by

var CR (49)
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Fig. 7. Sensitivity of specific attenuation estimation for different values of
specific attenuation and feed rotation angle .

Fig. 6 shows the square root of the Cramer–Rao bound nor-
malized to the number of samples per range gate as a function of
the path length for different values of . The results suggest
that, in theory, for a 2-km path, with a range resolution equal
to 50 m, it is possible to obtain with an accuracy close to
0.025 dB/km.

The ML estimate of can be obtained following the same
procedure though considering the data contained in the
matrix.

V. MEASUREMENTCONSIDERATIONS

Real radar measurement of hydrometeors polarimetric co-
variance matrices may be affected by many factors. The pur-
pose of this section is to analyze the sensitivity of the proposed
ML estimators for specific attenuation and specific differential
phase, to different measurement errors. Actually, the analysis
proposed by Doviaket al. [16] to study the influence of mea-
surement errors in other estimates of polarimetric variables will
be applied to the ML estimators of specific differential phase
and attenuation derived. In fact, their sensitivity to feed polar-
ization rotation, drop canting angle along the propagation path,
differential phase shifts in the transmitter and receiver, noise at
the receiver, and temporal correlation between consecutive sam-
ples will be considered.

Having assumed that the linear polarizations used for trans-
mitting/receiving are parallel and perpendicular to the symmetry
direction of the medium defined by the mean drop canting angle,
effects of feed polarization rotation with respect to the symmetry
direction of the medium will be analyzed. Clearly, the effects of
erroneous mean drop canting angle determination will be anal-
ogous to feed polarization rotation effects.

Defining as the angular displacement (rotation) of the
feed polarization with respect to the symmetry direction of the

Fig. 8. Sensitivity of specific attenuation estimation for different SNR values.

medium, the measured covariance matrix corresponding to the
th range gate is obtained as

(50)

where is the matrix for polarization basis change defined in
[3] with and .

Straightforward manipulations lead to the following expres-
sion for the copolar power from theth range gate

Ldr

Zdr (51)

where Zdr and Ldr denote the differential reflectivity and the
linear depolarization ratio.

Using this expression for in (47), it is found that
the expected value of will converge to the solution of

(52)

Fig. 7 shows the sensitivity of the estimator for (i.e., the
difference between the solution of (52) and the “real” value)
to a feed polarization rotation for different values of and
different feed rotation angles. High copolar correlation has
been assumed. For each value of , , and have been
recalculated using power law fits [18]. Sensitivity to typical
values of Zdr and Ldr from precipitation media has been
found negligible. Twelve 500-m-long range gates have been
considered for calculations. Increasing the number of gates
while decreasing the range extent of the resolution volume
to maintain the total path length used for estimation would
improve the estimation.

Clearly, differential phase shifts introduced in the transmitter
and/or receiver will not affect estimation of . On the other
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Fig. 9. Sensitivity of specific differential phase estimation for different values
of specific differential phase and feed rotation angle .

hand, temporal decorrelation will not affect the mean value of
estimates either, though its standard deviation will increase.

Finally, the effect of system noise is shown in Fig. 8 for dif-
ferent values of the SNR measured with respect to the first range
gate. Twelve range gates and equal to 500 m were consid-
ered for estimation. Increasing the number of range gates for
the same total path length leads to negligible improvement of
the results. Only those range gates whose SNR is greater than
zero are considered in the estimation. It can be observed that the
proposed estimator is very sensible to noise, so previous estima-
tion of noise power will be required to get accurate estimates.

Now, sensitivity of the estimator for to feed rotation is
analyzed. Estimation of is based on the Fourier transform
of copolar correlation terms. From (50), the copolar correlation
term corresponding to theth range gate as a function of the
feed rotation angle is obtained as

Ldr Zdr

Zdr

Zdr (53)

Then, ML estimate of will be equal to

(54)

with being the Fourier transform of the sequence

(55)

Fig. 9 shows the sensitivity of the estimator for (the dif-
ference between the value of calculated with (54) and the
“real” value) for different values of and different values
of the feed polarization rotation angle. Twelve range gates were
considered along the 6-km path. As in the case of specific at-
tenuation estimation, it was found that sensitivity to normal

Fig. 10. Sensitivity of specific differential phase estimation to copolar
correlation.

Fig. 11. 
 minus
 estimated mean value. (Dashed line) Cramer–Rao
bound for the standard deviation. (Pointed line) Estimated standard deviation
(12 range gates; 6-km path).

variations of Zdr and Ldr in their typical range of values for
precipitation media is negligible. More meaningful is the error
increase as the copolar correlation decreases. This effect can be
observed in Fig. 10 for different values of the copolar correla-
tion coefficient.

Temporal decorrelation between consecutive samples implies
a decrease of the copolar correlation coefficient, and therefore
its effect, in the case that feed polarization rotation exists, is
analogous to the effect observed in Fig. 10. In absence of feed
polarization, rotation temporal decorrelation will only imply
higher estimator variance.

Finally, as noise at different receiving channels can be con-
sidered uncorrelated, its effects on estimation of will re-
sult in higher variances. estimates will neither be affected
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Fig. 12. 
 minus
 estimated mean value. (Dashed line) Cramer–Rao
bound for the standard deviation. (Pointed line) Estimated standard deviation
(30 range gates; 6-km path).

Fig. 13. 
 minus
 estimated mean value. (Dashed line) Cramer–Rao
bound for the standard deviation. (Pointed line) Estimated standard deviation
(12 range gates; 6-km path).

by differential phase shifts in the transmitter nor the receiver.
These will rather affect estimation of copolar backscattering
phase .

VI. SOME RESULTSFROM SIMULATION

In this section, we present some results based on simula-
tions. Gaussian statistics have been assumed. Ldr30 dB,
Zdr dB, and high copolar correlation have
been considered in the simulations. Specific attenuation
varying between 0 and 0.8 dB/km has been assumed. Corre-
sponding values of and have been calculated using

Fig. 14. �
 minus�
 estimated mean value. (Dashed line) Cramer–Rao
bound for the standard deviation. (Pointed line) Estimated standard deviation
(12 range gates; 6-km path).

power law fits [18]. Sixty-four samples from each range gate
have been considered.

Figs. 11–13 show the difference in decibels per kilometer
between the estimated mean value of the specific attenuation

and its “true” value used in the simulations, for a total
path length of 6 km; 12, 30, and 120 range gates have been
considered. Also, the estimated standard deviation and the
Cramer–Rao bound for the standard deviation are shown.
Results show a negligible bias of the estimates. It can also
be observed that the standard deviation depends only on the
number of range gates and the range extent of the resolution
volume, and it decreases as the number of range gates increases.
Neither the bias nor the standard deviation depend on the
value to be estimated; therefore, the relative error (defined as
the ratio between the standard deviation to the mean value of
the estimate) increases as values approaches zero. In
general, estimation of low values of specific attenuation will be
more difficult.

Figs. 14–16 show the difference in dB/km between the esti-
mated mean value of the specific differential phase and its
“true” value used in the simulations, for a total path length of
6 km; 12, 30, and 120 range gates have been considered. Esti-
mated standard deviation and the Cramer–Rao bound are also
shown. The “apparent” bias of the estimates observed as the
number of range gates increases is due only to the finite res-
olution used to calculate the Fourier transform. The standard
deviation is, in this case, very close to the Cramer–Rao bound.
In view of the results the, estimator may be considered as
the minimum variance unbiased estimator. Unfortunately, as in
the case of estimates, neither the bias, nor the variance of

estimates depend on its value, so, again, estimation of
values close to zero will be more imprecise.

More simulations have been performed with other parameters
and taking into consideration noise. It has been observed that for
moderate SNR values around 10 dB (measured with respect to
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Fig. 15. �
 minus�
 estimated mean value. (Dashed line) Cramer–Rao
bound for the standard deviation. (Pointed line) Estimated standard deviation
(30 range gates; 6-km path).

Fig. 16. �
 minus�
 estimated mean value. (Dashed line) Cramer–Rao
bound for the standard deviation. (Pointed line) Estimated standard deviation
(12 range gates; 6-km path).

the first range gate) the performance of the estimators remains
good. No bias is observed if the previous estimation of noise is
realized though the variance is moderately increased.

Also, it is in order to mention that comparisons between the
ML estimator of the specific differential phase proposed and the
estimate of these parameter obtained through the least squares fit
widely used have been made. For these comparisons, results on
the variance of the specific differential phase in [19] have been
used. Performance of both methods is in general very good, only
for high temporal correlation, and a low number of samples ML
estimator performs slightly better.

VII. CONCLUSION

Maximum-likelihood estimators of differential propagation
parameters in rain have been obtained, taking into consideration
coherent propagation and reflection symmetry of the medium.
Performance of the estimators has been analyzed through
simulated data. Results show very good performance for both
estimators, especially for the specific differential phase, which
from a practical point of view may be considered the minimum
variance-unbiased estimator. No noticeable bias has been
observed in simulations, and variance has always matched
the Cramer–Rao bound. Also, an estimator for the copolar
backscattering phase has been provided. This will allow
to separate propagation from scattering contributions. The
specific attenuation estimator also showed good performance,
unnoticeable bias, and moderate variances that allow quite
precise estimation of the parameter. For example, simulations
show that for a 6-km path, with a equal to 200 m, the
specific attenuation can be estimated with an accuracy of
0.03 dB/km; if the path is reduced to 2 km, for the same
range resolution, the achievable accuracy would be around
0.2 dB/km, which might not be sufficient. For this 2-km path
with 50-m range resolution, accuracy would be in 0.1 dB/km.
That is, for accurate estimation of specific attenuation, longer
paths in homogeneous rain or high range resolution will be
required.

A sensitivity analysis to usual measurement errors has been
performed. This indicates that small feed polarization rotation
has no significant effects on specific attenuation. It may have
more important effects on specific differential phase if copolar
decorrelation is important. For this reason, a precise estimation
of copolar correlation terms is important. Different methods and
their performance for measuring copolar correlation terms have
been discussed in [20].

With respect to noise, it is clear from the sensitivity analysis
and also from simulation results that it must be previously esti-
mated in order to get reliable estimates of specific attenuation.
In any case, variances of both parameters—specific attenuation
and specific differential phase—will increase.

Finally, temporal decorrelation, in absence of other measure-
ment errors will lead to higher standard deviations too, but it
will not have an effect on expected values.

Estimation of propagation parameters is important for prop-
agation effects correction and for separating propagation from
scattering effects, and this will also lead to an easier interpre-
tation of the data. Correction of propagation effects in rain re-
quires the capability of estimating differential propagation pa-
rameters in all range gates between the radar and the target (may
be a remote rain cell). This is not possible in many real situa-
tions where data from the first range gates may be contaminated
by clutter. Still, in these cases, it may be of interest to determine
specific attenuation and/or specific differential phase for rain-
fall estimation in remote areas. The proposed estimators of dif-
ferential propagation parameters can be used for any set of
consecutive range gates, even if they are not located at the be-
ginning of the path.
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tr tr tr

To conclude, it is of importance to note that the proposed
estimators are independent of the microphysical characteris-
tics of the medium as far as it presents reflection symmetry
and coherent propagation can be assumed. Therefore, they
provide a new way for measuring and validating microphys-
ical characteristics of the medium such as size or orientation
distribution.

APPENDIX

SOME MATRIX RELATIONS

See the equations at the top of the page.
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