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Maximum-Likelihood Estimation of Specific
Differential Phase and Attenuation in Rain

V. Santalla del RipMember, IEEEYahia M. M. Antar Fellow, IEEE and Xavier FabregadMember, IEEE

Abstract—Precise estimation of propagation parameters in scattering in these formulations is also discussed. Itis of interest
precipitation media is of interest to improve the performance to point out that all assumptions realized about the distribution

of communications systems and in remote sensing applications. uf jze5 and orientations with the different formulations lead to
In this paper, we present maximum-likelihood estimators of

specific attenuation and specific differential phase in rain. The orthog_onal characte_rlsfuc polarizations. Later, it was pr.oved [3]
model used for obtaining the cited estimators assumes coherentthat this orthogonality is a consequence of the reflection sym-
propagation, reflection symmetry of the medium, and Gaussian metry that rain media usually present. Therefore, orthogonality
statistics of the scattering matrix measurements. No assumptions of characteristic polarizations will be assumed in the rest of the
about the microphysical properties of the medium are needed. paper.

The performance of the estimators is evaluated through simulated Estimati f fi tersh Isob di d
data. Results show negligible estimators bias and variances close stimation of propagation parameters has also been discusse

to Cramer—Rao bounds. by different authors. To estimate the differential propagation
Index Terms—Maximum-likelihood (ML) estimation, propaga- phase shift, several methods based on the analysis of the copolar
tion parameters, weather radar. correlation phase have been proposed. Of importance are those

described in [4]-[7]. Estimation of specific and differential at-
tenuation has relied on physical models relating the specific at-
tenuation at orthogonal polarizations with directly measurable

TTENUATION experienced by radiowaves that propagatguantities, basically the reflectivity, the differential reflectivity,

through a precipitation medium has been studied sine@d the specific differential phase [8]-[11]. An interesting re-
the first radar systems became operational. The most recent\dew and comparison of these methods can be found in [12].
velopment of polarimetric radars has also focused attention orin this paper, a new approach to propagation parameter
cross-polarization effects suffered by waves propagating ireatimation based on the maximum-likelihood (ML) statistical
rain medium. theory is considered. ML estimates are usually of interest

The expansion of communications systems that employ dimgicause they present two important properties.

polarizations in the same frequency band, and polarimetric 1) |n the limiting case of a large number of samples, and
weather radar services for remote sensing of precipitation has  under certain general regularity conditions, they are un-
enforced the study, the characterization, and the modeling of pjased.

propagation through precipitation media. 2) If the estimates are unbiased, they have minimum vari-

Rain effects on wave propagation can basically be consid-  ance, and this variance achieves the Cramer—Rao bound.
ered coherent, at least in the microwave and m|II|meter—wave-|-O obtain ML estimators of the differential propagation

regions [1]. Modeling and analysis of rain effects on coheregl, o meters statistical characterization of the scattering matrix
wave propagation have been addressed by different authors Qi o\, rements is required. It is generally accepted that scat-
particular interest is the review and comparison of the (_jlffe_re{gring matrix measurements from rain are well described by a
coherent models developed by Olsen [2], where attention is {97, iyariate complex Gaussian distribution. This distribution is

eral formulations for precipitation media with random scatterefiod to model the polarimetric covariance matrix considering

orientations, and the implications of realizing different assumg 2 yation effects. In Section |11, statistical characterization
tions and considerations about the microphysical propertlesd?f received polarimetric data is briefly reviewed. Then, in
the medium (distribution of sizes, orientations, etc.) on the ;i—%

. INTRODUCTION

) ; ~Section IV, ML estimates of specific attenuation and specific
pressions for the propagation constants. The role of multipise rential phase are obtained. After, a sensitivity analysis of

the calculated ML estimators to different measurement errors
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medium that presents reflection symmetry. With this assump-
tion, the characteristic polarizations of the medium are orthog-
onal and linear [3]. In general, it will be considered that they A
are rotated an angte from vertical-horizontal polarizations as
depicted in Fig. 1.

Monostatic radar configuration and homogeneity and reci-
procity of the medium are also assumed. Besides this, we con
sider the following.

1) The polarization basis used for transmitting/receiving is

that defined by the characteristic polarizati(mand[}

(in most practical situations, the mean canting angle is
zero, and the characteristic polarizations are vertical and
horizontal).

2) The wave propagates with a propagation consiandr Fig. 1. Characteristic polarizations with respect to H-V polarizations.

705 depending on the transmitted polarization.

3) The above propagation constants can be expressed as Then, the backscatter vectsir, which includes scattering and

propagation effects, is defined as

><>

Ql

A
o

Yoa = Yo + Va (1) Saae—ZyaR
Yo =% + V3 2) X = | V28,peOCata) B | (6)
Sﬂ66*27ﬂR

wheren, = jk, is the free-space propagation constan't_,| . .
' : . owever, there is general agreement in that second-order mo-
and expressions foy, andyg as functions of the micro- ' : X
P O 16 ments of backscattered fields should be taken into account to

physical characteristics of the rain medium have been pro-"" " X . ) :
vided by different authors [2], [13] consider scattering characteristics of complex targets like rain.

With these premises, fields at points B and C, separated 'Bgerefore, the covariance matri [14], defined as the ex-
distanceR. can be related as follows: péected value of the Kronecker product of 'Fhe backscat_teryector,
' presents an appropriate tool to characterize the polarization be-
VR T R havior of complex targets. It can be expressed as in (7), shown
[E(,] - [e e 0 } [Ea} . (3) atthe bottom of the page, where
B

E’g c - R 0 e Bl Eyg
Yar =R€(7a) 8)

Now, if backscattering from a single particle at point C is -R 9
. . . Yar = e(’Vﬂ) ( )
characterized by means of the scattering matrix
and they indicate one-way specific over-attenuation experienced
Sow  Sus by the characteristic polarizations with respect to free-space
[SM S@’J (4)  propagation and

the backscattered field received at point B can be expressed as AV = Yai = Ypi = IM(70) —1M(75) (10)

is the specific differential phase for one-way propagation as

E, e 2% R [ =R 0 Sae Sap defined in [15]. The quantitie$S.. |2, [Sss|%, |S«p]?, and
[ Eﬁ:|R ~ TRz | 0 e—%aR} [ Sup Sﬂ[):| Saasgﬂ are well-known terms_ that re.p.resen.t, respeptiv_ely,
[e—aR 0 E, the copolar power for transmitting/receiving Wlth poIan;a_uon
0 e_WR} [EJ d.(channe.la){ the copolar power for transmitting/receiving
CoR T 5 R* T (et 1e)R with pc_)lgnzanon_[}_ (channelﬂ), the cross—po_lar power for
_¢ Saat™ 7" Sape” "1 } transmitting/receiving with orthogonal polarizatiors and
R2 | Sape”0etio)B ggpem2 R 3 (cross-polar channel), and the copolar correlation between
[E, voltages at channels and §. It is important to realize that
' _E,[;L' ®) the total phase of the copolar correlation term results from

1

C=0 (X X")
1
=i

ENEC 0 Saagéﬁe%(vaﬁ'mm)R672j('vm-7737-)R

0 2|Sap)2e2(Fartrar) R 0 @)
S;;aS’ﬁﬂ6_2(7ar+’yﬂ7‘)R62j(7<\7’_'\/@i)R 0 |S’[m|2e—4"r;3rR
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Fig. 2. Radar range gates for propagation parameter estimation.

adding two contributionsd,s = Z(SMS;@), the copolar with (15) and 16, shown at the bottom of the page. Note that free-
backscattering phase, a?d\y; R, the differential phase due space propagation has been assumed for distances leggthan
to propagation in rain. Note that the off-diagonal elements of
the covariance matrix that equal zero are due to the reflectiofll. STATISTICAL CHARACTERIZATION OF BACKSCATTERING
symmetry property as was described in [3]. MATRIX MEASUREMENTS

Separating propagation effects from scattering effects the co;

. ! ) n this section, statistical characterization of polarimetric
variance matrix can be rewritten as

backscattering from rain considering uncorrelated signals in
1 time and range will be considered. ML estimators of specific

C= @P ~Cap - P” (1) gifferential phase and attenuation will be derived with these
assumptions. Since range gates are centered on the resolution
where volumes and the spacing of the range gates equals the depth of
[e—2%arR—jAv R 0 0 the resolution volume, assuming uncorrelated data in range is
P— 0 e~ (Yar 78 )R 0 (12) 2 reasonable approximation. Howe_ver, data in time is certainly
0 0 ¢—2varR+jAYIR correlated. Effects of time correlation and other measurement
- EE 0 S errors on the ML estimators to be derived will be considered
oo aa= Pl in Section V.
Cap= 0 2|Sapl? 0 : (13) Itis assumed that measurements of the backscattering matrix
L SaaSss 0 |Spsl? elements §%7, Sk, k%) at any time instant. and from any

range gaté can be considered as realizations of a random vari-
able with a multivariate complex Gaussian distribution. There-
[R(rae, the probability density function (pdf) that characterizes the

In a practical radar situation, such as that depicted in Fig.
the rain medium is located at a distar¢gaway from the radar,
and[_( range samplgs can b_e obtained. It is assumed that statistical behavior of the backscattering matriime sample
spacing of samples in range is equal to the pulse dagthFor from the kth ranae gate is
a statistical characterization of the data, the polarimetric covari- 99

ance matrix from each range gate is needed. Based on the ?e(skn ghn S’“") _ 1
vious development and considering that differential propagatiof \ <’ 7«% 286) = 237 (k)|
effects take place only for distances greater tRgnwhere rain Sk
is present, the polarimetric covariance matrix that characterizes,y, [522 V28kn Slgg] * C(k)~! \/§S(’§ﬂ (17)
measurements from thigh range gate can be expressed as ’ v gkn
]
C(k) = 1 (Xop - X125 ) whereC(k) represents the covariance matrix corresponding to
(R, + KAR)* V700 i thekth range gate given in (14), and is used to denote matrix
1 determinant.
= P(k) (Xap - X5 P*(k _
(Ro + kKAR)* (k) {Xap “’*> (k) If N measurements of each element of the backscattering ma-
. 1 PC. P*(k 14 trix are obtained from each one of thérange gates, and uncor-
" (R, + EAR)* (k)CasP™ (k) (14) related data in time and range are considered, the pdf that char-
B e—?'ya,ﬂkAR—jA'yIkAR 0 0
P(k) = 0 e~ (tartar kAR 0 (15)
0 0 6—2’*/3rkAR+jAW1kAR
[ Soo Sua
Xap, = | V25E, | = P(k)Xap = P(k) | V2545 (16)
L S(’;g Sﬂ,ﬁ
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acterizes the statistical behavior of the complete dataset maw\UereS’;ﬂ is the sample covariance matrix corresponding to

written as thekth range gate and can be expressed as in (26), shown at the
K 1 bottom of the page. Performing the derivatives of the log-like-
f(Sa;84,S5) = H - = lihood function with respect to the parameters to be estimated,
=1 TN C(k)| equating to zero and solving the resulting equations, the ML es-
N . Skn timators for those parameters are found. Some matrix relations
. exp Z [Sig Va2skn 5'52} C(k)~|V2Sks| 3 (18) usedin the derivations are provided in the Appendix.
n= kn
' S5 A. ML Estimate oC., 5
where To obtain the ML estimate o€, the gradient with respect
Sa = [SL---5K] (19) to C,g of the log-likelihood function must be calculated and
S — [51 o SK] (20) equated to zero, which yields
Sp=[S5 S§] @) S&—Inf(S4,S:,8p)
af
Sk = [Shh---SEN]' (22) | 1
: =-KN|(C
Sk — V2 [skL ... sk (23) ( aﬂ)
/ . T
kE _ [qkl _ gkN7t K
S5 = 1555+ S5 @ +N (ca; S Pk sk, ~P<k>*-lca;)
k=1
IV. ML E STIMATES = 0. (27)

Though the objective of the present paper is to obtain ML Solution of this equation directly supplies the ML estimate of
estimators for the differential propagation parameters, ML §fas @s
covariance matrixC, is first considered to show that accurate K
estimation of polarimetric covariance matrix also requires pre- C.p = 1 Z Pfl(k)S’;@P*‘l(k). (28)
vious estimation of propagation parameters. ‘ K o]

In Section lll, the statistical behavior of the measured data i o )
(backscatter matrix elements) was described. It was found thaf's prewously sta_ted, estimation ﬁa? requires knowledg_e
the data statistics are completely specified by the covariarfePr€Vious estimation of the propagation parameters. Their es-
matrix. The model that will be considered for the covarianddnation is considered in the next subsections.
matrix was described in Section II. Actually, its elements ar ML Estimates of Specific Differential Phae/;

functions of the parameters of interest that will be estimated, i o .
which are the following: The ML estimate of the specific differential phase can be ob-

tained after differentiating the log-likelihood function with re-

1) those corresponding to propagation effects, namel . . . .
) P g topropag y spect taA~; and equating to zero, which results in the following

Yor, “Yar, and Anyg equation:
2) those corresponding to backscattering, i.e., the elements K X . .
) of C,.4 namsly 9 9 Im {Z LelotB)k Z SQZ*SIQEB_MMBH‘S“)} =0 (29)
- k=1 n=1
1S0al? [Sasl. [Sss% |S S;f’r and 8.5 where, for notation compactness, the following have been de-
’ o e o o fined:
Now, to obtain the ML estimators, the log-likelihood function .
. : N =29.-AR 30
is readily calculated from the pdf specified in (18) « ) & (30)
K B =2v3-AR (31)
1 -
In f(Sa,S.,Sp) = Z In o A¢p =2Av;AR (32)
= mN|Ck) Sap =L (saas;;ﬂ) . (33)

K
- Z (Ntr (C(k)~" - Skﬁ)) (25) To find the solution of this equation, the copolar backscatter
1 “ phased,g must be estimated in the case that its true value is

Saei|Sal VRN skasky Sl shasky
» 1 N n N * N n 2 N n n*
wag = N \/§ Zn:l Sgﬂséa 2 Zn:l Sgﬁ \/§ Z’n,:l Ssﬂ‘sfkﬁ? (26)

2
N kn Qknx N kn Qknx N kn
Sl Skpskat VEEL Skaskr L[Sk
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30

unknown. Following the same procedure, the ML estimate ' ‘ — AR=50m,p .=0.9
o2
bap bECOMES ~o- AR =200m,p =09
K N — = —— AR=500m,p . =09 .
I k knx gkn  —jAdk
bap = —1 Z elath) Z Skreghne=iak ) (34) —o— AR=50m, p_; = 0875
k=1 n=1 sl —= AR=200m, p_, =0.975 |
Now, considering that _+ AR =500m, Py = 0975

K N K
Z e(a+ﬂ)k Z S(I]‘;Z*SggeijAd)k — Z CkefjAd)k (35)
k=1 n=1 k=1
with
N
Cp = eltDEN " ghurghn 1<k<K  (36)

n=1

(N CR(a )" (degrees/Km)

the right-hand side of (35) can be interpreted as the Four ‘ . ‘ : = . 2 :
transformX_.(e’2%) of the discrete sequencg,; note that this %15 2 25 8 35 4 45 5 55 &6
sequence is a function of the measurements at both copc Path length (Km)

channels, and so it is the Fourier transform. i )
Fig. 3. Square root of the Cramer—Rao bound normalized to the number of

Thus, (29) can be rewritten as samples per range gate &fy; as a function of the path length for different
) ; JAP values of copolar correlation and range extent of the resolution volume.
im{ j e b X _ gy
' 8A¢ 0.1 T T T T T T T T T
Some simple algebraic manipulations lead to the solution | —— Py =09
this equation. In fact, the ML estimate &fy; is 009 Py =0.975 |
— 1 . 0.08}
Ay = —— X, (729 38
= gap A maas X)) @8 ]
where ‘argmaxa4” should be read as “the value of the argu=_
ment (A¢) that maximizes.” The ML estimate f@r, s is w® 00
an
— T O 0.05f
bun = —£ (X (e22002R)). (39) -

0.04
That is, the ML estimate ofA~; is directly proportional to

the argument that maximizes the magnitude of the Fourier trai 0-03¢
form of the range sequence of copolar correlation terms pre 0.02k
ously corrected for differential attenuation, and the ML estima

0.01%

of 6.4 is the negative of the phase of the previously computt ' \”\ﬁ\

1 A~ 1 I L 1 1 T I * T
Four'ler transform evaluated aIMIAR. . 0 T Y S By B
It is known that sample estimates of the covariance matt Path length (Km)

elements corresponding to a particular range gate are unbiased
[17]. This fact allows us to conclude that the ML estimates &fig. 4. Square root of the Cramer—Rao bound normalized to the number of
the specific differential phase and the copolar backscatter phé%’@p'es per range gate &f,; as a function of the path length for different

. ) . . values of the copolar correlation coefficient.
are asymptotically unbiased and, therefore, their variances
asymptotically reach the Cramer—Rao bound. Computation of .
the Fisher information matrix and its later inversion leads to tfPuUnds decrease as the path length and the copolar correlation
following expressions for the Cramer—Rao bounds: increase. The specific differential phase Cramer—Rao bound de-

creases as the range extent of the resolution volume decreases.

— 1 3 1— |paa|2 . —
var(Avyr) > — = CR(Ay
(B1) 2(AR)2 KN(K? = 1) |pagl (Br) C. ML Estimates of.,, and~y,
(40)

) ) If the complete available polarimetric dataset is considered to
var(@) > 1_(4K7—1) 1-l|pag| = CR(@). (41) estimate overattenuation of the characteristic polarizations with
T2KN(K?-1) |pagl respect to free-space propagation, then the log-likelihood func-
Figs. 3 and 4 show the square root of the Cramer—Rao boutids given in (25) must be differentiated with respectto and
normalized to the number of samples per range gate as a fumg-. This would lead to a set of polynomials in two variables
tion of the path length for different values of the copolar correlds,,, and~g,) of high degree (greater thalf). Furthermore,
tion coefficient and different values of range extent of the resolthe polynomial coefficients are quite involved functions of the
tion volume. As an example, it can be observed that the speciéiements ofC, 3 andA~;. Thus, finding ML estimates of,.
differential phase shift can be calculated to an accuracy greaed g, would require calculating the roots of these polyno-
than 0.5 degrees/km for a path length of 2 km and a range exteméls. Previous estimation &3 elements and\y; would be
of the resolution volume of 50 m. In general, the Cramer—Ra@cessary. But ML estimation of these parameters also requires
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15 . ‘ ‘ . ‘ 1.4 . T : : ‘
—=— AR=50m

—— AR=200m
—— AR 500m ||

L=6Km | 1ol

051

Roots imaginary part

1

. . . . . .
15 -1 -0.5 0 0.5 1 15 1 1.5 2 2.5 3 3.5 4 4.5 5 55 6

Roots real part Path length (Km)
Fig. 5. Roots of 100 polynomials foV = 64, K = 30, and Fig. 6. Square root of the Cramer—Rao bound normalized to the number of
Yar = 0.3 dB/km. samples per range gate 9f.. as a function of the path length for different

values of range extent of the resolution volume.

estimation ofy,,- and~gs,.. Though numerical methods may be e e
used to get a joint solution faE. 5, A7, Yar, andysr, the re- In the limiting case of an infinite number of samples from
sults would probably be very sensitive to the initial paramete??Ch range gate, takmg into account that

selection and the numerical method applied. Also, the compu-
tational cost of the solution would be very large. N Z |
In order to get practically implementable estimatesyof
andg,, its ML estimation from data corresponding to only on
polarimetric channel was considered. Consequently, estimation
of v, will be based on the sample mati$,. Its pdf can be
obtained from the pdf given in (18) after integration with respect
to S, andSg. This results in

|Saa |26—2ak

gnd lettingz = e2“, (46) can be expressed as
K
D (K = (2k = 1)) 2*[Saal?e > = 0. (47)
k=1
It can be shown that this polynomial possesses a real root
atz = 2. Also, it can be shown that the magnitude of all
K 1 { — N |S"’" 2 } polynomial roots equals®®. Their angles depend only on the
P .
) .

f(Sa) = H N numberK of resolution range gates considered.
k=1t (|S ofPe20k In a real situation, with a finite number of samples the co-
(42) efficients of the polynomial given in (46).*" | ) would be
From this, the log-likelihood function can be calculated as  «zrqund” their expected values%,.?), and therefore, its roots
K will be in the neighborhood of the polynomial’s roots given in
lnf(Sa):ZIH —Ch. (47).
k=1 (|S |2e—2(’k) |Saal®e Though, the absolute value of all roots of the polynomial
(43) given in (46) is close ta?*, extensive simulations carried out
After computing the gradient of the log-likelihood functionby the authors for different values of parametdfs &V, o) have
with respect tdS,.|” anda, and equating the result to zero inshown that the minimum variance corresponds to the real pos-
order to solve for the ML estimates itive root of the polynomial to be solved. As an example, in
Fig. 5, the roots corresponding to 100 simulated polynomials
ZNZ 20k Z |Skn]" =0 (44) with parametersX = 30, N = 64, andvy,, = 0.3 dB/km are

|26—20k

1 ZZn 1|S(’§ﬂ| .

shown.
and The ML estimate ofy,,. will be expressed as
K N ~ - — L
S = LY st ) Ter = Gap ) .
N Pt wherez,, denotes the real positive root of the polynomial. This
means that the ML estimate 6f,, is directly proportional to
are produced. Substitution of (45) in (44) gives the positive real root of the polynomial given in (46).
) Moreover, from (46) and (47) it can be concluded that the ML
Z Z(K + 1 — 2k)e*ek |S(’§?y =0 (46) estimator forvy,, is asymptotically unbiased and its variance
k=1n=1 asymptotically achieves the Cramer—Rao bound given by
which shows that ML estimation of,,. will require to find the _ 1 3 1 = CRAD).  (49)

zeros of the polynomial given in (46). var(iar) 2 (2AR)2 4 NK(4K2 — 1)
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Fig. 8. Sensitivity of specific attenuation estimation for different SNR values.
Fig. 7. Sensitivity of specific attenuation estimation for different values of
specific attenuation and feed rotation angle

medium, the measured covariance matrix corresponding to the
kth range gat€C™ (k) is obtained as
Fig. 6 shows the square root of the Cramer—Rao bound nor- o i
malized to the number of samples per range gate as a function of C* (k) = M- C(k) -M (50)
the path length for different values df/2. The results suggest,hereM is the matrix for polarization basis change defined in
that, in theory, for a 2-km path, with a range resolution equ%] with § = /2 + ¢ and¢ = 7 /4.

t0 50 m, itis possible to obtaiff.- With an accuracy close to Straightforward manipulations lead to the following expres-

0.025 dB/km. :
. . . sion for the copolar power from thigh range gate
The ML estimate ofys, can be obtained following the same , P P ge g
procedure though considering the data contained inShe 5 72"* — |Sm|ze—2ak( sind 0 1+ 27dr— % 2@=Bk 42 g
matrix.

. COS2 0|pa/ﬁ’| COS((Saﬂ — Ad)k)
+ 2Ldrsin? § cos? fele—A)k

V. MEASUREMENT CONSIDERATIONS 1 Zdr L=k oot 0) (51)
R_eal radar .measurement of hydrometeors polarimetric Cv%ere Zdr and Ldr denote the differential reflectivity and the

variance matrices may be affected by many factors. The PYL - or depolarization ratio

pose of this section is to analyze the sensitivity of the proposede P M

k
. . . SMk . .
ML estimators for specific attenuation and specific differential Using th|sdeX||3re53|0n f?F‘M In (4;)' It IIS founo}[ that
phase, to different measurement errors. Actually, the analy§}§ expected value of,. will converge to the solution o

proposed by Dovialet al. [16] to study the influence of mea- K Mk
surement errors in other estimates of polarimetric variables will D (K +1-2k)a*S0al® " = 0. (52)
be applied to the ML estimators of specific differential phase k=1

and attenuation derived. In fact, their sensitivity to feed polar- Fig. 7 shows the sensitivity of the estimator fgy, (i.e., the
ization rotation, drop canting angle along the propagation patlifference between the solution of (52) and the “real” value)
differential phase shifts in the transmitter and receiver, noisetata feed polarization rotation for different valuesgf, and
the receiver, and temporal correlation between consecutive satifferent feed rotation angles. High copolar correlation has
ples will be considered. been assumed. For each valueygf, vz, andA~v; have been

Having assumed that the linear polarizations used for tranmecalculated using power law fits [18]. Sensitivity to typical
mitting/receiving are parallel and perpendicular to the symmetvglues of Zdr and Ldr from precipitation media has been
direction of the medium defined by the mean drop canting angfeund negligible. Twelve 500-m-long range gates have been
effects of feed polarization rotation with respect to the symmetepnsidered for calculations. Increasing the number of gates
direction of the medium will be analyzed. Clearly, the effects afhile decreasing the range extent of the resolution volume
erroneous mean drop canting angle determination will be an&d- maintain the total path length used for estimation would
ogous to feed polarization rotation effects. improve the estimation.

Defining ¢ as the angular displacement (rotation) of the Clearly, differential phase shifts introduced in the transmitter
feed polarization with respect to the symmetry direction of thend/or receiver will not affect estimation of,.. On the other
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Fig. 9. Sensitivity of specific differential phase estimation fordifferentvalueﬁig. 10. Sensitivity of specific differential phase estimation to copolar

of specific differential phase and feed rotation angle

correlation.

0.1 T T T T

hand, temporal decorrelation will not affect the mean value
Yar €Stimates either, though its standard deviation will increas
Finally, the effect of system noise is shown in Fig. 8 for dif
ferent values of the SNR measured with respect to the firstrarg
gate. Twelve range gates and? equal to 500 m were consid-x
ered for estimation. Increasing the number of range gates
the same total path length leads to negligible improvement%
the results. Only those range gates whose SNR is greater t3
zero are considered in the estimation. It can be observed that
proposed estimator is very sensible to noise, so previous estirg
tion of noise power will be required to get accurate estimatesg
Now, sensitivity of the estimator fal\v; to feed rotation is
analyzed. Estimation aA~; is based on the Fourier transform
of copolar correlation terms. From (50), the copolar correlatic

/K

22

Me

0.08

0.04

0.02

L=6Km
K=12
AR =500m.

term corresponding to theth range gate as a function of the

feed rotation angle is obtained as

S;aSgﬁMk=|San|2 [sin® § cos? 0
. (2Ldre*(a+ﬂ)k _ e*?&k _Zdre—Qﬂk)
— sint 9Zdr? | po gle— (@ HOk i AGk = i0as
— cos* §Zdr?|p, ﬁ|e—<~+ﬂ>ke—m¢kejaa,s} (53)

Then, ML estimate ofA~; will be equal to

1
2AR

with X.(e?2¢) being the Fourier transform of the sequence

Xc(e729)] (54)

arg maxa¢

O = etRgE g ME << K. (55)

Fig. 9 shows the sensitivity of the estimator fary; (the dif-

-0.02 ! !
0

0.1 0.2 0.3 0.4 0.5

Yoo "true" values (dB/Km)

0.6

Fig. 11. ~,, minus~,, estimated mean value. (Dashed line) Cramer—Rao
bound for the standard deviation. (Pointed line) Estimated standard deviation
(12 range gates; 6-km path).

variations of Zdr and Ldr in their typical range of values for
precipitation media is negligible. More meaningful is the error
increase as the copolar correlation decreases. This effect can be
observed in Fig. 10 for different values of the copolar correla-
tion coefficient.

Temporal decorrelation between consecutive samples implies
a decrease of the copolar correlation coefficient, and therefore
its effect, in the case that feed polarization rotation exists, is
analogous to the effect observed in Fig. 10. In absence of feed

ference between the value A&fy; calculated with (54) and the polarization, rotation temporal decorrelation will only imply
“real” value) for different values ofA~; and different values higher estimator variance.

of the feed polarization rotation angle. Twelve range gates wereFinally, as noise at different receiving channels can be con-
considered along the 6-km path. As in the case of specific atdered uncorrelated, its effects on estimatiom\of; will re-
tenuation estimation, it was found that sensitivity to normalult in higher variances\v; estimates will neither be affected
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power law fits [18]. Sixty-four samples from each range gate
have been considered.
Figs. 11-13 show the difference in decibels per kilometer

0.1 T T T T T

L=6K ) e .
0081 K- 120m 1 between the estimated mean value of the specific attenuation

AR=50m. Yar and its “true” value used in the simulations, for a total
0.0/ { path length of 6 km; 12, 30, and 120 range gates have been

considered. Also, the estimated standard deviation and the
Cramer—Rao bound for the standard deviation are shown.
Results show a negligible bias of thg, estimates. It can also

be observed that the standard deviation depends only on the
0.02¢ 7] number of range gates and the range extent of the resolution

volume, and it decreases as the number of range gates increases.

T 27777 Neither the bias nor the standard deviation depend onythe

value to be estimated; therefore, the relative error (defined as
the ratio between the standard deviation to the mean value of

0.04 b

Mean estimated error (dB/Km)

-0.02 ! !

0 0.1 02 03 0.4 05 0.6 0.7 the v, estimate) increases ag,. values approaches zero. In
¥, "true"” values (dB/Km) general, estimation of low values of specific attenuation will be
more difficult.

Fig. 13. ~,, minus+y,. estimated mean value. (Dashed line) Cramer—Rao : B : : .
bound for the standard deviation. (Pointed line) Estimated standard deviationFIgS' 14-16 show the difference in dB/km between the esti

(12 range gates; 6-km path). mated mean value of the specific differential phasg and its
“true” value used in the simulations, for a total path length of
6 km; 12, 30, and 120 range gates have been considered. Esti-
mated standard deviation and the Cramer—Rao bound are also

by differential phase shifts in the transmitter nor the receivelj,g\wn. The “apparent” bias of the estimates observed as the
These will rather affect estimation of copolar backscattering, mper of range gates increases is due only to the finite res-

phasedas. olution used to calculate the Fourier transform. The standard

deviation is, in this case, very close to the Cramer—Rao bound.

In view of the results the)\y; estimator may be considered as

the minimum variance unbiased estimator. Unfortunately, as in
In this section, we present some results based on simullae case ofy,, estimates, neither the bias, nor the variance of

tions. Gaussian statistics have been assumed=.d+30 dB, A~ estimates depend on its value, so, again, estimatidmef

Zdr = 1 dB, and high copolar correlation,s = 0.975 have values close to zero will be more imprecise.

been considered in the simulations. Specific attenuatipn More simulations have been performed with other parameters

varying between 0 and 0.8 dB/km has been assumed. Comad taking into consideration noise. It has been observed that for

sponding values ofj3, and Avy; have been calculated usingmoderate SNR values around 10 dB (measured with respect to

VI. SOME RESULTSFROM SIMULATION
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VIl. CONCLUSION
. i Maximum-likelihood estimators of differential propagation
§ parameters in rain have been obtained, taking into consideration
§ 0.05- | coherent propagation and reflection symmetry of the medium.
> Performance of the estimators has been analyzed through
S oak | simulated data. Results show very good performance for both
s estimators, especially for the specific differential phase, which
B o3k | from a practical point of view may be considered the minimum
é L= 6 Km variance-unbiased estimator. No noticeable bias has been
B oozt ZgﬁozoOm | observed in simulations, and variance has always matched
S - the Cramer—Rao bound. Also, an estimator for the copolar
= 001k | backscattering phask,s has been provided. This will allow
/\/\W/\/ to separate propagation from scattering contributions. The
0 , ‘ . » . . < . ‘ . specific attenuation estimator also showed good performance,
0 1 2 3 4 5 6 7 8 9 10 11

unnoticeable bias, and moderate variances that allow quite
precise estimation of the parameter. For example, simulations
_ , _ _ show that for a 6-km path, with &R equal to 200 m, the
e e e e e e RaShecific attenuation can be estimated with an accuracy of
(30 range gates; 6-km path). 0.03 dB/km; if the path is reduced to 2 km, for the same
range resolution, the achievable accuracy would be around
0.2 dB/km, which might not be sufficient. For this 2-km path
with 50-m range resolution, accuracy would be in 0.1 dB/km.
0.04 ‘ : : ‘ ‘ - , ‘ : : That is, for accurate estimation of specific attenuation, longer
paths in homogeneous rain or high range resolution will be
required.
A sensitivity analysis to usual measurement errors has been
performed. This indicates that small feed polarization rotation

A v, "true” values (degrees/Km)

0.035F

0.03

0.025| 1 has no significant effects on specific attenuation. It may have
more important effects on specific differential phase if copolar
0.02 1 decorrelation is important. For this reason, a precise estimation

of copolar correlation terms is important. Different methods and

°‘°15'/\/\/\/\/\_v 1 their performance for measuring copolar correlation terms have

001l been discussed in [20].

Mean estimated error (degrees/Km)

kieég’ With respect to noise, it is clear from the sensitivity analysis
0.005]- AR=50m | and also from simulation results that it must be previously esti-
mated in order to get reliable estimates of specific attenuation.
% T 2 3 4 s & 7 8 9 10 11 Inanycase,variances of both parameters—specific attenuation
Ay, "true" values (degrees/Km) and specific differential phase—will increase.

Finally, temporal decorrelation, in absence of other measure-

Fig. 16. A~, minusA~; estimated mean value. (Dashed line) Cramer—Ra@€Nt errors will lead to higher standard deviations too, but it

bound for the standard deviation. (Pointed line) Estimated standard deviatigill not have an effect on expected values.

(12 range gates; 6-km path). Estimation of propagation parameters is important for prop-
agation effects correction and for separating propagation from
scattering effects, and this will also lead to an easier interpre-

the first range gate) the performance of the estimators remai@ion of the data. Correction of propagation effects in rain re-

good. No bias is observed if the previous estimation of noiseggires the capability of estimating differential propagation pa-
realized though the variance is moderately increased. rameters in all range gates between the radar and the target (may
Also, it is in order to mention that comparisons between ti& a remote rain cell). This is not possible in many real situa-

ML estimator of the specific differential phase proposed and ttiens where data from the first range gates may be contaminated

estimate of these parameter obtained through the least squardwfitiutter. Still, in these cases, it may be of interest to determine

widely used have been made. For these comparisons, resultspecific attenuation and/or specific differential phase for rain-
the variance of the specific differential phase in [19] have beéal estimation in remote areas. The proposed estimators of dif-
used. Performance of both methods is in general very good, oféyential propagation parameters can be used for any s&t of
for high temporal correlation, and a low number of samples Mtonsecutive range gates, even if they are not located at the be-
estimator performs slightly better. ginning of the path.
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C(k)| = [P(k)| - [Casl - [P(k)*| = [P(k)]* - |Cap]

tr(C(k)7'8h,y) =tr (P(R)* ™" 5 - P(k) ™ -8k, ) =tr (CF - P(k) ™" - Sk, - P(R) )

|Sapl? [Spsl? 0 ~18apl? SaaShs
1 T
-1 _ x—1 -1
C(k)~ = mp(k) 0 |Saal? |S88]% — SMSM’ 0 P(k)
—[Sapl? S&aSss 0 |Saal? [Sapl?

To conclude, it is of importance to note that the proposedi0] E. Gorgucci, G. Scarchilli, and V. Chandrasekar, “Error structure of

estimators are independent of the microphysical characteris- radar rainfall measurements at C-band frequencies with dual-polariza-
. . . . tion algorithm for attenuation correctionJ. Geophys. Resvol. 101,
tics of the medium as far as it presents reflection symmetry 5 2646126471, 1996.

and coherent propagation can be assumed. Therefore, thEyl A. Ryzhkov and D. S. Zrinic, *Precipitation and attenuation measure-
ments at 10 cm wavelength]” Appl. Meteorol.vol. 34, pp. 2121-2134,
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