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Phase Space Description of Nonlinear Directional 
Couplers 

David Artigas and Federico Dios 

Absfrucf-A comprehensive analysis of the symmetric nonlin- 
ear directional coupler as a function of the excitation conditions 
is reported. The analysis is based on a coupled-mode technique 
in normalized (dimensionless) parameters, using the linear su- 
permodes of the guiding structure, most of the results being 
derived from the Hamiltonian of the resulting nonlinear equa- 
tions. The exchange of power between the branches in the cou- 
pler is graphically described by means of the trajectories of the 
motion in the phase space. The effect of saturation of the non- 
linear index has been included. 

I. INTRODUCTION 
N RECENT years great interest has been shown in us- I ing nonlinear waveguided devices within the fields of 

optical communication technology and ultrahigh-speed 
data processing [ 13. The main idea consists of controlling 
light with light, taking advantage of the nonlinear optical 
effects without the necessity of including optoelectronic 
conversion processes. Among integrated optical devices, 
the nonlinear directional coupler (NLDC), where the me- 
dia show a Ken-like nonlinearity has received the most 
attention. The first analytical model making use of the 
coupled-mode theory was proposed by Jensen [2]. This 
work was followed by other theoretical models, which 
improved on the initial one. First, there were those who 
tried to improve the coupled-mode theory by taking the 
modes of the five-layer structure [3], including the non- 
linear coupling effect and N-effect conditions [4], or using 
the nonlinear modes of each isolate waveguide [5] or of 
the five-layer structure [6]. More realistic factors, which 
affect the coupler features, were considered in other 
works, that is, saturation of the nonlinear index [7] and 
losses [8]-[9], diffusion length for a nonlocal nonlinearity 
[ 101, coupler asymmetry [ 113, and temporal field evolu- 
tion [12]. Other works dealt with the stability problem 
[ 131, [ 141. The NLDC was also studied numerically using 
the beam propagation method [ 151, [ 161, which gave more 
accurate numerical results, and experimentally [ 171-[ 191, 
where the results were compared with theory. 

Recently, additional comprehensive NLDC analysis has 
been reported. Snyder et al. [20] developed graphical 
power flow representations valid in a wide range of non- 
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linear couplers with nonlinearity laws other than the clas- 
sical Kerr-like one. Phase space portraits using Stokes pa- 
rameters [13], [21] and potential-well models [22] have 
also been used in order to give an intuitive view of NLDC 
features. Our work fits into this group. In our case, we 
use the Hamiltonian associated with the coupled-mode 
equations where normalized dimensionless parameters 
have been included in order to reduce the number of vari- 
ables and to obtain universal curves of the device. It al- 
lows us to obtain closed expressions as well as qualitative 
and illustrative plots of the trajectories of the motion in 
the phase space, which give valuable information on its 
evolution, behavior, and stability in terms of the excita- 
tion conditions and of the normalized geometrical param- 
eters. 

This paper is organized as follows. In Section I1 we find 
the scaling rules of our problem, the coupled-mode equa- 
tions and the Hamiltonian. Section I11 is devoted to de- 
scribing the NLDC with Kerr-like media by means of the 
Hamiltonian and phase space portraits. In Section IV we 
show the results for non-Ken-like media. The stability is 
discussed in Section V, followed by our conclusions. 

11. COUPLED-MODE EQUATIONS WITH NORMALIZED 
PARAMETERS 

We will focus our study on the NLDC with a symmetric 
structure, as depicted in Fig. 1. Our device consists of a 
layer with width 2w and linear refractive index n3 sand- 
wiched between two guides of thickness d having the same 
index n2. The cladding and substrate linear refractive in- 
dex is nl. Moreover, we will study only the case nl I n3 
< n2. All the media have a non-Kerr-like nonlinear in- 
tensity-dependency given by 

with i = 1, 2, 3 for each medium, where the second term 
in the series expansion of the nonlinear refractive index 
has been considered in order to simulate the saturation 
[23]. Loss-free media are also assumed. 

In our work we follow the formalism proposed by Sil- 
berberg and Stegeman [3]. A comparison of this approach 
with other works can be found in [ 121. Taking the sym- 
metric and the antisymmetric TE lowest-order modes of 
the five-layer linear structure, where the nonlinear effect 
appears in the variations of the complex amplitudes Ai ( z ) ,  
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Fig. 1 .  The symmetric nonlinear directional coupler studied in this work. 

the electric field can be written as 

&x, z) = [ A , ( ~ ) E , ( x ) ~ - ~ ~ o z  + A 1 (z)  El (x) e 7 v' (2)  

E , - , ( X ) ~ - ~ ~ O ~  being the TEo (symmetric) mode and 
El(x)e-iS'Z the TEI (antisymmetric) mode, where z is the 
propagation direction and x the transverse axis. 

The study of NLDC behavior requires the determina- 
tion of the allowed values of the propagation constant pi 
and the field Ei of the two first linear modes (in our case) 
as a function of the waveguide parameters n l ,  n2, n3, d ,  
w and the free-space wavelength A. These can be reduced 
by introducing appropriate normalized parameters and 
scaling rules for the five-layer waveguide [24] .  In a way 
similar to the work of Recolons et a l .  [25] ,  we define the 
following normalized parameters: 

n: - nf a=- 
ni - nf 

(3) 

(4)  

VI = k,d(n; - n:)'" (5)  

Vz E W/d (6)  
bi being the normalized effective index for the eigenmodes 
with Ni = &/k, and k, = 2u/A, a the asymmetry coeffi- 
cient, which must be understood as a relation between the 
refractive indexes n1 and n3, VI the normalized frequency 
for the guiding layer, and V2 the normalized separation 
between the guiding layers. We also write the normalized 
modal field in the form 

(7) 

E, being a constant that will be specified later on and X 
= x/d the transverse dimensionless coordinate. The value 
of the effective index bi is given by the dispersion equa- 
tions written in terms of the other three parameters in a 
similar way as in [24] .  This can be obtained from the con- 
tinuity of the tangential electric and magnetic normalized 
modal fields in the refractive index profile discontinuities 
as 

1 bi - a 

where i = 0 is the TEo mode and i = 1 the TEI mode. 
We will choose VI, V2, and a in order to limit our work 
to couplers where the TEI mode exists but the TE2 does 
not,' so that the coupled-mode theory using only the two 
first modes could be used. 

A. Case with Kerr-Like Nonlinear Media ( P k  = 0) 
We wish to find the dimensionless equation system. 

Then by introducing ( 2 )  in the nonlinear wave equation 
and making use of the previously defined normalized pa- 
rameters and dimensionless variables, we obtain the sys- 
tem 

m 

- j  - - *gdZY: + ek[Ao(lAo12Co + 2(A1I2C2) dZ nl -m 

where CO, C1, and C2 are constants depending on the 
structure defined as 

CO = 1 *i(X)dX C1 = s *k;l(X)dX 

C2 = 1 \ k & X ) S f ( X ) d X .  

m m 

-m - W  

m 

-m 

2 = z /2Konld2  is the dimensionless propagation coordi- 
nate and ek 

ek = kzd2akEf .  (1 1) 

The meaning of ek depends on the definition of the con- 
stant E,. Following a previous work for the case of a three- 
layer waveguide [26] ,  first, we will analyze the power of 
each mode. This can be written making use of the dimen- 
sionless parameters in terms of the Poynting vector, such 
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as we find that the resulting system is the same as in the 
previous case, adding a new term due to the saturation, W N.CE d pi(z) = IAi(Z)I2E: i *?(X) dX (12) which takes the form 2 - W  

Pi@), with i = 0, 1 being the mode power, so P = Po@) 
+ P l ( Z )  is the total power, c the speed of light in the free 
space, and E, the dielectric permittivity of vacuum. In or- 
der to have the coupled-mode system (9)-( 10) in terms of 
normalized parameters, the integral, the effective index, 
and the refractive index n1 that appear in it can be elimi- 
nated by imposing 

C W  

where a new normalized parameter, 6, = n2/n1 appears. 
From that we obtain the definition of E, [26] by introduc- 
ing (13) in (12) as 

2P E: e - 
n1 E, cd 

Then, if we introduce E, in (11) we can see that ek de- 
pends linearly on the total amount of power P ,  and on the 
nonlinear coefficient (Yk ,  and it is independent of the other 
parameters, ek being our power measure. With this defi- 
nition of E,, (12) is written in the simple form 

the power of each mode being directly associated to the 
amplitude throughout the propagation. Finally, we re- 
write it as Ai = JP,/Pei6' and we take the following di- 
mensionless variables: U ( 2 )  = [Po(z) - P l ( Z ) ] / P  (the 
difference between the ratio of power in each mode) and 
e(Z) = (bo - bl) V:Z - [40(Z) - 4,(2)] (the relative 
phase shift). Then, by introducing these new variables in 
(9) and (10) and after some mathematical operations the 
equations become 

dU 
dZ (16) _ -  - ekc2(1 - U ~ )  sin 28 

- de = (bo - b l )V:  + ek (y + U- CO + c1 
dZ 2 

+ (1 + U - U' - U 3 )  Q,] sin (26) (19) 

[ de 
- = ek - e 2 2  G~ + G, U + G~ U' 
dZ v: 

+ (9 - (Q2 + Ql) U 

+ - 2 3 (Q2 - Q,) U 2  > I  cos (28) (20) 

uk and ek being the right-hand-side terms in (16) and (17), 
respectively, Qo, Q,, Q2, and Q3, being constants defined 
as 

Qo = j \kg(X) dX Ql = *:(X)*?X dX 

Q2 = 

and Go, G1, and G2 as 

OD W 

- W  --o 

W W 

*i(X)q;(X) dX Q3 = i \ky(X) dX 
- W  - W  

CQo + 3Ql - 3Q2 - Q3) 
4 

Go = 

We are unable to find an analytical solution to this system. 

C. 7;he Hamiltonian 
The Hamiltonian is a suitable tool for obtaining the 

maximum information when an analytical solution does 
not exist or is not known. The Hamiltonian satisfies 

aH dU aH de 
(21) - -  -- - -  - ae dz a u - Z  

(17) 
and from here it can be written as - uc2(2 + COS 28) 

which can be solved in terms of Jacobi elliptic functions H = (bo - bi) v: U + ek 
r31. 
L J  

B. The Case with Saturation (& # 0) 

1 1 In order to simulate the saturation we use the depen- 
dence of the refractive index on the electric field given by 
(1). Now, following the formalism in the same way as in 
the Kerr-like case and introducing the saturation param- 
eter 

- e " ?  G o U + - G , U 2  + - G 2 U 3  

+ (i Q2(1 - U - U 2  + U 3 )  

2 s k [  2 3 

1 
2 + - Ql(l + U - U2 - U 3 )  



1590 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 30, NO. 7, JULY 1994 

The Hamiltonian and the power parameter ek are our two 
constants of motion, so if we excite with a given ek and 
initial U. and eo, the system will evolve toward these 
closed points (U, 8) in order to keep the Hamiltonian con- 
stant. This evolution can be plotted in the phase space (U, 
8) for each power obtaining the trajectories of motion that 
will give the information about its behavior. 

D. Beery Limits 
The use of the coupled-mode theory in the analysis of 

the NLDC provides us with useful insights into its qual- 
itative behavior only if AnNL/AnL < 1 is verified [l]. In 
our case AnNL = (ilk [ E  - flk (E I4 is the nonlinear index 
shift and AnL is the smallest difference between linear re- 
fractive indexes in the coupler. We have taken into ac- 
count the condition AnNL/AnL < 0.1 in order to know 
whether numerical results are quantitatively or qualita- 
tively correct. 

111. COUPLER BEHAVIOR WITH KERR-LIKE 
NONLINEARITY 

Below, we analyze the behavior of an NLDC in Kerr- 
like media using plots of the trajectories of the motion in 
the phase space. Phase space portraits were first used by 
Daino et al. in order to explain the instability [13] and 
more recently to analyze mismatched nonlinear couplers 
with saturable media [21] using the modes of the individ- 
ual waveguides. In these works the trajectories in the 
phase space were plotted for all of the initial excitations 
at a fixed power in terms of the Stokes parameters. We 
preferred to plot the trajectories for an initial excitation 
point and different power values in order to show the be- 
havior in terms of the initial power. In order to understand 
the meaning of the trajectories in terms of the power trav- 
eling within each waveguide, we show in Fig. 2 the frac- 
tion of power in a branch in terms of the variable U and 
8. So, if we superimpose this figure on the other phase 
space plots, we can see the power evolution in one branch. 

Fig. 3 shows the behavior of a coupler when it is only 
excited in a branch (Uo = 0, do = 0). The trajectories for 
different values of the power parameter ek have been plot- 
ted. In this figure we can see the quasi-linear behavior for 
low power, where the trajectories evolve from the initial 
phase shift eo = 0 to 8 = ?r after a distance equal to the 
coupling length, interchanging all of the power between 
the branches, as can be observed if we superimpose Fig. 
2 on Fig. 3. However, note that coupling between modes 

1 .oo 

0.50 

3 0.00 

-0.50 

-1.E0.79 0.00 0.79 1.57 2.36 3.14 

8 
Fig. 2. Lines represent the locus in the phase space with the same relative 
power distribution. Labels show the fraction of power in one of the coupler 
branches. 
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t -0.50 

-'*c0O!79 0.00 0.+9 1.67 2.i6 3.14 

8 
Fig. 3. Trajectories in the phase space for different power values ek when 
only one branch of the coupler has initially been excited. Trajectory with 
ekC = 0.0416 is the separatrix. 

branches is broken. For this power value, the trajectory 
called the separatrix ends in the symmetric mode (U = 
1), splitting the power between the two waveguides. This 
value is called the critical power. If the trajectory is made 
to evolve toward U = 1 [6], the Hamiltonian can be used 
to find an analytical expression for the critical power in 
terms of the normalized parameters as 

is null in this case. As the input power increases, there is 
a growing power exchange between modes until it reaches 
a value where this situation of total transference between 

where U,, do correspond to the initial excitation. Above 
this value the power transfer decreases, the highest ex- 
change being when U is maximum at 8 = 0 in each pe- 
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Fig. 4. Locus on the Y ,  - V2 plane with the same value of critical power 
in the case where only one branch of the device has been excited (excitation 
point U, = 0 and Bo = 0). The asymmetric coefficient is a = 0.  

riod, and is always less than one-half the total power. Fig. 
4 shows the locus with the identical critical power as a 
function of the parameters VI and V2 (our coupler config- 
uration space) for a = 0 in the region where only the first 
two modes exist and taking into account the validity limit 
of the coupled-mode theory (line labeled cmv). It could 
be seen that the region of useful coupler configurations 
would be smaller if a > 0 due to the more severe limit of 
the coupled-mode theory and to the existence of the mode 
TE,. Also, the critical power values would be higher than 
in the case with a = 0. 

In Fig. 5 we have plotted the motion trajectories for an 
initial excitation U. = -0.5 and do = 0. The figure also 
shows the existence of both subcritical and supercritical 
working regimes, with the separatrix between them. With 
this kind of excitation, in the subcritical regime the power 
is never totally confined in a unique branch and the max- 
imum power is alternatively in one branch or the other. 
Above the critical power, the maximum is always in the 
branch that has been excited with the highest power. In 
this case, only a small amount of power flows between 
waveguides. 

The trajectories for which the coupler is initially ex- 
cited with a phase shift eo = d4 and U. = 0 are plotted 
in Fig. 6. Note that in this case the separatrix is almost 
the same as in Fig. 5. This happens because the behavior 
is identical when we excite anywhere on one trajectory 
with the same power parameter ek. Here, in the linear re- 
gime (ek = 0) the power is totally transferred between the 
branches, as in the case shown in Fig. 3, but as the input 
power increases, the fraction of the power that always re- 
mains in each branch also increases. Above the critical 
power only a small amount of power is exchanged from 
the branch that carries more power to the other, as in the 
previous case. 

Fig. 7 shows the behavior when the coupler is excited 
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e 
Fig. 5. Phase space portrait when the coupler has been excited in U, = 
-0.5 and Bo = 0. In this case, et, = 0.08225. The line labeled cmv is the 
validity limit of the coupled-mode theory. 
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Fig. 6. Trajectories for the excitation point U. = 0 and Bo = r14. 
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Fig. 7. Trajectories in the phase space for the initial conditions U, = 0.5 
and Bo = 0. The critical power value is et= = 0.0278 and the fixed point 
value is et, = 0.0425. 
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with U. > 0 and eo = 0. There is no initial total power 
transfer between waveguides, the nonlinearity being 
shown in the U variations until the critical power is 
reached. It is above this point that we find differences from 
the previous cases. For a given U,, a power value exists 
whose intensity distribution does not change in the prop- 
agation throughout the coupler, U and 8 remaining con- 
stant. The coupler behaves as two uninfluenced wave- 
guides or as if the two modes were degenerated. In the 
local analysis of differential equation systems this value 
is called a stable fixed point. This value can be easily 
found from (16) and (17) as 

1.00 

0.50 

3 0.00 

-Oe50 

-'*EO.79 0.00 0.79 1.67 2.36 3.14 . (24) 
2(bo - b1Y: ev = 

e (6C2 - CO - C1)Uo + C1 - CO 

In the supercritical working regime and below this point, 
the power flows from the waveguide that initially carries 
the most power to the other during the first half-period. 
Above this value the opposite occurs, the power being 
exchanged from the branch that carries less power to the 
other and for a given power value, all of the power 
launched in the less excited waveguide is transferred to 
the other (the trajectory passes through the point U = 0 
and 8 = 0) after a half-period length. In fact, this trajec- 
tory can be found when we excite with a U, > 0 and any 
80. 

In Fig. 8 separatrices for different excitations are plot- 
ted. Because the behavior of the coupler under any exci- 
tation condition is easily deduced when the separatrix is 
known, this figure gives useful insight into the coupler for 
all of the excitations. On the other hand, it is also possible 
to find a critical power whose trajectory evolves toward 
the antisymmetric mode when we excite near do = 7d2. 
However, this trajectory exists for high-power values that 
are generally beyond the limit of the coupled-mode the- 
ory, and we need large separations between waveguides 
for the trajectory to be considered realistic. The analytical 
expression that gives this power value can be found from 
the Hamiltonian as 

Fig. 8. Separatrices for different excitation points. They can also be under- 
stood as the trajectories when we excite in U, = 1. Note that in this case 
there is no separatrix for et < 0.02. 

IV. NLDC BEHAVIOR WITH SATURATION (sk # 0) 
In order to simulate the saturation of the refractive in- 

dex, we will take an arbitrary value of sk = 4, so that 
AnNL < O.lAnL. Also, we will take as a basis for our 
study two coupler configurations whose only difference is 
the normalized separation between waveguides. The first, 
coupler A, is the same as that considered in the previous 
section, and for the second, coupler B, we take V2 = 1 .  

The behavior of coupler A is basically identical to the 
Kerr-like case (Fig. 3), but a power increase for similar 
trajectories is observed. On the contrary, because the non- 
linear index shift is not large enough in coupler B, the 
supercritical behavior is not reached, and nonlinearity is 
only shown in the power exchange between modes, the 
maximum exchange being plotted by the thick and broken 
line, as can be seen in Fig. 9. In these cases the critical 
power obeys the following relation: 

So far, all of the figures were drawn for a coupler whose 
normalized parameters are VI = 2, V2 = 2, 6, = 1.05, 
and a = 0. A change in the structure, that is, in these 

0 = (bo - b,) V: + ekc 4 
parameters, only causes a variation in the value of ek for 
each trajectory. Therefore, all of the figures can be con- 
sidered universal plots for each excitation. In fact, when 

the trajectories, as can be seen in Fig. 4 for the particular 
VI or V2 decreases or a increases, ek increases for all of 

case of the separatrix. Nevertheless, the changes are ir- 
relevant for the variations in the parameter a,,, as can be 
seen from the numerical results, because its value must 
be close to the unit and large variations are not allowed. 

1 1 
3 

- e & T  Go + -G1(l  + U,) + -G2(1 + U, + U:) 

- - ((1 - Ug)Q2 + (1 + 2Uo + Ug)Ql) cos (200)]. 

VI " [  2 
1 
2 

(26) 
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Fig. 9. Trajectories when the coupler is excited in U, = 0 and 8, = 0 for 

the coupler B (V2 = 1). 

The saturation of the refractive index requires higher 
power values to reach the supercritical working regime 
than in the case without saturation, and it also limits the 
nonlinear media effects at high power, not allowing the 
existence of the supercritical behavior or of the stable fixed 
point ekf, depending on the coupler configuration, on the 
parameter sk and on the initial excitation. Because (26) is 
a quadratic equation with respect to eke, the solution will 
exist if its discriminant is positive. This is the condition 
of existence of the separatrix in terms of the saturation sk, 
the coupler configuration, and the initial excitation. If the 
separatrices for different excitations of coupler A were 
plotted (similar to Fig. 8), there would be a zone near 8 
= 7r/2 where there is no trajectory, and for coupler B they 
would only exist for excitations with U > 0.5 and 8 e 
d4. For the last coupler, Fig. 10 shows the maximum 
value sk that the media should have in order to permit the 
existence of the separatrix for the different possible ex- 
citations. Otherwise, for a material with a given value of 
s k ,  the excitation points where it is theoretically possible 
to obtain the supercritical behavior are those where the sk 
of the media is smaller than that in the figure. The satu- 
ration would also modify Fig. 4, so that the zone of cou- 
pler configurations where separatrices exist would be 
smaller, and the limit would not be due to the limit of the 
coupled-mode theory but to the value of the saturation 
parameter sk. Also, the critical power would be a bit higher 
than in the case without saturation for each coupler con- 
figuration, especially for low values of VI. 

The power value where there is no intensity change in 
propagation throughout the coupler (the stable fixed point) 
can be obtained from (20) as the solution of the quadratic 
equation 

3 

1 .oo 

0.50 

0.00 

-0.50 

-'-*0.79 0.00 0.79 1.57 2.36 3.14 

8 
Fig. 10. Locus in the phase space of the maximum saturation parameter sk 

that allows the existence of the separatrix for the coupler B (V,  = 1). 

where, as in the case of the critical power, the condition 
of existence of this effect is that the descriminant must be 
positive. 

As the input power increases, the term & ) E  l4 becomes 
more important and the coupler returns from the super- 
critical to the subcritical regime. Here, we also find an- 
other separatrix and another stable fixed point. The values 
for these power inputs are the second solutions of (26) and 
(27), respectively. 

V. STABILITY 
Numerical results with the BPM show that the sym- 

metric mode is unstable when launched into the five-layer 
structure. Previous works gave an explanation of this as 
a consequence of the bifurcation of motion trajectories 
given by the evolution of the Stokes parameters in the 
phase space [ 131. In our analysis, the instability appears 
as a natural consequence of the existence of the separa- 
trix . 

In the Kerr-like case, if we pay attention to Fig. 8, 
where the separatrices for different excitations have been 
plotted, it is possible to assume another interpretation: the 
figure can be considered the set of trajectories followed 
when we excite in U, = 1 .  The left-hand-side separatrices 
start at -el and U = 1 and end at and U = 1, 8, de- 
pending on the power, and the right-hand-side separatrix 
starts at 8, = ?r - and ends at ?r + el. Both of these 
trajectories are heteroclinic and the points where they start 
or end are saddle points. This means that the rate of 
change in 8 and U decreases progressively near the ending 
point, reaching it for 2 -+ 00. The same happens if this 
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point is excited; a distance 2 + 00 is needed to leave it. 
On the other hand, U = 1 can be considered a single point, 
so if we excite the symmetric mode, it will remain at U 
= 1. Nevertheless, any small perturbation can cause a 
change in the motion, therefore a new trajectory close to 
the separatrix with a higher rate of change could be fol- 
lowed, diverging from the original point and leading to a 
large variation in the U variable, this being the cause of 
the first-mode instability. From the above considerations, 
it is clear that the first-mode instability is due to the ex- 
istence of the separatrix. If we pay attention to Fig. 8, 
there are no separatrices with values lower than ek = 0.02 
for our coupler, so if we excite under this value, the sym- 
metric mode will be stable. The exact power value can be 
found from (23), taking the limit U -+ 1 and 8 -, 0, as 

(bo - b l w :  
3c* - CO 

eh = 

which only depends on the coupler parameters. 
The cause of instability for the non-Kerr-like nonlin- 

earity case (sk # 0) is also the existence of the separatrix. 
As in the previous case, we find an expression that pro- 
vides the power limits of existence of the separatrix from 
(26) given by 

o = (bo - b , ) ~ :  + eh(Co - 3c2) 

- ek % (Qo - 2Qi + 2Q2) (29) 
V1 

which yields two solutions. Only between these two so- 
lutions will the mode be unstable. As we explained in the 
previous section, the existence of the separatrix depends 
on the excitation point, the saturation parameter, and the 
coupler configuration. Obviously, for couplers where 
there is no separatrix for any excitation, the first mode 
will always be stable. From the last expression the value 
of the saturation parameter that does not allow a coupler 
to show supercritical behavior (i.e., (29) does not have a 
solution) is given by 

This will also be the condition of nonusefulness of an 
NLDC, because switching cannot be achieved for any ex- 
citation if the saturation parameter of the media is above 
skm. This parameter only depends on the coupler param- 
eters. 

VI. CONCLUSIONS 

We have reported a method for analyzing the behavior 
and stability of the NLDC by using the Hamiltonian of 
the coupled-mode system and normalized parameters that 
allow us to obtain illustrative plots of the trajectories in 
the phase space showing the existence of subcritical and 
supercritical behavior separated by the separatrix. Also, 
we have shown the existence of a kind of excitation where 
the intensity distribution does not change throughout its 

evolution for a given power. This power value and the 
critical power have been analyzed, and an analytical 
expression has been found for the Kerr-like and non-Kerr- 
like cases. Furthermore, the instability of the fundamental 
mode appears as a normal consequence of the existence 
of the separatrix. The symmetric mode will be unstable 
above a power value for Kerr-like media or between two 
values for non-Kerr-like media that only depend on the 
coupler parameters. Also, an expression is given for the 
maximum saturation parameter that allows the existence 
of the separatrix, that is, the possibility of switching in 
terms of the coupler parameters. All of the work has been 
done without the need to solve the coupled-mode equa- 
tions, and the most important characteristics of the cou- 
pler behavior have been obtained by taking into account 
the applicability limit of the coupled-mode theory. 
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