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Abstract 

A new class of resonant exchange of power among three co-propagating modes in dielectric optical waveguides exhibiting 
Kerr-like nonlinearity is reported. Unlike the coupling of modes travelling in different, spatially separated channels as in the 
directional coupler (Jensen, IEEE J. Quantum Electron. QE-18 ( 1982) 1580; Chen, Snyder and Mitchell, Electron. Lett. 26 
( 1990) 77; Schmidt-Hattenberger, Trutschel and Lederer, Optics L&t. 16 (1991) 294) this paper points out the possibility 
of obtaining an efficient coupling of modes travelling in one single channel. The key point here is the imposition of a 
geometrical resonance between modes, to improve the coupling process. Due to this resonance condition, which is related 
with the wavelength through the propagation constants, the power exchange process is very sensitive to the wavelength. 

1. Introduction 

Since the early work of Jensen [ 11, nonlinear ex- 
change of power between two parallel, adjacent chan- 
nels has attracted the attention of researchers due to the 
likelihood of obtaining power- and phase-dependent 
switching. Dual-core, and more recently, multiple core 
nonlinear couplers have been extensively investigated 
during recent years. The common analytic tool in this 
kind of device is the coupled-mode technic, using the 
fundamental mode of each guide o channel [2,3] or, 
as well, the supermodes of the whole structure [4,5]. 

In the present work we analyze the nonlinear inter- 
action of three modes travelling along a single core 
guide. The goal of this work is to find the features 
of this modal interaction in the very specific case of 
considering that the differences between the propaga- 
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tion constants of two consecutive order modes are the 
same, i.e. & - PI = PI - p2. The underlying idea is 
not new: in fact we are trying to build up a periodic 
spatial modulation of the refractive index following 
the guide, and then obtaining a cumulative coupling 
among modes [6-8-j. However, to our knowledge, this 
is the first complete analysis of this phenomenon in 
nonlinear waveguides. The net effect should be similar 
to that of a periodic, although nonhomogeneous grat- 
ing drawn in the guide by the sum of the three modes. 
Unlike the periodic and homogeneous manufactured 
gratings that reflect the mode with the adequate wave- 
length, this induced grating provokes a periodic swap- 
ping of power among the modes. 

In order to maintain the possibility of analyzing the 
phenomena with the coupled-mode theory low non- 
linearity in the waveguide is assumed. 
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2. Analytical model 

Let us consider an slab optical waveguide composed 
of a core with a third-order nonlinearity, surrounded 
on both sides by a linear material. For simplicity we 
can take a symmetric guide. The refractive index in 
the core has a profile such that three TE modes exist 
and, moreover, the propagation constants of the modes 
satisfy the resonant condition at some wavelength 

AP = PO - Pl = PI - P2. (1) 

This condition can be obtained with a parabolic index 
profile, or more simply, with a three layer core. In both 
cases, however, an adequate design is needed, because 
not any arbitrary profile satisfies the condition ( 1) . 

The field along the guide can be written as a com- 
bination of the modes, taking the z axis as the propa- 
gation direction, and x as the transversal axis: 

2 

E(x,Z) =C4(1)Ei(X)exp(ipil), 

idl 

(2) 

where E,(x) represents the transversal electric field 
of each mode, normalized to carry power unity, and 
with Fi ( z ) being the complex amplitude describing 
the effect of the nonlinear interaction. 

The nonlinear wave equation, in the slowly varying 
envelope approximation, can be written as 

d&(Z) 
21Pi dz ’ -J%(X) eXp(ipiZ) 

+ &J3’lE(x, z > fE(X, 2) = 0, (3) 

ko = 27r/A being the wavenumber and xc3) the third 
order nonlinear coefficient for the TE modes. 

Unknown amplitudes Fi( z ) can be written as 
F,(z) = fi(z)exp(i&z)), with _fi(z> = ((Fdz)((. 
By substituting the field (2) in the wave equation 
(3), several terms with different phase velocity are 
obtained. Applying the resonance condition the re- 
maining combination of propagation constants mod- 
ulating the phase along the z axis are pa, pt, p2 and 
PO + AP, PO + 2AZ3, P2 - A& P2 - 2AP. 

The exact method to solve the equation should 
take into account all these terms. However, this is 
not strictly necessary if we look for a solution in the 
case of low nonlinearity, this is again a result from 

the slow varying envelope approximation, because we 
assume that [dFi/dz I << PiFi. Moreover we CLW take 
independently the terms affected by the same spatial 
phase and force them to be null. As a result of this 
we can get a set of three nonlinear equations, one for 
each mode. 

Before going on, it seems necessary to extend the 
scope of the analysis. So far, we have assumed the 
condition ( 1) is satisfied in our waveguide. In practice 
one can expect that the phenomenon of power conver- 
sion among modes was very sensitive to this condition. 
Let us introduce a new variable to check the accuracy 
with which the condition of resonance is being filled. 
We suggest: 

PO-PI=@-8, P1 -Pz=AP+S. (4) 

In fact, for a given guide, 6 will be a function of the 
wavelength and will become null only at some very 
precise point. Thus, we extend our analysis to a cer- 
tain range of wavelength around the exact resonance 
condition point. 

Coming back to the equation describing the nonlin- 
ear phenomenon, we obtain the following set of equa- 
tions: 

dFe 
4ik0rl dz - + kp3’ r z& + 2zo,_f: + 2zo& I Fo 

+ k&‘3)Z&F,* exp(2iSz) = 0, 

dFr 
4ik0rl dz - + &/‘3’ W1o.f; + hf; + 2h2f;l FI 

+ ~~&J’~‘ZOFOF;“F~ exp( -2iSz) = 0, 

4ikoqz + k&y’3’[2Z20f~ + 2hf: + Zzfgl Fz 

+ k&y(3)Z~F:F~ exp(2iSz) = 0, (5) 

where the constants I,,,,, are field overlap integrations: 

Z mn = 
s 

&XV;(X) dx, 

COrC 

As it was said above, modes are normalized to power 
unity, and then 
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+CO 

s Ef(x)dx = y (W/m>, 
1 

--m 

~7 being the free-space wave impedance. 
A system of normalized equations can be de- 

rived from (5), taking as the normalizing length: 
L = %/kox (3)Za. The new system is now: 

.dFo 
1~ + [uoof; + 2uo1.f: + 2~02f;l Fo 

+ F,?F; exp(2&) = 0, 

;dPi 
d7 + Lkof; f u,,f: + 2n&lP1 

+ 2FoF;Fz exp( -2iSz) = 0, 

.d& 
1 d7 + [2uzo_f; f 2~21 ff -t- u22.f; 1 F2 

+ Ff F,* exp( 2iSz ) = 0, (6) 

where T = z/L is the normalized propagation distance, 
and normalized overlap integrations, umn = Zm/Zo, 
have been used. 

If the real and imaginary parts of the system are 
separated (6), and the power being carried by each 
mode (Wi = f;) is introduced, after some manipula- 
tions we obtain: 

d Wo - = -2Wlfof2sinp, 
dW1 

dr 
x =4Wlfofisinp, 

d Wo - = -2Wlfof2 sinq, 
dr 

and 

(7) 

d7 = (AWo+BWl +CW,) 

+ 
~WOW-%(WO+W~) 

fof2 
cos 4p + 2SL, (8) 

where P(T) = 2~1 - (spu + 402) is actually the only 
combination of phases of the individual modes that 
plays a role in the nonlinear process. The coefficients 
A, B and C are related with the overlap integrations as 

A = 4zqo - uoo - 2u20, B = 2(u11 - UOI - ~211, 

c = 4U12 - 2Uo2 - l422. 

3. System invariants 

From direct inspection of the system (7)) two in- 
variant magnitudes are immediately deduced: 

P = Wo(7) + Wl(7) + W2(7), (9) 

AWe = WO(T) - W2(7), (10) 

P being the total amount of power initially launched in 
the waveguide, and A W, the difference of power being 
carried by the even modes along the guide. The last 
invariant shows that the conversion of power occurs 
between the odd mode and the two even modes but 
not between even modes. 

The invariants make possible to reduce the number 
of independent variables to two, namely, 5p and WI, 
with four initial conditions, (p( 0) , WI (0)) P and A W,, 
which describe the evolution of the system. 

The Hamiltonian of the resulting system satisfies 
the following equations: 

L?H dp c?‘H dWt 
z;=-$ z=z. 

From here the Hamiltonian can be found as 

-2W,&P- W,)2 -AW3os5~-22sLW,. (11) 

The evolution of the mode power along the guide 
can be obtained by solving the system given in Eqs. 
(7), (8) with some numerical procedures, such as, 
the Runge-Kutta method. 

Before doing this it is necessary to choose the kind 
of initial excitation that could give the most interest- 
ing features. As the evolution of the even modes is the 
same, due to the second invariant, an initial excitation 
with P >> AW, should be chosen in order to obtain 
a maximum power exchange. On the other hand, the 
Hamiltonian of the system becomes phase indepen- 
dent if Wo( 0) = 0 or WI (0) = 0 is chosen. That means 
we can obtain a phase independent power conversion 
process just only by selecting one of these possibil- 
ities. Therefore, the most promising features should 
be expected with W,(O) + Wi(0) = P, W2-i(0) = 0 
(idl or 2) and W*(O) >> Wi(O). 
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Fig. 1. The five layer slab waveguide on which numerical re- 
sults are given. In an optical guide with a refractive index like 
that depicted here, the resonance condition among three modes 
(pn - fir = PI - &) can be obtained with an adequate design. 
The shadow core is a Kerr-like material. 
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Fig. 2. (a) Normalized coupling coefficients among three modes 
as a function of the wavelength; (b) The delta parameter measures 
the proximity to the resonance condition (1) for the three modes 
in the waveguide. 

4. Results 

The results shown in this section have been obtained 
with a three-layer core slab waveguide( or five layer 
guide) as depicted in Fig, 1, where the nonlinearity is 

I , I’ ‘\ ‘\ ’ 
J TEz \ 1 \\ ,I’ 

O,‘IIII ::rm7,9s..,ln.m . 8 
0 

Pmpc.$ation 50distanc75e (7nrrLY~ 

Fig. 3. Power swapping between even and odd modes, just working 
in the resonance wavelength. Theory shows that the even modes 
(TEo and TE2) act along the process as a unity, exchanging their 
power simultaneously with the odd mode. 

located in the core, the substrate and the cover being 
linear media. As was stated above, the resonance con- 
dition for three modes can be obtained with this kind 
of guide at one particular wavelength. The values of 
indices and thicknesses chosen were: n, = n, = 1.45 1, 
nb = 1.461, nf = 1.482, & = 2 pm and df = 4 pm. 
The coefficient of nonlinearity is xc3) = 5.795 x lo-t4 
m2/V2 (i.e. n2f z lo-” m* /W) . The plots of the 
Fig. 2 show: (a) the evolution of the normalized cou- 
pling coefficients A, B and C, and (b) the shift over 
the resonance condition 6 as a function of the wave- 
length. The value of the normalizing length in this case 
isLz7OOmm. 

In Fig. 3 the evolution of the power for each mode 
is shown only for 6 = 0 (A = 1,28775 pm). Initial 
conditions can be read from plots: Wa(0) = 10 W/m, 
WI(O) = 90 W/m and W2(0) = 0 (q(O) = 0 but this 
is irrelevant due to the no phase dependence in the 
elected excitation). The curves of mode power evo- 
lution with the propagation distance are similar in all 
the cases, the modulation depth and the period of the 
beat depending on the concrete initial conditions and 
the shift S. As the best features of the power process 
between odd modes and even modes are obtained with 
a particular strategy, as was explained above, we have 
preferred to maintain fixed the excitation and to study 
the evolution of the phenomenon with the wavelength. 
By doing this, the first effect one gets is that the max- 
imum power exchange does not occurs at the nominal 
wavelength for which 6 = 0, but for other values, be- 
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Fig. 4. Evolution of the power of the odd mode (a), and the 
phase shift among modes (2~1 - vu - rps) (b), for different 
wavelengths. Maximum power swapping does not occur for the 
resonance wavelength: this is a function of the total power launched 
into the guide. 

ing these a function of the total power launched into 

the guide. In other words, the real resonance condi- 
tion point is not that given by linear condition (l), 
but one close to that, because the nonlinearity modi- 
fies slightly the effective propagation constants of the 
modes. 

In Fig. 4a, the power evolution of the odd mode 
(WI) for different wavelengths is plotted as a func- 
tion of the propagation distance. The corresponding 
phase shift is plotted in Fig. 4b. Values for WC,(O) = 
1 .O W/m, WI (0) = 100 W/m and Wz(O) = 0 are 
taken. The main characteristics of the nonlinear pro- 
cess can be observed in these plots: first, almost all 
the complete exchange of power between the odd and 
the even modes takes place, and second, the maxi- 
mum exchange occurs with a shift in wavelength in 
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Fig. 5. Semi-period (half-beat length) of the swapping of power 
as a function of the wavelength, for different excitations. The peak 
of each plot indicates the teal resonance wavelength. 
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Fig. 6. The power carried by each mode at the output of the 
nonlinear guide for a total length of I5 mm. as a function of the 
wavelength. This kind of response could be used for an optical 
amplifier or switch. 

relation to the expected value. Finaly, it is interesting 
to observe that beyond the critical wavelength (A N 
1.2917 pm in Fig. 4), the power exchange diminishes 
rapidly. With regard to the phase shift among modes 
((p in Fig. 4b) the different behavior before and after 
the critical wavelength is clearly manifested. 

The power of each mode has a periodic evolution in 
all cases. This period tends apparently to infinity as we 
approach that critical wavelength. In Fig. 5, this pe- 
riod is represented as a function of wavelength for dif- 
ferent initial conditions: Wo( 0) = 1 .O W/m, WI (0) = 
100,300 and 500 W/m and W2(0) = 0. (p(O) ir- 
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Wavelength 

Fig. 7. Comparisons between results obtained by means of the 
theory reported in this work (CMT) and the well-known beam 
propagation method (BPM ) Curves represent the mode power at 
the output of the nonlinear guide for a length of 8850 pm. Leakage 
of power in the BPM case must be attributed to the continuous 
emission of radiated modes. The comparison was made over a 
smoothed version of the five layer guide. 

relevant.) These plots show that the resonance point 
in the wavelength axis can be selected by varying the 
total power. Actually the plain behavior of this guide 
would be as an optical amplifier. One can think of 
a signal to be amplified modulating the fundamental 
mode and the pumping beam in the TE1 (odd) mode. 
By using a guide with the appropriate length one gets 
the amplified signal at the output, as the even modes 
( WO + W2) , provided that reliable mode selectors can 
be designed at the input and the output. This is repre- 
sented in Fig. 6. The output power for each mode for a 
fixed propagation distance ( z = 15 mm) is shown for a 
range of wavelength. At approximately h = 1.305 pm 
the initial small TE$ power is amplified 23 dB, or 26 
dB if the TE& output power is also recovered. 

In order to check the accuracy of the simplified 
coupled-mode technique (CMT) used throughout the 
work, we have carried out some numerical simulations 
by means of a FFT-beam propagation method (BPM) . 

One of the characteristics of this method is the con- 
venience of having a smoothed guide index profile 
to diminish possible numerical errors, i.e. theoreticaly 
abrupt transitions of the refractive index between dif- 
ferent layers are not allowed. The practical and com- 
mon solution of previously smoothing the transitions 
is not evident in our case: the smoothing affects the 
resonance condition, because it produces a slight, al- 

though appreciable, change in the mode propagation 
constants. Thus in the comparison with the CMT and 
the BPM we have decided to recalculate the coeffi- 
cients A, B, C, 6 and L for the smoothed guide. Fig. 7 
shows the power of each mode at the output of the 
guide with a total length of 8850 pm. A good approx- 
imation can be observed in the general behavior in 
the range of the wavelengths considered. Simulations 
were done with the initial conditions WI (0) = 1 .O 
W/m, WI (0) = 500 W/m and Wz(O) = 0.0 W/m. 

Comparing the results obtained with both tech- 
niques two main differences appear. The first one is 
the total amount of power recovered at the output of 
the guide. This has a easy explanation, because the 
BPM is a step-by-step method that detects the con- 
tinuous modulation of the index along the guide, and 
it shows that a continuous leakage of power is taking 
place by generation of radiated modes. The second 
difference is the wavelength shift of the curves. This 
second difference is related to the first one: i.e., the 
radiaton power has a secondary effect, the value of 
the critical wavelength (this for which the maximum 
power swapping occurs) being brought near the point 
given by the linear resonance condition. However, the 
accumulation of rounded-off numerical errors could 
also have some influence on the final result: BPM 
simulations were done with a transversal grid of 5 12 
points. 

Comparisons were made in the case where the non- 
linear induced refractive index change is important. 
The highest estimated change anywhere in the waveg- 
uide was about An E 0.0018. This shows that the pro- 
posed formalism works well enough for low nonlin- 
earity. 

Finally it is necessary to note that, as in fact a grating 
is induced, the bandwidth in wavelength for which an 
appreciable coupling occurs could be designed at will, 
by selecting properly the type of guide, (i.e., the slope 
of S as a function of the wavelength), the total power 
and the length of the nonlinear guide. 

5. Conclusions 

A nonlinear induced grating can be set up in a Kerr 
like optical waveguide by using the periodic interfer- 
ence of three modes. Working near the point in the 
wavelength axis where p0 - fit = pr - & an impor- 
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tam amount of power is swept between odd and even 
modes. The peak of resonance location is a function 
of the total power into the guide. Another interesting 
feature of this nonlinear phenomenon is the phase- 
independent behavior. The net effect with the appro- 
priate initial excitation suggest that this kind of phe- 
nomenon could be used as the basis of optical am- 
plifiers or switches. However, the feasibility of such 
a device is limited in practice by the necessity of ar- 
ranging precise mode selectors at the extreme of the 
guide [ 91. 
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