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lidar returns: optical parameter estimation
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Joint estimation of extinction and backscatter simulated profiles from elastic-backscatter lidar return
signals is tackled by means of an extended Kalman filter ~EKF!. First, we introduced the issue from a
theoretical point of view by using both an EKF formulation and an appropriate atmospheric stochastic
model; second, it is tested through extensive simulation and under simplified conditions; and, finally, a
first real application is discussed. An atmospheric model including both temporal and spatial correla-
tion features is introduced to describe approximate fluctuation statistics in the sought-after atmospheric
optical parameters and hence to include a priori information in the algorithm. Provided that reasonable
models are given for the filter, inversion errors are shown to depend strongly on the atmospheric condition
~i.e., the visibility! and the signal-to-noise ratio along the exploration path in spite of modeling errors in
the assumed statistical properties of the atmospheric optical parameters. This is of advantage in the
performance of the Kalman filter because they are often the point of most concern in identification
problems. In light of the adaptive behavior of the filter and the inversion results, the EKF approach
promises a successful alternative to present-day nonmemory algorithms based on exponential-curve
fitting or differential equation formulations such as Klett’s method. © 1998 Optical Society of America
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1. Introduction

The superior qualities of laser radars, or lidars, with
regard to collimation, spatial resolution, and interac-
tion capability with atmospheric species, when com-
pared with those of conventional microwave radar
systems or passive visible instrumentation, hold
promise that lidars will be long-lasting alternative
observation systems. In an atmospheric lidar, the
emission of a short laser pulse is followed by the
reception of some radiation scattered from atmo-
spheric constituents such as molecules, aerosols, and
clouds. The interaction of the incident radiation
with these constituents changes the intensity andyor
the wavelength, depending on the strength of this
optical interaction and the concentration of the inter-
acting species. Consequently, it is possible to re-
trieve information about the physical state of the
atmosphere along the exploration beam path.1–3
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In particular, estimation of the atmospheric optical
parameters, namely, extinction and backscatter,
based on pulsed elastic-backscatter lidars ~i.e., with
no wavelength shift in reception! has been investi-
gated in the literature.4–6 The single-scattering
range-return power for an elastic-backscatter lidar
system can be expressed as2

P~R! 5
A
R2 b~R!expF22 *

0

R

a~r!drG , (1)

where P~R! is the range-received power ~W!, b~R! is
he range-dependent volume backscatter coefficient
f the atmosphere ~m21sr21!, a~R! is the range-

dependent extinction coefficient ~m21!, R is the range
~m!, and A is the system constant ~W m3!.

Until now, the inversion of lidar signals has been
tackled mainly by using classic procedures such as
the slope method,5 exponential-curve fitting, and
Klett’s method.6 Yet, all these methods assume sim-
plifying andyor correlation hypotheses that limit the
scope of the inversion results. These are discussed
next.

In the case of the slope-method algorithm,5 the
assumption of a homogeneous atmosphere is used to
retrieve constant values ~a, b! as estimates of the
20 October 1998 y Vol. 37, No. 30 y APPLIED OPTICS 7019
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sought-after functions a~R! and b~R!. The key to the
lgorithm is a range-corrected function of the form

S~R! 5 ln@R2P~R!#, (2)

which enables us to find the extinction and backscat-
ter coefficients from a linear regression of the form

mina,biS~R! 2 @ln~Ab! 2 2aR#i2. (3)

In the case of exponential-curve fitting, a similar
pproach is followed, but now the R2-corrected func-

tion is defined without the logarithm as

F~R! 5 R2P~R!, (4)

so that the norm minimization equivalent to expres-
sion ~3! takes the form

mina,biF~R! 2 Ab exp~22aR!i2. (5)

Historically, this kind of fitting was introduced later
because it is nonlinear in a and must be solved by
using numerical methods.7,8

In a different category, the inversion of the range-
dependent function a~R! is first solved by Klett’s
method.6 The method assumes a power-law corre-
lation between the extinction and backscatter atmo-
spheric profiles as follows:

b~R! 5 B0@a~R!#g, (6)

and it requires a guess of the correlation constant g
~0.67 , g , 1! and a calibration at the far end of the
nversion range interval in terms of Sm 5 S~Rmax!
nd am 5 a~Rmax!.9,10 Then the backward stable

solution for a~R! becomes

a~R! 5
exp@~S 2 Sm!yg#

am
21 1

2
g *

R

Rm

exp@~S 2 Sm!yg#dr

. (7)

In spite of the fact that this algorithm is signifi-
cantly superior to the slope method and the
exponential-curve fitting ~because the homogeneity
approximation is not assumed!, the accuracy of the
inverted profile a~R! is limited by that of the calibra-
tion am and the correlation constant g. For this rea-
son the algorithm retrieves a representative of the
family a~R, g, am! linked to the calibration pair ~g,
am!, which is thought to be close to the true extinction
profile a~R!. In other words, the inversion of a
range-dependent extinction profile from the return
power is a many-to-one inversion problem ~see Ap-

endix B in Ref. 11!, which can be solved only by
dding appropriate a priori information ~e.g., calibra-

tions along the observation path and physical con-
straints!.

As we have seen, all these algorithms work with
the present realization of the lidar return signal, so
that correlation among past inverted returns re-
mains unexplored. For example, in an elastic-
backscatter pulsed lidar system, for each return-
power data stream received a new inversion, which is
020 APPLIED OPTICS y Vol. 37, No. 30 y 20 October 1998
completely independent from those previously done,
is performed.

One of the things that distinguishes the Kalman
filter12–14 from nonmemory estimators such as those
discussed above is the convenient way in which it ac-
counts for any prior knowledge through a recursive
process. As long as different power realizations are
coming in, the filter updates itself, weighted by the
imbalance between the a priori estimates of the optical
arameters ~i.e., past inversions! and the new ones.
hus the new estimation of the optical parameters, or
he project-ahead step ~a posteriori estimate!, is im-
roved based on a statistical minimum-variance crite-
ion.

In recent and pioneering work, Rye and Hardesty15

and Lainiotis et al.16 have found applications of the
Kalman filter to the estimation of the return power
and the logarithm of power for incoherent backscat-
ter lidar with multiplicative noise.17 Here we intro-
duce an application of the filter to the solution of the
inverse problem of joint estimation of the extinction
and backscatter coefficients from the return power in
an elastic-backscatter lidar.

This paper is structured as follows: In Section 2
the problem is formulated from a theoretical point of
view in terms of a first adaptive filter based on an
extended Kalman filter ~EKF!; Section 3 describes
the underlying statistics of the atmospheric model
assumed in terms of the state-noise covariance ma-
trix of the EKF; Section 4 discusses two examples of
joint inversion of extinction and backscatter profiles
from elastic-backscatter simulated lidar return sig-
nals; and Section 5 reviews some of the results pre-
sented by tackling a first real application of the filter
to the inversion of power returns from a biaxial
elastic-backscatter 1-J Nd:YAG lidar system.

2. Problem Formulation

It is desirable now to study the feasibility of the der-
ivation of the extinction and backscatter coefficients
over the entire lidar inversion range. It is desired,
then, to solve the functions a~R, t! and b~R, t! that,
under a minimum-mean-square-error criterion, best
fit the observable power P~R, t! at every time t. The
term mean refers here to the ensemble average over
time t. ~Some revision of the EKF algorithm, along
with the notation used below, is summarized in Ap-
pendix A.!

A. State Vector

Given the acquisition sampling rate of the system, fs,
nd considering the two-way path of the lidar signal,
he power time samples Pi correspond to a spatial

sampling period

DR 5
c

2fs
. (8)

Hence the spatial sampling points become

Ri 5 Rmin 1 ~i 2 1!DR, i 5 1, . . . , N, (9)
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where Rmin is some predetermined minimum range of
the system ~which is due to, for example, the mini-
mum range of full overlap between the laser and the
field of view of the receiving optics or some predefined
minimum inversion range of interest!.

The state vector to be estimated, xk, is a decimated
version of the extinction and backscatter functions
a~R! and b~R! over the whole lidar range. This is
done in order to have more observables ~the power
samples from each observation cell! than variables to
estimate ~extinction and backscatter samples in the
estimation cells!, and, as a result, it yields an over-
determined system with enhanced observability.14,18

Furthermore, it can be shown14 that if ~1! the system
state vector is assumed to be a random constant, ~2!
he measurement sequence zk yields an overdeter-

mined set of linear equations, and ~3! the observation
oise becomes negligible @i.e., the measurement noise
ovariance matrix of Eq. ~A4!, Rk ' 0#, then the fil-
er’s estimate depends more and more on current
ata ~which are rich in new information! and less and
ess on past inversions. Under these circumstances
he filter behaves like a deterministic least-squares
stimator ~which parallels the nonmemory ap-
roach!, and its estimate becomes13

x̂k 5 Hk
21zk, (10)

where Hk
21 is the pseudoinverse matrix of Hk @see

elation ~A6!#. Historically, this bridges the gulf
ith past formulations of the problem in the form of
xpression ~5!.
The model considers NyM observation cells, where

M is the decimation ratio, so that the filter estimates
NyM extinction samples and NyM backscatter sam-
ples. Then the effective sampling period becomes
MDR, which is M times that of the return power.
~For simplicity, assume that N is a multiple of M.!
Mathematically, this can be expressed as

ai 5 a~Rmin 1 ~i 2 1!MDR!, i 5 1, . . . ,
N
M

,

bi 5 b~Rmin 1 ~i 2 1!MDR!, i 5 1, . . . ,
N
M

. (11)

From these two halves of NyM elements, we form the
state vector to be estimated:

xk ; ~a1 a2 · · · aNyM b1 b2 · · · bNyM!T, (12)

where the subscript k is a reminder of the discrete
time tk.

The nonstationarity or the dynamics of the state
vector is described by the transition matrix Fk @see

qs. ~A1! and ~A19!# and the state-noise covariance
atrix Qk @Eq. ~A2!#. The former represents how

the state vector projects ahead from time tk to time
k11, and the latter gives the filter key information

about the underlying statistics of each component of
the state vector ~the optical parameters under study!.
Formulation of the system equations in terms of the
transition matrix Fk and the state-noise covariance
atrix Qk gathers all the information the filter knows
about the atmospheric model. This is tackled in Sec-
tion 3.

B. Measurement Equation

If, according to Eq. ~9!, each power sample corre-
ponds to a spatial increment DR, so that Pi 5 P~Ri!,

and a rectangle approximation is used to compute the
transmittance term of Eq. ~1!, the observable power
samples become

P1 5
A

R1
2 b1 exp~22a1 Rmin!, (13)

···

PM 5
A

RM
2 b1 exp$22a1@Rmin 1 ~M 2 1!DR#%,

(14)

···

PM11 5
A

RM11
2 b2 exp$22a1@Rmin 1 ~M 2 1!DR#

2 2a2DR%, (15)

···

PN 5
A

RN
2 bNyM expH22a1@Rmin 1 ~M 2 1!DR#

2 2 (
i52

NyM

aiMDRJ . (16)

The R2-corrected version @Eq. ~4!# of this set of N
equations builds the measurement vector zk:

zk ; @F1~xk! F2~xk! · · · FN~xk!#
T. (17)

By using F~R! rather than P~R!, we reduce the
dynamic margin of zk and, consequently, numerical
errors are reduced as we cycle through the Kalman
loop @Eqs. ~A13!–~A17!#. At the far ranges, however,
mplification of quantization noise generated during
he analog-to-digital conversion might become signif-
cant and must be accounted for in a description of the
tatistics of the observation noise.
Equations ~13!–~16! define the overdetermined set

f equations discussed in Subsection 2.A that relates
he measurement vector zk to the a priori estimate of

the state vector, x̂k
2.

From Eqs. ~12! and ~17!, the N 3 ~2NyM! observa-
ion matrix Hk can be computed by splitting it in two

N 3 ~NyM! submatrices of the form H 5 ~H1H2!,
where

Hij
~1! 5

]Fi

]aj
U

x5x̂k
2

, Hij
~2! 5

]Fi

]bj
U

x5x̂k
2 .

(18)
20 October 1998 y Vol. 37, No. 30 y APPLIED OPTICS 7021
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N3~NyM!
where H1 and H2 are evaluated at the a priori esti-
ate x̂k

2.
From the structure of H1 and H2, it emerges that the

formulation of the inversion problem involves, how-
ever, a trade-off between larger decimation ratios ~M!
and model accuracy. From the point of view of M, if
one compares the EKF formulation with the classical
exponential-curve-fitting counterpart of expression ~5!,
the exponential fitting algorithm works with a very
large value of M, equal to the length of the inversion
interval, which is, in turn, formed by a single inversion
cell. Hence the larger the M, the more robust the
system of Eq. ~10! against observation noise and the
better the regression results @this is best seen by the
products MDRFi in Eq. ~19!, which become larger for
larger M#. Another advantage of increasing M is the
enhancement of the filter’s sensitivity to low return
powers and large values of Rmin. Usually, large dif-
erences between the weight factors 22@Rmin 1 ~M 2
022 APPLIED OPTICS y Vol. 37, No. 30 y 20 October 1998
1!DR# and 22MDR are not desirable, since then
thetrajectory of the filter would be dominated by the
estimation of the first cell. Yet, the most risky
drawback for large M arises from the deterioration
of the filter’s model @Eqs. ~13!–~16!#: Although the
quivalent sampling period of the optical parame-
ers in the filter’s model is MDR, the true atmo-
pheric spacing DR9 is differential in nature. For
he time being, we assume the simplification DR9 5
R in the atmospheric optical profile, so that such
odeling errors are neglected. In other words, the

tmosphere is assumed homogeneous inside any ob-
ervation cell. Although much research is being
one in this field, which is far from the scope of this
tudy, a sensible solution might be achieved by com-
ining the results of an array of M cooperative fil-
ers or, perhaps, by using nonuniform spacing in
he formulation of the problem, depending on the
tmospheric situation at hand.
H1 5 3
22RminF1 0 0 · · · 0

22~Rmin 1 DR!F2 0 0 · · · 0

···
···

··· · · · ···

22@Rmin 1 ~M 2 1!DR#FM 0 0 · · · 0

22@Rmin 1 ~M 2 1!DR#FM11 22DRFM11 0 · · · 0

···
···

··· · · · ···

22@Rmin 1 ~M 2 1!DR#FN 22MDRFN 22MDRFN · · · 22MDRFN

4
N3~NyM!

, (19)

H2 5





 F1

xNyM11

0 0 · · · 0

F2

xNyM11
0 0 · · · 0

···
···

··· · · · ···

FM

xNyM11
0 0 · · · 0

0
FM11

xNyM12
0 · · · 0

···
···

··· · · · ···

0 0 0 · · ·
FN

x2NyM 





, (20)
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Lidar measurements are corrupted mainly by
Gaussian additive observation noise vk. Assuming
hat DR9 5 DR and that the observation noise along

the inversion range can be approximated by range-
dependent stationary electronic thermal noise ~Gauss-
ian additive noise with variance sr

2!, the observation
noise covariance matrix is computed as

Rk 5 E~vk vk
T! 5 3

sr
2~R1!R1

4 · · · 0
···

· · ·
···

0 · · · sr
2~RN!RN

4
4 . (21)

This assumes that electronic noise dominates obser-
vation noise. Following Refs. 17 and 19, the range-
dependent noise variance can be written as

sr
2~R! 5 a@P~R! 1 Pback# 1 b, (22)

where P~R! is the range return power defined in Eq.
~1!, Pback is the background power from any other
interfering source ~for example, the Sun!, and a and
b are constants that depend only on specific param-
eters of the receiving system. The first term ac-
counts for the contributions of the signal-induced
shot noise to the total noise, and the second one
merges into the variable b the contributions of both
dark-current shot noise and thermal noise. @Note
that sr

2~R! has units of square volts or square watts,
depending on whether equivalent noise is computed
at the receiver’s output or input.

In instances where other sources of measurement
noise are present ~e.g., R2-amplified quantization
noise!, one can increase pertinent terms along the
main diagonal of Rk to accommodate such an extra
variance. Nonstationary noise can be tackled by re-
computing Rk at each succeeding step of the filter,
and colored noise ~such as synchronized flash-lamp
nterferences! can be modeled by also using elements
ff the main diagonal of Rk ~see also Ref. 14 for fur-

ther insight!.

3. Atmospheric Model for the Extended Kalman Filter

In their most general form, extinction and backscat-
ter optical parameters are nonlinearly related. Un-
less microscale analysis is considered and plenty of
boundary calibrations from balloon-borne instrumen-
tation or other cooperative systems are given, the
struggle to model physically the temporal and spatial
evolution of the optical parameters leads to awkward
and cumbersome results. A more convenient alter-
native is to try to model the macroscopic effects on
them, rather than the underlying microphysical pa-
rameters. This is done by using the time–space sto-
chastic correlation model sketched in Fig. 1. Each
optical component ~extinction and backscatter! of an
inversion cell is modeled as a stochastic process hav-
ing both temporal and spatial correlation. Each out-
put branch represents one component of the state
vector xk, and the vector noise process wk is formed by
spatially correlated components at the output of the
linear system A. The atmospheric model is driven
by an array of white-noise uncorrelated processes.

A. Temporal Correlation

Temporal correlation is perhaps the most attractive
advantage of the EKF lidar inversion approach over
the nonmemory solutions of expressions ~3! and ~5!
nd Eq. ~7!. This advantage comes from telling the
lter that it should improve its projection steps based
n the fact that the atmosphere usually has a long
orrelation time and that, consequently, swift
hanges in any optical parameter are not possible.
emporal correlation is achieved by modeling each
omponent of the state vector xk ~with k the discrete
ime! as a Gauss–Markov process. ~To simplify the
otation, we define the Markovian process yk as the
th component of vector xk, so that yk 5 xi,k.!

The Gauss–Markov process,14 which is often called
Markovian noise, is zero-mean low-pass filtered
Gaussian noise, whose autocorrelation function is
given by

Ry~t! 5 sm
2 exp~2dutu!, (23)

where sm
2 is the power of the process yk and d is the

3-dB cutoff frequency of the low-pass coloring filter
~IIR boxes in Fig. 1, where IIR stands for infinite
impulse response!.

The discrete-time equation of the process can be
written in the form of an autoregressive moving-
average scalar process20 as

yk11 5 exp~21yLc!yk 1 wk, (24)

where yk and wk are the Markovian and white se-
quences, respectively, and Lc is the temporal correla-
tion length, defined as

Lc 5 1yd, (25)

where Lc has units of samples @the spatial period has
already been defined in Eq. ~8!#.

Finally, Eqs. ~24! and ~25! enable us to express the

Fig. 1. Time–space EKF correlation model.
20 October 1998 y Vol. 37, No. 30 y APPLIED OPTICS 7023
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state-vector transition matrix associated with Eq.
~A19! as

Fk 5 exp~21yLc!I, (26)

where I is a ~2NyM! 3 ~2NyM! identity matrix and we
have used the simplifications that Fk is constant over
ime tk and that Lc is the same for all the cells along

the lidar exploration path. With Fk a matrix, wk
also becomes a vector, whose 2NyM components rep-
esent white sequences at each time t 5 tk.

In practice, Markovian noise is responsible for the
time drift of the actual value of the optical parame-
ters being estimated by the filter at each projection
step. For this reason it is useful to define an inten-
sity parameter p that enables us to adjust the power
f the Markovian process or, equivalently, to link the
riving Gaussian noise power to the amplitude
hange caused in an optical parameter. From Eqs.
23! and ~25! and Ref. 14, the Gaussian noise stan-

dard deviation sw and the Markovian one, sm, can be
related as

sw 5 smÎ1 2 exp~22yLc!. (27)

A comprehensive collection of histograms for a given
sm have shown that over 95% of the Markovian am-
plitudes distribute between 62.5sm. With that in
mind, the white-noise strength sw 5 sai

that is
eeded to cause a p-per-one change in the amplitude

of a vector component of xk ~let it be ai! over a corre-
lation length Lc becomes

sai
5

p
2.5

aiÎ1 2 expS2
2
Lc
D , i 5 1, . . . ,

N
M

. (28)

B. Spatial Correlation

Contrary to what happened with nonmemory algo-
rithms, where analytical correlation relations were
assumed @for example, homogeneity for the slope and
exponential-curve-fitting algorithms of expressions
~3! and ~5!, respectively, or the power-law correlation
f Eq. ~6! for Klett’s method#, the approach presented

here is based on the correlation graph of Fig. 2. It
paves the way for the introduction of loose stochastic
relations among the sought-after optical parameters
instead of tight analytical ones. It seems sensible to
guess that, for example, any extinction change in a
particular cell will, in turn, influence variations not
only in the in-cell backscatter component but also in
the extinction and backscatter components of its

Fig. 2. Spatial correlation graph of the state-vector components.
024 APPLIED OPTICS y Vol. 37, No. 30 y 20 October 1998
neighboring cells. The underlying physical phenom-
enon being the cause, the changes may well extend
over several cells. From the correlation graph of
Fig. 2, one can build the white-noise state-vector co-
variance matrix as follows:

Cw 5 FCaa Cab

Cba Cbb
G . (29)

These block matrices can be developed as

Caa 5 3
sa1

2 rsa1
sa2

· · · rn21sa1
san

· · · sa2

2 · · · rn22sa2
san

· · · · · · · · · · · ·
· · · · · · · · · san

2
4 , (30)

Cab 5 3
r9sa1

sb1
r9rsa1

sb2
· · · r9rn21sa1

sbn

· · · r9sa2
sb2

· · · r9rn22sa2
sbn

· · · · · · · · · · · ·
· · · · · · · · · r9san

sbn

4 , (31)

where Cba 5 Cab, Cbb is the same as Caa but with b
nd a permuted, r is the correlation coefficient be-
ween one cell and the next one along the beam path
which is due to the physical continuity of the atmo-
phere!, r9 is the in-cell extinction-to-backscatter cor-
elation coefficient, and si has been defined above in

Eq. ~28!. On the condition that uru , 1, ur9u , 1, it can
e proved that the graph of Fig. 2 does represent a
ovariance matrix.

Assuming that temporal and spatial correlation
rocesses are independent, the Markovian noise
tate-vector covariance matrix ~i.e., the sought-after
ovariance matrix for the atmospheric model given to
he filter, Qk! can be computed from Eqs. ~27!, ~29!,

~30!, and ~31! as

Qk 5
Cw

1 2 exp~22yLc!
, (32)

where Qk and Cw are basically the same except for a
scaling factor, which could, in turn, be merged into an
equivalent intensity parameter p9.

Although the inversion of wind fields is far from the
objective of this study, this independent hypothesis
between temporal and spatial correlation is, however,
doubtful in situations with a significant radial wind
component ~i.e., the wind component along the explo-
ration path!. In these instances radial wind
strongly correlates both space and time fluctuations
along the line of sight. Here one might consider only
the spatial correlation of Fig. 1 ~i.e., Qk 5 Cw,k!, but
this time a variant one, since the observation cells
along the path become progressively affected by dif-
ferent correlation links as time goes on. In addition,
boosting elements off the main diagonal would tell
the filter of a significant increase in the correlation
among neighboring cells. In any case the possibility
of modeling nonstationary statistics in Qk by reset-
ting it at each succeeding step of the filter offers a
wide span of attractive possibilities yet to be investi-
gated.
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Table 1. Simulation Parameters
Usually, the state-noise covariance matrix of the
EKF, Qk, is the most difficult input to assess, since its
atmospheric counterpart Qk,a ~the subscript a refers
o atmospheric! is unknown. The problem of finding
ood models for Qk has sometimes been tackled by

using a partitioned approach,16,21,22 where the un-
knowns are merged into a vector of random variables
Q 5 ~u1

. . . uP! with known or assumed a priori prob-
bility density functions ~consider, for example, Ref.
6!. This approach yields a bank of EKF’s working
n parallel, each matched to an appropriate value of
i, so that the overall vector Q spans the space of

unknown parameters constrained by their related
possible values. In theory, joint estimation of the
extinction and backscatter parameters Q would vir-
ually apply to all the elements of Qk,a plus, possibly,

the equivalent intensity parameter p9. In practice,
this would involve a large array of filters that would
probably exceed the framework of intelligent and self-
organizing systems, and hence it would certainly pre-
vent a straightforward formulation of the study.
For this reason, at this first stage, estimation with a
single EKF is preferred in this experimental work,
even though this is done at the expense of larger
modeling errors and, hence, worse performance.
These model uncertainties justify a formulation of
the a priori error covariance matrix as

P0
2 5 mQ0, m $ 1. (33)

With regard to the atmospheric model, the simu-
ations have used a set of parameters Qk,a, Lc,a, and

pa different from those given to the EKF model, Qk,
Lc, and p, to test the performance of the filter under
modeling errors. Eigenvalue decomposition is used
to compute the linear correlator ~A in Fig. 1! and the
power of the white-noise uncorrelated sequences
~n1

. . . nNyM!, which are the driving inputs of the at-
mospheric simulator.14

4. Simulation Results

Through extensive simulation and simplified condi-
tions, joint estimation of extinction and backscatter
simulated profiles from elastic-backscatter lidar re-
turn signals have been inverted by using the formu-
lation presented above. Next, two simulation sets
are discussed; the first one ~Figs. 3–7! corresponds to

Basic parameters
Optical parameters ~set 1!

~set 2!
Inversion range @Eq. ~9!#
Order parameters
System constant @Eq. ~1!#
Noise parameters @Eq. ~22!#

Model parameters @Eqs. ~28!–~32!#
Atmosphere
EKF

Initialization
a good-visibility scene, and the second one ~Figs.
8–10! corresponds to moderate-visibility conditions.
Simulation parameters are summarized in Table 1.
First, we give a brief outline of the choice of statistical
parameters.

The choice of ra and r9a is based on cross-examined
time–space plot sets of synthesized power return sig-
nals with nonwindy time–space real observations.
Good agreement between typical real data sets and
simulated ones has usually been achieved for large
values of r9a ~typically between 0.8 and 0.9! and me-

ium values of ra ~typically between 0.3 and 0.7!.
The former result is also in accordance with Eq. ~6!,

here g 5 1 is equivalent to r9a 3 1. As for the
latter, it has been found that ra values close to unity
are not advisable because they yield stiff spatial pro-
files that are so correlated that it is difficult to ac-
commodate even moderate heterogeneities along the
lidar path. It has also been found that the intensity
parameter pa is the most critical of all and that it
must be adjusted to each particular scene. As a rule
of thumb for low atmospheric extinctions, measure-
ment of the fluctuations in the range-corrected power
has yielded acceptable estimations of p. Lc is usu-
lly determined from rough visual estimation.
The first simulated set is related to a mean visibil-

ty of VM 5 39.12 km. Such visibility conditions are
typical of standard clear to exceptionally clear air.
From Refs. 23 and 24 and under the approximation of
a homogeneous atmosphere, the visibility parameter
can roughly be linked to the atmospheric optical pa-
rameters a 5 0.1 km21 and b 5 4 3 1023 km1 sr21 or,
equivalently, ka 5 25 sr and b 5 4 3 1023 km21 sr21,
where ka is the extinction-to-backscatter ratio indi-
cated in Table 1 and the subscript a refers to atmo-
sphere. Hence one can without distinction talk
about visibility or homogeneous atmospheric optical
parameters ~a, b!.

To simulate an inhomogeneous profile approxi-
mately related to the visibility VM, the simulator
computes a range-dependent hump-shaped backscat-
ter profile with mean b, such as the one shown in Fig.
3~a!. For other visibility margins, the profile is
scaled accordingly. In this way it is ensured that the
synthesized profile is always approximately related
to the average visibility desired. We computed the

0.1 km21, b 5 4 3 1023 km21 sr21, VM ' 39.12 km
1 km21, b 5 3 3 1022 km21 sr21, VM ' 3.91 km

in 5 200 m, Rmax 5 5 km, DR 5 123.1 m @Eq. ~8!#
40, M 5 2 @Eqs. ~11!#, iterations 5 320
2.35 3 1023 W km3

1.8 3 10210 W, b 5 5 3 10218 W2, Pback ' 2 nW

5 ayb, pa 5 40%, Lc,a 5 50, ra 5 0.6, r9a 5 0.9
0.9ka, p 5 50%, Lc 5 100, r 5 0.3, r9 5 0.8

5 Q0 @Eq. ~33!#, x̂0
2 5 ~kb, . . . , kb, b, . . . , b!
a 5
a 5
Rm

N 5
A 5
a 5

ka

k 5

P0
2

20 October 1998 y Vol. 37, No. 30 y APPLIED OPTICS 7025
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range-dependent extinction profile after the back-
scatter by reusing the extinction-to-backscatter ratio
ka. From the extinction and backscatter initial pro-
files just computed, the lidar range-return power of
Eq. ~1! follows as shown in Figs. 3~b! and 3~c!. To
educe the order of the filter, the physical problem
as been discretized by using N 5 40 and M 5 2,
hich means N 5 40 power samples and NyM 5 20
bservation cells. Since each cell is defined by both
ts extinction and backscatter parameters, there are
0 state-vector components, 20 for each optical pa-
ameter.

To compute the observation noise, the simulator
ses electrical and optical parameters from an
lastic-backscatter lidar of the Polytechnic Univer-
ity of Catalonia in Barcelona, Spain ~system speci-
cations are given in Section 5! to assess realistic
oise parameters in Eq. ~22!. They are representa-
ive of a typical tropospheric lidar system ~see Table
! and yield the range-dependent signal-to-noise ratio
SNR! of Fig. 3~d!.

The atmospheric behavior was simulated by using
he simplified model described in Section 3 and the
odel parameters of Table 1. As for the EKF, a

lightly mismatched model is input, so that, for ex-
mple, the extinction-to-backscatter ratio is underes-
imated by 10%, the temporal correlation length is
oubled, and the spatial correlation coefficients are
hanged as indicated in Table 1. These modeling
rrors translate into Qk,a Þ Qk, as suggested in Sub-

section 3.B. Since we are particularly concerned
about the performance of the filter under different
visibility conditions and atmospheric modeling er-
rors, the simplification in which there are no mis-
matches in the model of Rk, so that both the
bservables and the filter share the same covariance
atrix, has been assumed. This can be justified be-

ause Qk,a is always the hidden parameter of the
atmosphere, whereas Rk can ultimately be measured
from the lidar system.

Fig. 3. ~Set 1! initial state of the simulation: ~a! synthesized
ackscatter profile, ~b! range-corrected return power, ~c! return
ower as received by the lidar, ~d! associated SNR.
026 APPLIED OPTICS y Vol. 37, No. 30 y 20 October 1998
The initialization of the filter, x̂0
2, may come from

any of the methods discussed in Section 1; in partic-
ular, Eq. ~7! would yield the best approximation.
Yet, to test the performance of the filter, it has been
initialized in the simplest possible way by using a
constant homogeneous profile for the extinction and
backscatter components of the state vector, as indi-
cated in Table 1. Since each simulation run takes
320 iterations, the filter depends more and more on
the measurements and less and less on the initial
state.

As time goes on, the actual measurement data ~ob-
ervables! received for any particular sample run

change according to the atmospheric state model
given by Fk and Qk,a, so that slowly varying changes
in both the extinction and backscatter profiles are
accommodated. The filter keeps track of the time-
varying nature of the observables from the beginning.
Figures 4 and 5 illustrate the time evolution of the
atmospheric model along with the EKF state-vector
components. Recall that components 1–20 repre-
sent the extinction coefficient and components 21–40
represent the backscatter coefficient along with the
observation cells, so that if one reads by cells, the first
one comprises components 1 and 21, the second one

Fig. 4. ~Set 1! time–space evolution of the extinction and back-
scatter profiles: ~a! synthesized atmospheric optical parameters
~extinction and backscatter!, ~b! EKF inverted optical parameters.
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comprises components 2 and 22, and so on. The
temporal evolution of the mountains in Fig. 4 is
caused by the Markovian noise. Spatially, with r9a 5
0.9 the in-cell extinction-to-backscatter correlation is
so high that the two halves of each plot look virtually
alike ~note that for illustrative purposes the backscat-
ter half has been rescaled by ka!.

Convergence of the EKF from the homogeneous
initial profile to something close to a real profile can
easily be tracked by monitoring the trace of the error
covariance matrix Pk @see Eq. ~A18! in Appendix A
nd Section 5 for further insight#. Since Pk informs

the filter about the expected error that it is commit-
ting at each time tk, a good convergence criterion is
whether Pk has reached a constant value. In the
plots presented, as is always the case, the shape of
the estimated profiles is retrieved fast, but their mag-
nitudes ~especially the extinction one! take some
more time to settle. In the simulations the trace of
Pk settles by iteration 150, although after iteration 50
most details from the true atmospheric profile at
short ranges are recovered quite well.

Figure 5 is a contour plot of Fig. 4 representing
isoextinction and isobackscatter curves ~scaled by ka

Fig. 5. ~Set 1! contour plots of Fig. 4 showing very good correla-
tion between the time–space evolution of the atmospheric optical
parameters and the inverted ones: ~a! synthesized atmospheric
optical parameters, ~b! EKF inverted optical parameters.
for illustrative purposes! along time for both the at-
mospheric and the estimated state vector. Both con-
tours look virtually alike after the 50th iteration
except for some slight deterioration in the far-range
extinction components of the atmosphere ~compo-
nents 10–20!, where the EKF performs more poorly.
This, however, can easily be justified by the progres-
sive reduction in the SNR of Fig. 3~d! for increasing
anges.

From the point of view of the time–space correla-
ion models introduced in Subsections 3.A and 3.B,
ig. 6 compares the time evolution of the EKF esti-
ates in four observation cells successively farther

long the lidar exploration range ~cells 5, 10, 15, and
0 located at 1307.7, 2538.5, 3769.2, and 5000 m,
espectively! with their true atmospheric counter-

parts. The atmospheric backscatter evolution is de-
noted by solid curves, and the filter’s estimates are
given by small circles. The filter follows the random
drift of each cell fairly well in all the cases, but
whereas Figs. 6~a! and 6~b! show the best-fitted cells,

igs. 6~c! and 6~d! show some slight underestimation
f the atmospheric backscatter. Horizontal solid
ines indicate the initial backscatter value in each cell
efore the atmospheric simulator starts. These val-
es correspond to the 5th, 10th, 15th, and 20th com-
onents of Fig. 3~a!. As expected from the temporal
orrelation model formulation of Subsection 3.A,
arkovian noise translates into a slow temporal drift

f the backscatter figure. For example, the atmo-
pheric temporal correlation length ~Lc,a 5 50 sam-
les! is best seen in Figs. 6~a! and 6~c! ~solid curves!.
hus, in Fig. 6~c!, increasing and decreasing slopes

ast for approximately 50 samples on average, and
he same happens in Fig. 6~a! except that now the
lot includes some kind of horizontal interval. From
he point of view of the spatial correlation, one has to
ompare all the plots. Since ra 5 0.6 and each plot

Fig. 6. ~Set 1! temporal evolution of the backscatter profiles in
four representative observation cells along the lidar beam path:
~horizontal lines! starting backscatter values for the atmospheric
simulator, ~solid curves! atmospheric backscatter evolution, ~cir-
cles! EKF estimates.
20 October 1998 y Vol. 37, No. 30 y APPLIED OPTICS 7027
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represents the behavior of a cell that is five cells apart
from the others, ra

5 ' 0.08 means poor correlation
among them.

Finally, Fig. 7 compares the final state of the at-
mospheric extinction and backscatter components
with the EKF estimates and their relative inversion
errors, with successful results. As expected, inver-
sion errors increase in the far range ~components
10–20!, since these observation cells undergo the
worst SNR’s. Everything considered, inversion er-
rors seldom exceed 20% and 10% for the extinction
and backscatter components, respectively, for SNR’s
of approximately 25 dB at 5 km. Therefore, as far as
noise is concerned, a SNR at the receiver output ~i.e.,
as a ratio of voltages! above 25 dB at 5 km seems
nough to ensure good performance of the filter in the
xample.
The second simulation set is ruled by a mean vis-

bility VM 5 3.91 km, which is typical of a turbid
tmosphere or moderate haze. From Refs. 23 and
4, this visibility can roughly be linked to a 5 1 km21

and b 5 3 3 1022 km21 sr21 or, equivalently ka 5 33
r and b 5 3 3 1022 km21 sr21. All the other basic

model parameters were set as indicated in Table 1.
Simulation results are reproduced in Figs. 8–10.

The synthesis of the atmospheric optical parame-
ters from the visibility margin VM follows the proce-
dure discussed above, so that the shape of the
synthesized backscatter profile is exactly the same as
that in Fig. 3~a!, but it is conveniently scaled to the

ew value of visibility. Compared with Fig. 3~d!, the
NR plot would decrease in a linear fashion ~in the

og grid! from 67.5 dB at Rmin 5 200 m down to 231.0
dB at Rmax 5 5 km, where SNR is defined as a ratio
f voltages at the received output. If one follows a
loseness criterion between both the true and esti-
ated profiles, SNR . 25 dB yields extinction and

ackscatter relative errors below 20% and the useful

Fig. 7. ~Set 1! Inversion results after 320 iterations: ~a! final
atmospheric extinction ~solid curve!, final EKF extinction esti-
mates ~circles!; ~b! final atmospheric backscatter ~solid curve!, final
EKF backscatter estimates ~circles!; ~c! extinction relative inver-
sion error; ~d! backscatter relative inversion error.
028 APPLIED OPTICS y Vol. 37, No. 30 y 20 October 1998
nversion range becomes limited to 2 km ~eighth ob-
ervation cell!. This hypothesis is corroborated by
he contour plot of Fig. 8 and the temporal evolution
f the filter’s estimates in Fig. 9, where it is seen that
he filter loses track of the physical situation from the
Fig. 8. ~Set 2! Contour plots comparing ~a! the synthesized opto-
tmospheric parameters and ~b! the EKF estimates.
Fig. 9. ~Set 2! Temporal evolution of the backscatter profiles in
four representative observation cells along the lidar beam path:
~horizontal lines! starting backscatter values for the atmospheric
simulator, ~solid curves! atmospheric backscatter evolution, ~cir-
cles! EKF estimates.
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ninth backscatter component up ~2292 m!, where the
SNR becomes 21.5 dB. What is more, if in Fig. 8 one
follows the isoextinction and isobackscatter contour
lines labeled 0.68 ~arbitrary units!, which correspond
to far ranges between 3.3 and 4.5 km, the filter’s
estimates by chance match the atmospheric param-
eters at approximately time tk 5 40, pass them by,
nd eventually become stranded at a wrong estima-
ion. This behavior is clearly illustrated in Fig. 9.
ere it is shown that the filter’s estimates yield rea-

onable backscatter inversions until the tenth obser-
ation cell, even though the filter tends to become
luggish from this cell up. Performance in the 15th
nd 20th cells is completely wrong as expected, since
t the far ranges the actual measurement received on
ny particular sample run is hidden by observation
oise and does not make any improvement in the
lter’s estimates. Figure 10 illustrates the final es-
imates after 320 iterations ~along with the expected

Fig. 10. ~Set 2! Inversion results after 320 iterations: ~a! final
atmospheric extinction ~solid curve!, final EKF extinction esti-
mates ~circles!; ~b! final atmospheric backscatter ~solid curve!, final
EKF backscatter estimates ~circles!; ~c! extinction relative inver-
sion error; ~d! backscatter relative inversion error.

Table 2. Lidar S

Laser Recei

Gain
medium

Nd:YAG Focal length 2 m

Energy 500 mJ ~l1 5 532 nm! Aperture 20-

1 J ~l2 5 1064 nm! Field of view 0.2

Divergence 0.1 mrad
Pulse Length '10 ns Detector Av

Detector gain M
Detector

responsivity
0.2

Net respon-
sivity

6 3

Bandwidth 10

aMsps is 106 samples per second.
ones! and the inversion errors, which become higher
for this visibility.

As an additional remark, the start-up problem of
the filter was especially investigated insofar as it
concerns the a priori error covariance matrix P0

2. In
particular, for the first simulation set discussed ~VM
5 39.12 km! two extra simulations were carried out,
including large modeling errors in the Markovian
intensity parameter p @Eq. ~28!#, which is directly
related to the search span of the filter through Eqs.
~32! and ~33!. In the first simulation, we set pa 5
50% and p 5 0.5%, and in the second one, pa 5 5%
and p 5 50%. The results obtained were substan-
tially different: In the first case, where the filter
was set with a low P0

2 a sluggish, poor estimation of
the extinction component was retrieved, whereas the
backscatter profile was estimated reasonably well.
In the second, where the filter was set with a P0

2

higher than the atmospheric state-vector covariance
matrix Qk,a, both parameters were inverted reason-
ably well and the filter’s estimates do not degrade
much from the plots presented so far in Figs. 3–7.

5. Example of a Real Application

In this section we tackle the first real application of
the filter to the inversion of the sought-after atmo-
spheric optical parameters from power returns mea-
sured with an elastic-backscatter lidar system of the
Polytechnic University of Catalonia at our premises
in Barcelona, Spain, whose main specifications are
given in Table 2. Key features of the system are that
it is limited to vertical exploration and that an ad-
justable biaxial arrangement between the laser and
the telescope axis is used. In spite of the fact that
this complicates system pointing because the tele-
scope can be tilted, when it is combined with a low-
noise wide-variable-responsivity receiver, both short-
and far-range exploration is possible.

In the measurement campaign of 25 September
1996, the telescope was aimed at far-range exploration

Specifications

Main System Specifications

Vertical biaxial

iameter System noise-equivalent
power

70 fW Hz21y2

d Minimum detectable
power

,5 nW

he photodiode Acquisition 20 Mspsy12 bitsa

o 400 Range resolution 7.5 m
W ~M 5 1! Time resolution 50 ns

–3 3 106 VyW Pulsed repetition
frequency

10 Hz
ver

cm d

mra

alanc
5 1 t
4 Ay

101

MHz
20 October 1998 y Vol. 37, No. 30 y APPLIED OPTICS 7029
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~.1–15 km!. The visibility was very clear ~0.01 km21

& a & 0.2 km21 on the basis of visual inspection and
efs. 23 and 24! in the inversion interval of interest,
nd two high cloud layers were detected at 6.4–7.7-km
nd 8.6–9.4-km height. In the example presented
ext, we selected the tropospheric interval between
82.5- and 2650-m height for inversion, which com-
rises 250 power samples ~equal to the filter order!, so

as to test the filter with an atmospheric scene similar
to the first set of simulations of Section 4. This serves
the purpose of discussing the EKF performance under
nonideal data with regard to the estimation statistics

Fig. 11. Example of a real application: ~a! range-corrected rece
of 50 signal packets ~15 pulses per packet! in the range 0.78–2.65 k
distance is translated into samples ~each sample equals 7.5 m!; by
, . . . , 50!; ~d! same as ~c! but showing EKF range-corrected estim

Table 3. Inversion

Basic parameters
Inversion range @Eq. ~9!#
Order parameters
System constant @Eq. ~1!#
Noise parameters @Eq. ~22!#

Model parameters @Eqs. ~28!–~32!#
EKF

Initialization
030 APPLIED OPTICS y Vol. 37, No. 30 y 20 October 1998
modeled rather than studying atmospheric features
such as mixing depth or turbidity.

The system was operated at 390-mJ output energy,
532-nm wavelength, and 1.8 3 104-VyW net respon-
sivity, which yields the system constant and the noise
parameters shown in Table 3. Clean data along
with the related SNR are shown in Figs. 11~a!–11~c!.

his includes both range correction and signal aver-
ging of 15 pulses ~which makes sense thanks to the
elative stationarity of the received returns!. In the
lots both temporal and spatial correlation is clearly
vident. Range-corrected power estimated during

power as observables to the filter @zk 5 R2P~R!#; the plot consists
! associated SNR at the receiver output; ~c! contour plot of ~a! after

ns, we read the measurement vector zk at successive times ~tk 5
power during the first 50 iterations.

eters for Section 5

min 5 782.5 m, Rmax 5 2.65 km, DR 5 7.5 m @Eq. ~8!#
5 250, M 5 2 @Eqs. ~11!#, iterations 5 200
5 1.81 3 1023 W km3

5 3.7 3 1029 W, b 5 3.4 3 10216 W2

5 10%, Lc 5 50, r 5 0.3, r9 5 0.9

0
2 5 100Q0, x̂0

2 5 ~a, . . . , a, b, . . . , b! ~see the text!
ived
m; ~b
colum
ated
R
N
A
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p
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the first 50 iterations of the EKF is shown in Fig.
11~d!.

To perform the inversion, the original real data,
which contain 50 returns per 250 samples each, are
fed to the EKF in a round-robin fashion so that the
EKF runs 200 iterations ~i.e., four rounds of 50 re-
urns each!. Covariance matrices Rk, Qk, and Pk

were modeled as follows:
The noise covariance matrix Rk was estimated

from Eqs. ~21! and ~22! and complete characterization
of the equivalent-noise parameters a and b ~Table 3!
of the optoelectronic receiver stage. To corroborate
this result, the equivalent-noise standard deviation
sr~R! was checked with its direct computed counter-
part from plot analyses of the recorded voltage set at
different ranges along the inversion interval.

Modeling the state-vector covariance matrix Qk
was done in two steps: first the intensity parameter
p and second the correlation parameters Lc, r, and r9.

rom Eqs. ~28!–~31! it follows that the intensity pa-
ameter plays a prominent role in the covariance ma-
rix Qk and hence on the filter search span. To guess

p, percentage drift in an optical parameter ~say, the
backscatter! must be estimated @Eq. ~28!#. This was
done by computing the standard deviation of the
range-corrected returns of Fig. 11~a! for each obser-
vation cell ~i.e., 50-sample length realizations were
considered for each cell along the inversion spatial
range!. As the visibility is very clear, Fig. 11~a!
yields itself a backscatter estimation. Were if not
for that, such plots would have to be corrected by
some approximation of the optical depth for each ob-
servation cell. This approach gave standard devia-
tions ranging from 5% to 22% along the inversion
range considered, and hence 10% was accepted as a
reasonable figure for p.

As for the second group of parameters, they were
set as follows: Because Fig. 11~a! does not show
significantly increasing or decreasing slopes in time
series, similar to Fig. 6 ~but now for the range-
corrected power instead of the backscatter!, Lc was
set to 50. Another approach is to set Lc to some
predetermined typical value and, since from Eq. ~32!
he correlation length translates into a scale factor for
k, compare both measured and EKF estimated
ower and adjust the intensity parameter p by trial
nd error. Advice on adjustment of correlation co-
fficients r and r9 has already been given in Section 4,
nd the figures used are given in Table 3. The ex-
inction being the most sensitive parameter, r was set
o the low typical range to decorrelate the backscatter
rom extinction errors that are due to misestimation
f the intensity parameter p.
The EKF was initialized as above with a uniform

tate vector x̂0
2 as indicated in Table 3 ~a 5 1022 km21

and b 5 1023 km21 sr21!, and later the inversion was
repeated with x̂0

2 at 1 order of magnitude lower. The
priori error covariance matrix P0

2 was conserva-
ively set to 100Q0 @m 5 100 in Eq. ~33!#, because it
as desired that the filter open as much as possible

ts initial search span. In both cases identical re-
ults, shown in Figs. 12 and 13 ~to be explained next!,
ere obtained.
To shed more light on the choice of statistical pa-

ameters r, r9, and p, different sets of parametric
inversions sweeping the typical ranges introduced in
Section 4 were conducted. In other words, once it
was shown that the EKF approach achieved fairly
acceptable results when the assumed statistical prop-
erties of Qk were only a suitable guess of the hidden
atmospheric ones, we decided to investigate its per-
formance in response to poorly guessed statistics in
Qk and to determine which warning indicators were
available. After careful cross examination of the re-
sults, two important warning indicators were found:
~1! comparison between the range-corrected received
power and the filter’s estimated one or, equivalently,
the relative error between zk and ẑk

2 @Fig. 12~a!# and
2! time evolution of the Pk, Qk, and Rk traces @Fig.
2~b!#. This enables us to identify both modeling
rrors and convergence times. Thus, if the statistics

Fig. 12. Identification of modeling errors and convergence times.
~a! Comparison between the range-corrected received power ~solid
curve! and the filter’s estimate ~circles!: The range interval ap-
proximately between 0.78 and 1.7 km is largely affected by ovf
modeling errors as discussed in the text, whereas the end interval
between 1.7 and 2.65 km shows much better agreement between
both the EKF estimates and the received signal. ~b! Time evolu-
tion of Pk, Pk

2, Qk, and Rk traces: Steady convergence is indicated
y a constant value in the trace of Pk between the traces of Rk

~measurement noise! and Qk ~state-vector noise!.
20 October 1998 y Vol. 37, No. 30 y APPLIED OPTICS 7031
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modeled in Qk become poorer, so will power match-
ing. This also provides a tool for fine-tuning the
above-mentioned parameters, in particular the inten-
sity parameter p. The study also corroborated that
our first guess of p following the guidelines indicated
above was correct and that the Table 3 set was fairly
accurate.

In turn, this enables us to infer other sorts of mod-
eling error that do not necessarily have to do with the
statistical modeling but apply to the lidar equation
@Eq. ~1!# itself. As well as the 1.7–2.65-km range
interval can be labeled as a reliable inversion inter-
val, the 0.78–1.7-km interval cannot. Close exami-
nation of the latter range interval showed that it was
corrupted by overlap factor ~ovf ! losses.2 The ovf

epends on the overlap of the area of laser irradiation
illuminated cross section at range R! with the field of

view of the receiver optics and hence is itself a range-
dependent function j~R! that distorts the basic model
of Eq. ~1!.

As stated above, the Pk trace @Fig. 12~b!# is a good
indicator of steady tracking of the atmospheric fluc-
tuations and illustrates the way in which the filter
works: From the first iterations, the filter progres-
sively reduces the a priori estimation error ek

2 @Eq.

Fig. 13. Inversion results: ~a! three-dimensional plot showing th
50 iterations in response to Figs. 11~a! and 11~b!; the reliable inve
the text; ~b! same as ~a! but showing backscatter estimates; ~c! conto
dashed line! extents along the vertical of the instrument roughly fr
of km21 sr21.
032 APPLIED OPTICS y Vol. 37, No. 30 y 20 October 1998
~A18!# until the trace of the a priori error covariance
matrix becomes stranded somewhere between the
traces of the measurement noise and atmospheric
noise covariance matrices ~Rk and Qk, respectively!.

ualitatively, this suggests that the filter is wise
nough to counteract observable noise through con-
enient averaging with prior estimates but eventu-
lly becomes stranded above some state noise that is
ue to the atmosphere dynamics and is represented
y the Qk trace.
To sum up, Fig. 13 shows the inversion results

achieved during the last 50 iterations of the filter,
along with an indication of the reliable inversion in-
terval based on Fig. 12 indicators. Outside the reli-
able interval, the inversion becomes progressively
corrupted by the geometric ovf as long as one moves
toward the first observation cell at Rmin 5 782.5 m,
where the EKF tries to compensate ovf losses with a
negative extinction lacking any physical significance.
Inside the reliable inversion interval ~1.7–2.65 km!,

hich comprises more than 100 samples, the inver-
ion was further checked by inverting data subinter-
als with 50 and 100 samples, which inside their
espective inversion subranges yielded identical re-
ults to those shown in Fig. 13 from the 250-order

e evolution of the extinction estimates of the filter during the last
interval is virtually free from ovf modeling errors as discussed in
ot of ~a! in units of km21; the reliable inversion interval ~horizontal
.7 km up; ~d! same as ~c! but for the backscatter estimates in units
e tim
rsion
ur pl
om 1
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filter. The inversion results obtained have been
shown to be in good agreement with typical values for
vertical exploration reported in the literature.1,2,11

6. Conclusions

Historically, the inversion of optical parameters,
namely, the atmospheric extinction and backscatter,
from the return power of an elastic-backscatter lidar
has been tackled by using nonmemory algorithms,
basically least-squares curve-fitting procedures and
the well-known Klett’s method. Through extensive
simulation under simplified modeling conditions and
a first application to the inversion of real data, it has
been shown that an extended Kalman filter ~EKF!
ormulation enables one to invert both extinction and
ackscatter optical parameters as time, range-
ependent functions from the lidar return power.
his is a first step in the pioneering field of adaptive

oint estimation of the sought-after optical parame-
ers by using an EKF.

The approach presented here replaces tight correla-
ion relations used thus far, such as analytical rela-
ionships between extinction and backscatter
arameters plus boundary calibrations and the homo-
eneity hypothesis for the atmosphere, by appropriate
orrelation models ~both temporal and spatial! and the
escription of the optical parameters as vector stochas-
ic processes. These models try to describe the mac-
oscopic short-term fluctuations of the atmospheric
ptical parameters ~i.e., to model their magnitude vari-
tions! through a set of statistical parameters, given as
odel inputs. The core of the temporal correlation
odel is that actual temporal variations in the mag-
itude of the extinction and backscatter parameters
ave finite correlation length. As to the spatial cor-
elation model, a sensible straightforward correlation
raph is used as a rough description of correlation
inks among the observation cells along the lidar ex-
loration path. Since the estimation criterion is min-
mum mean square error ~in the statistical sense! for
he EKF and not the square error as is customary in
onmemory algorithms, the EKF accounts for any
rior knowledge through a recursive process in the
ost convenient way.
The feasibility of the proposed adaptive algorithm

as been tested in two ways: First, simulations
ave been conducted to show that even under mod-
rate modeling errors between the simulated atmo-
pheric model and the EKF one, inversion errors
trongly depend on the atmospheric condition ~i.e.,
he visibility! and the signal-to-noise ratio ~SNR!

along the exploration path ~SNR’s above 25 dB along
the inversion path have yielded relative inversion
errors in the optical parameters below 20% for visual
ranges of approximately 4 km!. The atmospheric
xtinction becomes the most difficult parameter to
nvert because of its sensitivity to power misestima-
ion. Second, we have broken through the idealness
hat any set of simulated data conveys with regard to
he atmospheric model of the filter, and the EKF has
ackled the inversion of a similar atmospheric scene,
ut this time from real data, with successful results.
n addition, both the power mismatch and the a priori
rror covariance matrix trace ~Pk! have been shown to

be good performance indicators on account of model-
ing errors.

All things considered, the EKF promises to be a
useful tool in the field of joint estimation of the at-
mospheric extinction and backscatter optical param-
eters from elastic-backscatter lidar returns.

Appendix A: Review of the Extended Kalman Filter and
Notation Used

Some of the most successful applications of the Kal-
man filter are obvious for situations for which non-
linear dynamics andyor measurements must be
considered.

The system model to estimate is a stochastic dis-
crete time vector xk modeled by

xk11 5 f ~xk! 1 wk, (A1)

where fk is a nonlinear function that relates the vector
state from time tk to time tk11 and wk is zero-mean,
white Gaussian noise having a covariance matrix

Qk 5 E~wk wk
T!. (A2)

The measurement model is formed by the observ-
able vector zk, so that observation takes place at dis-
crete times tk, according to the following relationship:

zk 5 hk~xk! 1 vk, (A3)

where hk is a nonlinear function of the state xk and vk
is zero-mean, white Gaussian noise having a covari-
ance matrix

Rk 5 E~vk vk
T!. (A4)

In addition, the noisy vectors vk and wk must be
uncorrelated. In instances where these conditions
are not fulfilled, it is possible to define an augmented
state vector and estimate the correlated noisy sam-
ples w9k and v9k from others, wk and vk, that form an
uncorrelated, orthogonal base.

At this point it is assumed that an initial estimate
of the process at the same point in time, tk, is known.
This estimation, is called the a priori estimate and is
denoted x̂k

2, where the superscript minus sign is a
reminder that it is the best estimate before assimila-
tion of the measurement at tk. The a posteriori ~up-
dated! estimate is denoted as x̂k.

Using these definitions and simple Taylor-series
expansion of Eqs. ~A1! and ~A3! around the a poste-
riori x̂k and a priori x̂k

2 estimates and retaining only
first-order terms, as is customary, we find that

fk~xk! < fk~ x̂k! 1
]fk~x!

]x U
x5x̂k

~xk 2 x̂k!, (A5)

hk~xk! < hk~ x̂k
2! 1

]hk~x!

]x U
x5x̂k

2

~xk 2 x̂ k
2 !. (A6)
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These expressions bridge the gulf with the classical
linear filter if the equivalent matrices Fk and Hk are
defined in the following way:

Fk 5
]fk~x!

]x U
x5x̂k

, (A7)

Hk 5
]hk~x!

]x U
x5x̂k

2

. (A8)

Identification with the first-order terms of approxi-
mations ~A5! and ~A6! yields

xk11 < fk~ x̂k! 1 Fk~xk 2 x̂k! 1 wk, (A9)

zk < hk~ x̂k
2! 1 Hk~xk 2 x̂k

2! 1 vk. (A10)

Approximations ~A9! and ~A10! represent the linear-
ized version of the filter and resemble those of a linear
Kalman filter except for the fact that rather than
presenting total quantities to the filter, we consider
incremental ones. In relation to approximations
~A9! and ~A10!, these are

Dxk 5 xk11 2 fk~ x̂k!, (A11)

Dzk 5 zk 2 hk~ x̂k
2!. (A12)

In summary the EKF’s recursive equation set be-
comes

x̂k 5 x̂k
2 1 Kk@zk 2 hk~ x̂k

2!#, (A13)

Pk 5 ~I 2 Kk Hk!Pk
2, (A14)

x̂k11
2 5 fk~ x̂k!, (A15)

Pk11
2 5 Fk Pk Fk

T 1 Qk, (A16)

Kk 5 Pk
2Hk

T~Hk Pk
2Hk

T 1 Rk!
21, (A17)

where Kk is the Kalman gain and Pk
2 is the associated

error covariance matrix, defined as

Pk
2 5 E~ek

2ek
2T! 5 E@~xk 2 x̂k

2!~xk 2 x̂k
2!T#, (A18)

here ek
2 is the a priori estimation error.

Yet, careful attention should be drawn to the fact
that use of the EKF is risky, as the linearization
process takes places about the filter’s estimated tra-
jectory of the state vector rather than about a pre-
computed nominal trajectory. That is, the partial
derivatives are evaluated along a trajectory that has
been updated with the filter’s estimates; thus it de-
pends on the measurements. As a result, the filter is
more likely to diverge.

In the EKF problem formulated in this work, the
system model is linear and the state-space represen-
tation of the atmospheric state vector is given by

xk11 5 Fk xk 1 wk, (A19)

where Fk is the transition state matrix from time tk to
time tk11. If both the system and the observation
model are linear, Eqs. ~A13!–~A17! become the same
after we replace Fk by Fk and hk by Hk.
034 APPLIED OPTICS y Vol. 37, No. 30 y 20 October 1998
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