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The inversion of lidar returns from homogeneous atmospheres has been done customarily through the
well-known slope method. The logarithmic operation over the range-corrected and system-normalized
received signal used in this method introduces a bias in the statistics of the noise-affected processed
signal that can severely distort the estimates of the atmospheric attenuation and backscatter coefficients
under measurement. It is shown that a fitting of the theoretically expected exponential signal to the
range-corrected received one, using as the initial guess the results provided by the slope method and a
least-squares iterative procedure, can yield enhanced accuracy under low signal-to-noise ratios and
especially in moderate-to-high extinction conditions. © 1998 Optical Society of America
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1. Introduction

The basic single-scattering lidar equation may be for-
mally expressed as1

P~R! 5
K
R2 b~R!expF22 *

0

R

a~r!drG , (1)

where P~R! is the range-received power ~W!, b~R! is
the range-dependent volume backscatter coefficient
of the atmosphere ~km21 sr21!, a~R! is the range-
dependent extinction coefficient ~km21!, R is the
range ~km!, and K is the system constant defined as

K 5 1029~Ecy2!Ar ~W km3!, (2)

where E is the transmitted energy ~J!, c is the speed
of light ~mys!, Ar is the effective receiver area ~m2!,
and 1029 is a conversion constant between the length
units used ~m3 to km3!. Note that the term AryR2 in
Eq. ~1! has units of solid angle ~sr!.

The goal of lidar inversion is to retrieve the optical
parameters a~R! and b~R! from the return signal P~R!
that is corrupted by noise of different sources, n~R!.
In a homogeneous atmosphere, the optical parame-
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ters are assumed to be constant over the entire lidar
range @a~R! ' a, b~R! ' b#. If Eq. ~1! is rewritten in
differential form, it takes the form

dS~R!

dR
5

1
b~R!

db~R!

dR
2 2a~R!, (3)

where

S~R! ‚ ln@R2P~R!#. (4)

The application of the homogeneous approximation
over small range intervals leads to the conjecture

1
b~R!

Udb~R!

dR U,, 2a, (5)

at least over most of the S~R! curve. Unfortunately,
assumptions such as this are not well justified in
some situations of interest, e.g., under the conditions
prevailing in dense clouds or smoke or in any situa-
tion in which significant local inhomogeneities occur.
However, the utility of the homogeneous approxima-
tion often increases with increasing optical depth,
such that changes in the fractional gradient of extinc-
tion or backscatter cause small variations in the sig-
nal2 @since extinction and backscatter are usually
highly correlated, this means that, under these cir-
cumstances, the first term of Eq. ~3! can be neglected#.

We extend the evaluation methodology presented
by Kunz and de Leeuw3 and assess the inversion
errors of the slope-method algorithm and of a direct
fitting of the range-corrected received signal to the
theoretical exponential curve that it should ideally
20 April 1998 y Vol. 37, No. 12 y APPLIED OPTICS 2199



conform to. Inversion errors are expressed in terms
of a and b rms errors for different signal-to-noise
ratios ~SNR’s! and average atmospheric extinction
coefficients. The inversion results presented can be
representative of many short-range tropospheric
horizontal-pointing lidar systems.

2. Methodology and Simulation Criteria

The considered noise source encompasses signal-
induced and dark-current shot noises as well as elec-
tronic thermal noise. It is known that shot noise is
described by Poisson’s statistics; however, if the count
numbers are high enough ~i.e., the signal strength is
more than 50 photons over half of the inverse of the
receiving system noise equivalent bandwidth BN or,
equivalently, over the integration time4!, their dis-
crete statistics may be approximated by continuous,
Gaussian ones. For example, at 532-nm wavelength
and 10-MHz noise equivalent bandwidth, the approx-
imation is valid for return powers greater than 0.4
nW. Hence noise is modeled by an equivalent
Gaussian noise range-dependent spectral density
seq

2~R! that merges into a single body the range-
dependent signal-induced and dark-current shot
noise spectral densities as well as the thermal noise
spectral density @ssh,s

2~R!, ssh,d
2, and sth

2, respective-
ly#. Thus the range-dependent SNR is computed ac-
cording to

SNR~R! 5
Rv LP~R!

seq~R!ÎBN

5
Rv LP~R!

@ssh,s
2~R!BN 1 ssh,d

2BN 1 sth
2BN#1y2 SV

VD ,

(6)

where Rv is the receiver responsivity ~VyW!, P~R! is
the range-dependent return power ~W!, BN is the
noise equivalent bandwidth ~Hz!, and L is the system
optical loss, which includes the receiver’s spectral
transmission factor and either the overlap factor or
the range-dependent geometrical form factor. A de-
tailed explanation of the computation of SNR~R! from
the system parameters is given in Appendix A.

The noise equivalent bandwidth BN for a shaping
filter in the receiver chain with spectral response
H~ f ! ~ f is the frequency! is defined as the bandwidth
of the equivalent rectangular filter that, given the
same white-noise spectral density Snn ~WyHz! at its
input, would yield the same noise power ~W! as that
from the real one. Formally,

BN 5

*
0

`

SnnuH~ f !u2df

SnnuH~ f !umax
2 5

*
0

`

uH~ f !u2 df

uH~ f !umax
2 , (7)

where uH~ f !umax
2 is the gain at the center frequency

@ f 5 0 for a low-pass filter ~LPF!#.5 For a practical
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nth-order Butterworth LPF with 3-dB signal band-
width equal to B, both concepts are related by

BN 5
pB

2n sin~py2n!
. (8)

In this study a fourth-order 10-MHz signal band-
width Butterworth LPF is used to model the receiver
bandwidth, so that both the noise equivalent and the
signal bandwidth virtually coincide. This is close to
the behavior of an ideal filter, whereas, for example,
a first-order Butterworth LPF would have BN 5
1.57B.

From Eqs. ~1! and ~6!, it is obvious that under the
approximation of a homogeneous atmosphere, the
range-dependent SNR is a function of only the vol-
ume extinction a, the volume backscatter coefficient
b, and the system constant K @Eq. ~2!#. Therefore,
given the SNR at some minimum range Rmin, SNR~R!
is known for every other distance.

The criteria used with regard to the system ranges
are the following:

The minimum system range Rovf is determined by
the optical overlap factor ~ovf ! reaching the 100%
~and assuming that the receiver stages are far
enough from saturation because of unreasonable high
gains in the receiver chain!. A value for Rovf of
200 m, which is typical of a short-range tropospheric
lidar system, is assumed. However, the minimum
inversion range is set to begin at Rovf compensated by
the addition of a guard range DRmin 5 2cyB ~where c
is the speed of the light and B is the signal bandwidth
of the receiver or, equivalently, the 3-dB cutoff fre-
quency of the filter!. This is done on account of the
smoothing or smearing effect that is caused by the
filter on the output signal in response to the abrupt
rising transition of the optical power until the full
overlap at Rovf 5 200 m occurs. The value 2cyB
corresponds to the spatial interval equivalent to a
settle time Dt equal to 8 times the rise time of the
filter, which can be roughly approximated by 1y2B
~after Ref. 5!. When we take into account the two-
way path of the lidar signal, the time interval Dt 5
8 3 1y2B is translated into a spatial interval DRmin 5
cDty2 5 2cyB. This handy rule of thumb has been
extensively tested in the simulation results, showing
little influence for settle times greater than or equal
to four times the rise time. Therefore the minimum
inversion range Rmin is computed as

Rmin 5 Rovf 1 DRmin. (9)

For example, the 10-MHz filter used yields Rmin 5
260 m, and a 50-MHz filter yields Rmin 5 212 m.
The value for Rmin of 260 m will be assumed through-
out the rest of the paper.

The maximum system range, which coincides with
the maximum inversion range Rmax, is taken as the
minimum of the following two ranges:

~1! the range R for which SNR~R! 5 1; and



~2! 5 km, which has been considered to be a rea-
sonable typical figure for the maximum range at
which the overlap between the illuminated cross sec-
tion of the atmosphere and the receiving system field
of view is still 100% in the case of such a lidar system.

Certainly, the latter value will strongly vary from
system to system, since it depends on the actual lidar
arrangement ~i.e., coaxial or biaxial, bistatic or mono-
static! and atmospheric optical parameters. There-
fore we have

Rmax ‚ minHR for which SNR~R! 5 1
5 km . (10)

Figure 1 shows the Rmax criterion versus
SNR~Rmin! for different extinction coefficients and for
the system parameters given in Table 1. The com-
putation of Rmax follows these steps: First, for each
SNR~Rmin! specified, the related optical power Ps is
solved from Eq. ~6! @or, equivalently, Eq. ~A2! below#.
This results in a quadratic equation in Ps. Second,
the system constant K ~which is directly related to the
output energy of the system! is computed from Eq.
~1!, given Ps, the atmospheric extinction a, the Rmin

Fig. 1. Maximum range of the lidar, expressed in the required
SNR at Rmin for different extinction coefficients.

Table 1. Default Values Used in the Simulations

Parameter Value

APD quantum efficiency 55%
APD current responsivity Rio 236 mAyW
APD multiplication gain M 100
APD excess-noise factor F 4.0
APD dark surface current Ids 14 nA
APD dark bulk current Idb 6 pA

Preamplifier equivalent transimpedance gain GT 105 V
Preamplifier equivalent input noise density sth,i 5 pA Hz21y2

Preamplifier 3-dB cutoff frequency B 10 MHz

Optical system losses L 30%
Typical background power Pback 1.6 nW
specification, and the backscatter coefficient b from
Table 2. The range-dependent return power P~R! is
then available, and so is SNR~R!, the range-
dependent SNR. Finally, Rmax is solved as indicated
in expression ~10!.

As for the backscatter coefficient b, it is assumed to
be related to the extinction coefficient, which is the
driving parameter in this study, as indicated in Table
2, after the approximate figures proposed by Collis
and Russell.1 For example, at a wavelength of 532
nm and according to the definition of visibility of
Koschmieder7 and Kruse et al.,8 the extinction coef-
ficients indicated in Fig. 1 ~a 5 10, 1, 0.1, and 0.01
km21! correspond to simulated backscatter values of
5 3 1021, 3 3 1022, 4 3 1023, and 1023 km21 sr21,
respectively. These atmospheric extinction condi-
tions range from moderate fog ~light water cloud! to
exceptionally clear air ~Rayleigh gaseous!.

The result of the computation of the system con-
stant K versus SNR~Rmin! is plotted in Fig. 2 along
with a typical system-constant range ~to be explained
in Section 4!. For system constants ~energy levels!
linked to a SNR~Rmin! specification greater than or
equal to approximately 102, the system constant is
proportional to the square of SNR~Rmin!. This is jus-

Fig. 2. System constants versus SNR~Rmin! for different atmo-
spheric extinctions ~a 5 10, 1, 0.1, and 0.01 km21!. Solid hori-
zontal lines indicate a typical system constant range.

Table 2. Assumed Optical Parameters for Different Visibilities

Visibility
~VM!

Extinction Backscatter
Atmospheric Condition

Based on

a ~km21!
b ~km21

sr21! Ref. 1 Ref. 6

391.2 m 10 5 3 1021 Light water
cloud

Moderate
fog

3.912 km 1 3 3 1022 Moderateylight
haze

Haze

39.12 km 1021 4 3 1023 Clear air Standardy
very clear

391.2 km 1022 1 3 1023 Rayleigh gas-
eous

Exception-
ally clear
20 April 1998 y Vol. 37, No. 12 y APPLIED OPTICS 2201



tified because in that range of SNR’s and considering
the typical system default parameters of Table 2, the
system is under a signal-induced shot-limited mode
at Rmin 5 260 m. A common result is that the clos-
est observation cells to the system are under a signal-
induced shot-limited mode and that they
progressively tend to a thermal-limited mode near
the maximum range. In a few cases, however, the
closest observation cells may be thermal noise limited
because the system constant ~output energy! is so low
that the term sth

2 in Eq. ~6! begins to dominate ssh,s
2

at Rmin. This justifies the lines of Fig. 2 becoming
curved for approximately SNR , 102. As long as one
moves toward lower SNR’s, the slope of these curves
tends to unity.

The core of the simulation procedure is the syn-
thesis of noise-corrupted lidar return signals by the
addition of noise realizations to the simulated range-
dependent backscattered return power. The proce-
dure is sketched in Fig. 3. Once P~R! from Eq. ~1! is
computed, the lidar signal is modeled in a more re-
alistic way by incorporating the effect of the ovf into
the signal. This is roughly modeled as a linear in-
crease of the optical power from 0 to P~Rovf! in the
overlap range interval @0, Rovf#, where Rovf 5 200 m.
At the output of the stochastic lidar signal generator,
a noise-corrupted lidar signal is available so that, for
each range R, a noise stochastic variable n~R! with
Gaussian range-dependent standard deviation seq~R!
is simulated, as discussed in Appendix A. Next, the
data burst is filtered and cut according to the Rmin
and Rmax criteria stated in Eq. ~9! and expression
~10!. At this point filtered noise-corrupted lidar re-
alizations are available with a spatial sampling rate
of 7.5 m. To compute error inversion statistics, the
synthesis and inversion procedures are repeated M 5
10 times for each particular SNR~Rmin! and driving
atmospheric extinction coefficient.

The inversion error in an optical parameter of the
atmosphere, let us say a, is computed in a rms sense
after averaging the M inversion runs. Thus the av-
erage extinction inversion error is expressed as

er,a 5 F 1
M (

i51

M

~er,a
i!2G1y2

3 100%, (11)

Fig. 3. Block diagram for the error evaluation procedure.
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with

er,a
i 5

ae
i 2 a

a
, (12)

where a is the actual extinction coefficient and ae
i is

the extinction coefficient yielded by the ith inversion.
Since the noise-corrupted lidar return signal is sto-
chastic in nature, such an evaluation procedure
yields an estimate, itself a random variable, of the
mean relative squared error.

3. Slope Method versus Exponential-Curve Fitting

Both the slope method and exponential direct fitting
of an exponential curve are, in fact, least-squares
algorithms, the former taking advantage of the closed
expressions appearing when the fitted function is a
linear one. The slope method first proposed by Col-
lis9 lies in the range-corrected version of expression
~4! under the assumption of a homogeneous atmo-
sphere in Eq. ~1!. If the noise contribution n~R! is
considered, the range-corrected function takes the
form

S~R! 5 ln(R2@P~R! 1 n~R!#)

5 ln~Kb! 2 2aR 1 lnF1 1
n~R!

P~R!G , (13)

to which one can adjust a line by choosing values of m
and c that minimize

iS~R! 2 mR 2 ci2 5 (
i51

N

@S~Ri! 2 mRi 2 c#2, (14)

where Ri denotes the range of the ith resolution cell;
m and c estimate 22a and ln~Ab!, respectively.

As much as its computational straightforwardness
is of advantage, the weak point of the slope method
lies in the bias that the unavoidable system noise
introduces in any real received signal. In effect, al-
though the parameter estimation will be good when
the noise term is small, the estimates of a and ln~Ab!
tend to increase as the noise term n~R! approaches
2P~R!, producing large negative peaks in S~R!. A
sample run with an approximate bias of 12.4% for
SNR 5 50 at 260 m is illustrated in Fig. 4, where a
simulated realization of S~R! is compared with the
ideal S~R! ~i.e., without noise! and with the best lin-
ear fit. The slope and the intercept of the noiseless
range-corrected function are 22a and ln~Ab!, respec-
tively, and the slope and the intercept of the noisy
S~R! from which the optical parameters are esti-
mated are m and c, respectively. The figure shows
how the negative noise spikes contribute to an over-
estimation of the sought-after parameters ~a and b!.

Instead of using a linear function, we can formulate
the lidar inversion problem by using an exponential-



curve fitting. In particular, one chooses the vari-
ables a and b that minimize

iR2P~R! 2 b exp~2aR!i2 5 (
i51

N

@Ri
2P~Ri!

2 b exp~2aRi!#
2, (15)

where a and b estimate the terms 2a and Ab, respec-
tively. Unlike the slope method, the nonlinearity of
the fitting function with respect to variables a and b
makes the derivation of a closed analytical solution
impossible. Even though historically this may have
been a deterrent, the computational tools currently
available render the task of numerically minimizing
Eq. ~15! straightforward. Direct fitting of the expo-
nential curve has the advantage of introducing no
bias in the experimental data to which the estimates
~a, b! are to be adjusted. Moreover, the points that
correspond to the closer distances, for which the SNR
is higher, are given more weight in the minimization
of Eq. ~15!. Yet, a drawback of the algorithm is the
need for a good first guess to initialize the minimiza-
tion procedure10 so that it converges to an absolute
minimum. This can be tackled by using the result of
the slope-method inversion as the first guess. With
this rationale both algorithms have been imple-
mented and tested by using the simulation procedure
described in Section 2.

The exponential-curve fitting iterative algorithm
has been implemented by using MATLAB’s leastsq func-
tion, which is based on a cubic Levenberg–Marquardt
search algorithm.11 This method generally requires
fewer function evaluations but more gradient evalu-
ations, and for this reason the gradient of the fitting
function is supplied analytically. The optimization
does not finish until the following two termination
criteria are met or a maximum number of 200 itera-
tions is exceeded. The termination criteria are ~1!
worst-case precision of the independent variables ~a,
b! equal to 1025 and ~2! minimum precision of the

Fig. 4. ~a! Ideal range-corrected function S~R!, ~b! simulated
noise-corrupted S~R!, ~c! S~R! as inverted by the slope method
@simulation parameters: a 5 1 km21, b 5 3 3 1022 km21 sr21,
SNR~Rmin! 5 50#.
objective function @Eq. ~15!# at the solution equal to
1028. A single inversion through the fitting of the
exponential curve seldom exceeds 120 kflops, which
translates into less than an 800-ms execution time
when running on a PC-486 33-MHz platform. As
pointed out above, the fitting has been initialized for
each lidar realization with the a and b estimates that
have resulted from the inversion by means of the
slope method.

As in the case of the slope method, for each range R
the negative noise spikes may drive 1 1 n~R!yP~R! in
Eq. ~13! to values that are close to zero or even neg-
ative; hence a rule must be implemented to deal with
“abnormal” results in taking the logarithm. Note
that the lower the SNR at a range R, the higher the
likelihood that this happens in a particular run.
Concerning the results of the slope-method inver-
sions that are presented in Section 4, the criterion
has been to replace the logarithm in question by a
floor value equal to 223 whenever its argument ~com-
puted in W km2! becomes equal to or less than
exp~223! or negative. The 223 figure is a threshold
close to the value of ln@R2P~R!# ~221.88 with R in
kilometers and P~R! in watts! at Rmax 5 0.359 km
yielded by Eq. ~10! and Fig. 1 when a 5 10 km21

~worst atmospheric condition! and SNR~Rmin! 5 10.

4. Simulation Results and Discussion

Figures 5–8 ~solid curves! show the estimated rms
relative errors in the inverted values of a and b de-
rived by using both the slope method and the
exponential-curve fitting algorithm, for several ex-
tinction coefficients, representative of what can be
expected in conditions ranging from moderate fog ~a
5 10 km21! to exceptionally clear air ~a 5 0.01 km21!.

Fig. 5. Comparison between extinction and backscatter inversion
errors by use of the slope method and exponential-curve fitting.
The final results are shown as solid curves, and the results ob-
tained by filtering only the noise component are shown as dashed
curves. Vertical solid lines indicate the SNR~Rmin! margin for
typical system constants ~simulation parameters: a 5 10 km21,
floor 5 223!.

Fig. 6. Same as Fig. 5, but for a 5 1 km21.
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As indicated in Section 3, the backscatter coefficients
b are given in Table 2. The abscissas represent
SNR~Rmin!, and the ordinates indicate the rms rela-
tive inversion error according to Eq. ~11!. The ripple
in the curves results from the finite number M ~M 5
10 in this case! of simulated signals that have been
inverted to estimate the relative inversion error for
each SNR~Rmin!. With M 5 10, and 121 points in
the abscissas, each error inversion curve involves
1210 inversions. Note that in spite of the visual
impression, the logarithmic scaling in the ordinates
indicates a larger ripple for lower values of
SNR~Rmin!.

It is important to stress that for each driving at-
mospheric extinction and SNR~Rmin!, each lidar real-
ization of the sequence of 10 serves as input to the
slope-method algorithm for inversion, so that each
slope inversion outputs a different initialization ~a
and b estimates! to the exponential fitting iterative
algorithm, which is also fed with the same lidar re-
alizations ~see Fig. 3!. If we average the inversion
errors in the optical parameters inverted by the ex-
ponential fitting iterative algorithm, the effect of the
different initializations on the final performance ~or
sensitivity to the initial guess! becomes included in
the final inversion error figure. Consequently, each
of the error inversion plots presented must be under-
stood as a set of stochastic variables, one for each
SNR~Rmin!, whose mean represents the average in-
version error in a statistical sense and whose variance
or ripple seems to be a good indicator of the sensitiv-
ity of the algorithm to the noise realizations in the
case of the slope method and to them and the initial-
ization guess as well in the case of the exponential-
curve fitting iterative algorithm.

To compare the performance of both algorithms, it
is interesting to define a typical operation range in
the abscissas for practical systems. Assuming that
the reasonable range of the system constant K for an
atmospheric elastic lidar system typically lies be-

Fig. 7. Same as Fig. 5, but for a 5 0.1 km21.

Fig. 8. Same as Fig. 5, but for a 5 0.01 km21.
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tween 1024 and 1021 W km3 @this assumes energies
between 40 mJ and 1 J and aperture diameters of the
receiving optics between 15 cm and 1 m in Eq. ~2!#,
the reasonable range of SNR~Rmin! falls roughly be-
tween 9 3 101 and 3 3 103 VyV when the extinction
coefficient a is 1022 km21, and between 4 3 102 and
104 VyV when a is 1 km21. Figure 2 shows the
system constant K versus SNR~Rmin! parameterized
for the extinction coefficients used ~a 5 10, 1, 0.1, and
0.01 km21! along with the maximum and minimum
practical limits.

When the inversion algorithm is the exponential-
curve fitting and one considers homogeneous atmo-
spheric conditions with medium-to-high extinction
coefficients ~a 5 10 and 1 km21 in Figs. 5 and 6,
respectively!, there is a clear improvement in the
estimation of both the extinction and backscatter co-
efficients within the practical limits of SNR~Rmin!.
Under these conditions, only a fraction of the expo-
nential curve is available ~the maximum inversion
range is indicated in Fig. 1!. For the lowest atmo-
spheric extinctions ~a 5 0.1 and 0.01 km21 in Figs. 7
and 8, respectively!, there are no significant differ-
ences between the rms inversion error yielded by
either method in the SNR~Rmin! range of interest,
which corresponds to situations with Rmax 5 5 km.

The same Figs. 5–8 allow us to compare the effect
of the receiver signal bandwidth on the signal com-
ponent of the lidar realizations. The error plots dis-
cussed so far ~solid curves! have been computed by
filtering both the signal and noise components of the
lidar realizations, and the inversion errors obtained
after filtering only the noise component are superim-
posed as dashed curves ~these curves have been in-
terpolated in one or two subintervals by using a
second-order method for illustrative purposes!. If
both sets of plots in Figs. 5–8 are compared, the effect
of the filter on the signal component, which basically
causes overshoot and ringing in response to the
abrupt transition of the signal in the overlap range
interval, becomes evident through a saturation effect
on the error plots in the solid curves from some
SNR~Rmin! up. For medium-to-high atmospheric ex-
tinctions ~a 5 10 and 1 km21 in Figs. 5 and 6, respec-
tively!, such an effect begins for lower SNR~Rmin! in
the case of the exponential fitting algorithm, whereas
for low extinctions ~a 5 0.1 and 0.01 km21 in Figs. 7
and 8, respectively!, it is basically the same for both
algorithms. When only the noise is filtered ~dashed
curves!, the saturation disappears. Hence it is
found that the slope method is the less influenced
algorithm. A suitable explanation for this is that all
the samples of the range-corrected function S~R! have
the same weight in the linear least-squares fitting
@Eq. ~14!# from which the optical parameters are de-
rived. Yet, in the case of the exponential-curve fit-
ting iterative algorithm, the nonlinear fitting to a
decreasing exponential curve @Eq. ~15!# gives more
weight to the first samples of the inversion interval,
where these phenomena are precisely more impor-
tant. Thus, for high SNR’s at Rmin, the inversion
error becomes dominated by the smearing effect of



the limited bandwidth of the receiver on the signal
rather than by the noise itself.

If we ignore the saturation effects imposed by the
filter, the change in the slope of the dashed curves of
the slope-method inversion, which also appeared in
the results presented by Kunz and de Leeuw,3 arises
from the maximum range considered, switching from
the condition SNR~Rmax! 5 1–5 km, in accordance
with Eq. ~10!. Comparing the results shown for the
slope method with those from that previous study, we
see that they are in close agreement with the error
plots shown as dashed curves in Figs. 5–8. The dif-
ferences with the plots shown as solid curves can
possibly be justified by the improvement of the sim-
ulation model, which now permits modeling of the
filter’s response to the abrupt transition of the lidar
signal in the overlap interval and the extension of the
noise variance to a range-dependent one that merges
shot and thermal noise contributions into a single
body.

The effect of lowering the limiting floor value has
also been investigated. By comparison of Figs. 5 and
9, changing it down to 230 instead of 223 ~default
setting! results in a slight increase of the rms error in
the a and b estimates obtained through the slope
method but does not have any noticeable effect on the
inversion error when the estimates are obtained by
the exponential-curve fitting iterative algorithm, ex-
cept when the assumed extinction coefficient is 10
km21 and SNR~Rmin! is below 50. In the latter case,
there are instances in which the iterative algorithm
appears to be unable to improve the initial guesses
for a and b provided by the already poorly performing
slope method. The performance of the slope method
in this interval is dominated by large biases and,
consequently, by large inversion errors. ~These are
largely evidenced in the backscatter error plot of Fig.
9.! Another comforting result from Fig. 9 is the re-
duction in the ripple of the error plots of the
exponential-curve fitting iterative algorithm as com-
pared with those of the slope-method plots. Despite
the large variance distribution of the initial guesses
that come from the slope method, this variance com-
pression leads to more reliable results when the iter-
ative exponential fitting algorithm is used.

Finally, by comparing the inversion errors in the
plots of Figs. 5–8 with those of Fig. 9 within the
abscissa intervals limited by SNR~Rmax! 5 1, two
additional points arise:

Fig. 9. Same as Fig. 5, but for floor 5 230.
~1! In the situations limited by the criterion
SNR~Rmax! 5 1, the a-inversion error increases as the
atmospheric extinction lowers. This can be better
understood by considering a homogeneous atmo-
sphere with low extinction; then the noisy range-
received power can be approximated by

P~R! 5
K
R2 b exp~22aR! 1 n~R!

<
K
R2 b~1 2 2aR! 1 n~R!. (16)

Qualitatively, as long as the atmospheric extinction
decreases, the term 22aR becomes smaller than
unity ~at least for all the inversion cells until some
boundary range! and tends to be masked by the noise
term. Thus low-noise spikes added to any power
sample must be offset by large deviations in the ex-
tinction value during the inversion process. This
leads to large inversion errors.

~2! A further effect to be noted of these algorithms
is that plots of b error versus SNR tend to coincide for
small extinctions. This happens because for extinc-
tions equal to or smaller than 0.1 km21 the effect of
the transmittivity term in Eq. ~1! becomes less im-
portant and, consequently, the SNR~R! function de-
pendence is approximately proportional to byR2

regardless of the atmospheric extinction in that
range.

5. Conclusions

The rms inversion errors in the estimates of the ex-
tinction and backscatter coefficients obtained from
the inversion of lidar returns in homogeneous atmo-
spheres with use of both the slope method and an
iterative exponential-curve fitting to the received sig-
nal have been compared. The inversion errors have
been estimated by repeatedly inverting simulated
range-dependent noise-corrupted lidar signals.
When working with moderate-to-high extinction co-
efficients, it has been found that an exponential-
curve fitting iterative algorithm initialized with the
slope-method estimates exhibits lower inversion er-
rors than those with the stand-alone slope method.
In the case of the exponential-curve fitting iterative
algorithm, it has been shown that this improvement
is due to the absence of the large negative peaks that
appear in the range-corrected function of the slope
method and that bias the estimation procedure.
This effect becomes especially important when low
signal-to-noise ratios ~SNR’s! are found in the explo-
ration range. Another point in favor of the algo-
rithm is the variance compression in the distribution
of the inversion estimates yielded by the iterative
exponential fitting in spite of the large variance dis-
tribution of the initial guesses that result from the
slope method in difficult situations.

To compare the inversion error figures of both al-
gorithms, typical elastic backscatter lidar systems
ranging from 40-mJ to 1-J energy and from 15-cm to
20 April 1998 y Vol. 37, No. 12 y APPLIED OPTICS 2205



1-m aperture diameter in the receiving optics and
limited to short-range tropospheric exploration have
been considered. The inversion errors of the expo-
nential fitting iterative algorithm are usually more
S
N

5
Rv LP~R!

[2qGT
2(Ids 1 FM2$Idb 1 RioL@P~R! 1 Pback#%)BN 1 sth

2BN]1y2 SV
VD , (A2)
than 1 order of magnitude lower than those of the
slope method for atmospheric extinctions between 1
and 10 km21 and SNR’s ~defined at the minimum
range! roughly between 102 and 104. The exact im-
provement ratio depends on the actual decision rule
used to handle the negative noise spikes of the range-
corrected function of the slope method and on the
guard range left between the minimum system range
and the minimum inversion range, the value of 2cyB
~where c is the speed of the light and B is the receiver
signal bandwidth! being a reasonable figure. Oth-
erwise, overshoot and ringing caused by the limited
receiver bandwidth on the first samples of the lidar
signal may hamper the performance of the exponen-
tial fitting algorithm, which gives more weight to the
initial part of the inversion interval.

In conclusion, even though the analytical simplicity
of the slope method has historically been of advantage,
this has been superseded by the computational tools
~which enable the practical implementation of the non-
linear exponential algorithm! available today.

Appendix A: Signal-to-Noise Ratio for an Elastic
Backscatter Lidar

The SNR expression considers a typical avalanche
photodiode ~APD!yamplifier combination that is used
to detect the return from backscattered pulses in an
elastic lidar system. The range-dependent SNR,
SNR~R!, is defined at the receiver output as the ratio
of voltage that is due to the primary photocurrent to
the total noise voltage. Based on Refs. 12 and 13,
signal-induced and dark-current shot noise and ther-
mal noise spectral densities are computed, respec-
tively, as follows:

ssh,s
2~R! 5 2qGT

2FM2Rio@P~R! 1 Pback#L,

ssh,d
2 5 2qGT

2~Ids 1 FM2Idb!,

sth
2 5 sth,i

2GT
2, (A1)

all in units of V2 Hz21, where P~R! is the range-received
power ~W!, Pback is the background-radiation power ~W!,
Rio is the APD current responsivity without multiplica-
tion ~i.e., at M 5 1! ~AyW!, GT is the transimpedance
receiver gain ~VyA!, F is the excess-noise factor ¼, M is
the APD multiplication factor ¼, Ids is the APD surface
dark current ~A!, Idb is the APD bulk dark current ~A!,
sth,i is the amplifier input noise current density ~A Hz21y

2!, L are the optical losses ¼, and h, c, and q are physical
constants ~Planck’s constant, speed of light, and electron
2206 APPLIED OPTICS y Vol. 37, No. 12 y 20 April 1998
charge, respectively!. @The symbol ¼ indicates that the
parameter under consideration has no units.#

From Eqs. ~A1! the range-dependent SNR is calcu-
lated as
where Rv 5 RioMGT is the receiver voltage respon-
sivity and BN is the noise equivalent bandwidth.

In the simulations these parameters have been
modeled by assuming typical noise specifications for a
lidar receiver based on an APD and a low-noise pre-
amplifier. Table 1 summarizes the default values
used in the simulations.

The receiver operation is limited by signal-induced
shot noise in the first part of the exploring range and
by thermal noise at large ranges.

As far as the background power estimation ~Pback! is
concerned, because it is a function of the receiver effective
area, receiver field of view, and optical filter bandwidth,
the simulations have been based on a typical estimate of
Pback rather than on a specific optical configuration.

From the relations above and under the hypothesis
of a homogeneous atmosphere, the range R for unity
SNR is determined by equating Eq. ~A2! to unity.

This study has been carried out under the Spanish
Interministry Committee for Science and Technology
grants TIC431-93 and AMB1144-C02-02.
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