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Abstract

Spaceborne Synthetic Aperture Radar (SAR) techniques constitute an extremely promising alternative compared to traditional
surveillance methods thanks to the all-weather and day-and-night capabilities of Radar linked with the large coverage of SAR
images. Nowadays, the capabilities of satellite based SAR systems are confirmed by a wide amount of applications and
experiments all over the world. Nevertheless, specific data exploitation methods are still to be developed to provide an efficient
automatic interpretation of SAR data. The aim of this paper is to present an approach based on multiscale time–frequency analysis
for the automatic detection of spots in a noisy background which is a critical matter in a number of SAR applications. The
technique has been applied to automatic ship detection in single and multidimensional SAR imagery and it has proven to be a rapid,
robust and reliable tool, able to manage complicated heterogeneous scenes where classical approaches may fail.
© 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

Nowadays, there is an increasing interest in remote
sensing applications which can be critically helpful to
guarantee a better understanding, monitoring and
predicting of the Earth's global climate change, as
well as to the management of natural resources, disasters
and human activities. In Europe, GMES (Global
Monitoring for Environment and Security), which is a
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joint endeavour of the European Space Agency and the
European Community remains a valuable proof of the
actual rise of space technologies (Cornaert et al., 2001).

One important field of application is maritime
monitoring from space, which includes among others
traffic surveillance, maritime security, fisheries and
border control (Greidanus, 2005). For example, carrying
out an effective control of fishing activities is essential
to guarantee a sustainable exploitation of sea resources:
illegal fishing can lead to over-exploitation, catches over
safe biological limits and disturbances to the fisheries
habitat. It is also crucial to detect smuggling and illegal
immigration movements. As the regulated areas are
extended, they are difficult to monitor by means of
traditional reconnaissance methods such as planes or
metry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V.
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patrol vessels. Spaceborne SAR sensors are able to
provide a powerful surveillance capability allowing the
observation of broad expanses, independent of weather
effects, so much during the day as during the night and
they do not require any kind of active cooperation of the
vessel. For instance, since January 1st of 2005, all
European Community fishing vessels exceeding 15 m
overall length are subject to have installed on-board a
VMS for controlling purposes. The Vessel Monitoring
System (VMS) (Vessel Monitoring System (VMS)
Information Website: http://www.glf.dfo-mpo.gc.ca/
fm-gp/cp-cp/vms-ssn/index-e.jsp), is basically an on-
board transponder that provides vessel identification and
position via satellite communications. Although this
transponder-based monitoring system provides accurate
results it is not perfectly suitable for monitoring illegal
activities as the hardware can be intentionally discon-
nected or damaged. A complementary or even alterna-
tive solution is provided by SAR imagery. Aware of this
problem the European Community has promoted the
DECLIMS concerted action that brought together 24
parties active in space-based ship detection. The project
provided a focus for research into the use of satellite
imagery for maritime vessel detection, classification and
identification, evaluate and compare the performances
of the different algorithms, strengthen the infrastructure
capable of meeting demands of users and set the
requirements of new sensors and platforms towards the
operational needs of vessel monitoring (Greidanus et al.,
2004).

It is widely known that the human vision, as it can
perceive a structure in the context of its surroundings, can
manage non stationarities in a convenient way, overco-
ming existing automatic algorithms in extracting features
in a complex scene. For example, some vessels undetected
by conventional techniques in SAR images are clearly
visible by eye. Nevertheless, since a manual treatment is
unacceptably slow, unpractical and hardly reproducible,
fully or at least partially automatic schemes are desirable.
The main concern of this paper is to reproduce the
behaviour of the human vision by means of time–
frequency methods to provide efficient techniques based
on this framework for automatic ship detection purposes.

The paper is structured as follows. First, the statistical
characterization of SAR images is presented in order to
highlight the complexity of automatic ship detection in
this context. Section 4 details and analyzes the
advantages of using multiscale time–frequency methods
for the interpretation of SAR data. Section 5 introduces
and analyzes a specific technique for automatic ship
detection, based on the wavelet transform. The perfor-
mances of the algorithm are tested on ENVISAT and
RADARSAT images, which are validated on the basis of
available ground truth. An extension to multidimen-
sional SAR data will be introduced and employed to
discuss the benefits of polarimetric diversity for
automatic ship detection. The last section of this paper
presents the conclusion of the work.

2. Particularities of SAR imagery

A complex SAR image u(x, r) may be modelled as the
convolution of the local complex reflectivity of the
observed area γ(x, r) with the impulse response of the
SAR system u0(x, r) (Curlander and McDonough, 1991).
The reflectivity for each resolution cell results from the
complex sum of the contributions of all individual scat-
terers within it γi(x, r)

juðx; rÞj ¼ jgðx; rÞ⁎u0ðx; rÞj ¼
X
i

gi⁎u0ðx; rÞ
�����

����� ð1Þ

where x and r represent the spatial dimensions of the
SAR image known as azimuth and range, respectively.
This complex sum, also called random walk process,
produces speckle (Goodman, 1976) (Lee, 1981), which
represents one of the major disturbances for the correct
interpretation of SAR images. Due to the complexity of
the electromagnetic scattering process, speckle must be
considered as a noise source, characterized by being
spiky, with a large dynamic range and, contrarily to
optical imagery, making SAR images not suggestive to
inexperienced end users. In case of homogeneous areas,
the most commonly used model to describe SAR images
is that of the multiplicative speckle noise, which expresses
the observed intensity I(x, r) as the product of a
deterministic-like radar cross section σ2(x, r) by the
speckle noise n(x, r)

Iðx; rÞ ¼ juðx; rÞj2 ¼ r2ðx; rÞnðx; rÞ: ð2Þ
The speckle noise component n(x, r) presents an
exponential distribution

PnðnÞ ¼ expð−nÞ n ϵ½0;lÞ ð3Þ
which is characterized by a mean and a variance values
equal to one.

Consequently, analysis tools have to be embedded in a
statistical framework, since SAR image samples are
realizations of some underlying random variable. Accor-
ding to the central limit theorem, the statistical characte-
ristics of a discrete signal can be estimated through the
values of the signal in a cluster of samples. And the more
extended the cluster, the more accurate the estimation of
their statistical properties. Nevertheless, the Heisenberg
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Fig. 2. Left: ship in a high resolution SAR image. Right: two ships in a
low resolution SAR image.
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principle states that this is necessarily obtained at the
expense of a loss of spatial resolution. Since SAR images
represent non stationary phenomena and, since the
location information is crucial in most of the applications,
the spatial resolution cannot be completely sacrificed for
an accurate estimation of statistical (or frequency)
parameters. This trade off justifies the use of a suitable
time–frequency framework for the interpretation of SAR
data in order to estimate the statistical information
minimizing the loss of spatial resolution or spatial details.

3. Automatic spot detection: main drawbacks

In order to develop a novel framework based on
multiscale time–frequency methods for the analysis and
automatic exploitation of SAR data, the first canonical
problem to treat is spot detection. A spot may be defined
as a small distinct area that is different in colour,
material or texture from its surroundings. This paper will
be treating ship detection in spaceborne SAR images,
but spot detection is also present in a large number of
very diverse domains, such as in medical applications
(e.g. the detection of micro calcifications in mammo-
grams (Zheng et al., 1996)), in astronomy (stars tracking
(Liebe, 1993)) and of course in different remote sensing
applications (detection of permanent scatterers (Ferreti
et al., 2001), cars tracking, etc.). These cases can be seen
in Fig. 1. The intuitive and common sense definition of
spot implies a quantitative determination of the notion of
difference in a computerized tool to detect spots.

Due to the great diversity of types of vessels, the
wide range of image modes and resolutions and the
distortions affecting the signatures of the ships, a priori
information about size or shape cannot be employed to
assist the detection. In fact, the low resolution of the
sensors and the different motion distortions render the
ship's signature rather featureless, since the same ship
can present very different signatures depending on a
Fig. 1. Different scenarios involving spot detection. (a) Ships on a SAR image
an optical image from IKONOS.
number of unpredictable random variables, mainly re-
lated to sea state, see Fig. 2.

Nowadays, several systems present operational status
for automatic ship detection purposes on SAR imagery.
All of them rely on a Constant False Alarm Rate (CFAR)
approach which interprets the difference between the
spot and its surrounding area as a difference of intensity
levels (Arnesen and Olsen, 2004), see Fig. 3.

The underlying reasoning associated to CFAR
techniques is valid and efficient if the observed scene
is sufficiently stationary but it fails elsewhere. Essen-
tially, these algorithms assume the homogeneity of the
statistical distribution of the image to be analyzed within
a region of fixed dimensions. Through the values of the
signal in this cluster of samples, some statistical
parameters are estimated. They are employed to adjust
the histogram to the probability density function (pdf) of
the particular statistical distribution previously assumed
to characterize clutter. Then, a threshold is calculated
and its application leads directly to a binarized image.
Hence, summing up, the validity of CFAR approaches
strictly depends on two conjectures: the assumption of a
particular nature of statistical distribution and the
hypothesis that a considerable contrast exists between
the vessel to be detected and the surrounding sea.
Nevertheless, these requirements are not always met, as
, (b) micro calcifications in a mammogram, (c) stars tracking, (d) cars in



Fig. 3. Flow chart of the basic steps of CFAR algorithms.
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it can be observed in two different examples shown in
Figs. 4 and 5.

An interesting observation that arises from different
experiments carried out to check the feasibility of
detection of marine traffic from space is that existing
software based on CFAR algorithms is not as good as a
human operator, who is better at dealing with complex
clutter situations (Greidanus, 2006). Inspired on the
human vision operation, the objective of the method
proposed in this paper is to provide an alternative
approach to CFAR techniques. Besides taking exclu-
sively an image's intensity characteristics for spot
detection into account, our method focuses also on a
spot's very local statistical behaviour. More specifically,
the eye is an extremely sophisticated system which can
perceive local regularity, seeing a texture over two
fundamental properties: the orientation of its elements
and its frequency content. From a signal processing
Fig. 4. Two examples of heterogeneous oceanic
point of view, this translates into performing a time–
frequency analysis. Moreover, the human vision can
also manage contextual information thanks to its
capability of focusing and relating elements at different
scales. In signal processing terms, this means
performing a multiresolution analysis. This paper
proposes to mimic this operation taking advantage of
the Wavelet Transform (WT) properties (Mallat, 1999).

4. The wavelet transform

The WT addresses the study of a complex phenom-
enon by dividing it into different simpler pieces.
Mathematically, this means projecting a given function
in a function space in which the simple pieces are the
elements of the basis. The particularity of the wavelet
function space is that the basic functions or atoms ψj are
localized in both time and frequency. Moreover, they
scenes with their respective histograms.



Fig. 5. Two examples of ships signatures (enclosed in a circle)
exhibiting a low contrast respect to the background sea surface.

Fig. 6. Flow chart of one iteration of the OCWT.
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come from dilations and translations of a mother wave-
let, ψ (Mallat, 1999)

wj½z� ¼
1ffiffiffiffi
aj

p w
z
a j

h i
: ð4Þ

Hence, the WT is defined as

Wf ½z; a j� ¼
XN−1

m¼0

f ½m�w⁎
j ½m−z�: ð5Þ

The WT is an iterative process where z is the discrete
temporal (or spatial) variable, j represents the number of
iterations, the parameter aj allows adjusting the temporal
(or spatial) duration of the wavelet ψj. Nevertheless,
according to the Heisenberg uncertainty principle
stating that there is a trade off between time and
frequency accuracies, the surface of the wavelet atoms
in the time–frequency space is low bounded

r2t r
2
xz

1

4
ð6Þ

where σt and σω are the temporal and frequency
variances. Hence, the resolutions in time and in
frequency cannot be arbitrarily refined. Moreover, if a
finer resolution in time or space is required the
counterpart, the resolution in frequency, is degraded.

The WT can also be seen as a multiscale differential
operator. More specifically, a continuous wavelet ψ with
a fast decay presents n vanishing moments if and only if
there exists a function θ with a fast decay such that

wðtÞ ¼ ð−1Þn d
nhðtÞ
dtn

ð7Þ

where t stands for the continuous temporal variable. As
a consequence,

Wf ðu; sÞ ¼ sn
dn

dun
ð f ⁎h̄sÞðuÞ ð8Þ
where s is the scale, u denotes the time variable and θ̄s is
the conjugate of the corresponding wavelet at scale s,
constructed from a dilation of the function θ.

Signal singularities may be detected by finding the
abscissa where the wavelet modulus maxima converge
at fine scales (Mallat, 1999). For example, in the
particular case in which the wavelet has only one
vanishing moment, wavelet modulus maxima are the
maxima of the first order derivative of f (t) smoothed by
θ̄s. This property can be considered for automatic spot
detection purposes since spots and for instance, ships in
SAR images — can be regarded as isolated (since they
occupy a finite number of points) cusps (i.e., a non
oscillating singularity in which the function or one of its
derivatives approaches infinity at a certain point).

In 2D, the discrete WT is usually employed
separately to each dimension applying a filter bank. In
this paper, we will use the Over Complete WT (OCWT)
(Law and Siu, 2003) which is a variation from the basic
sub-sampling representation provided by the WT,
aiming to achieve translation invariance. The OCWT
is a process consisting on iteratively applying lowpass
H and bandpass G filters to both horizontal and vertical
directions of the input signal X in such a way that three
components of Eq. (9) are obtained at each iteration as it
can be observed in Fig. 6. Intuitively, when a bandpass
filter is being applied only in the horizontal dimension
of an image, fast changes in this direction, i.e. vertical
boundaries, are being enhanced. The same is true in the
other dimension. As a consequence, D1

j detects vertical
edges in an image, whereas D2

j does the same for hori-
zontal ones.

Xjðz1; z2Þ ¼ Hðz j
1ÞHðz j2ÞXj−1ðz1; z2Þ

D1
j ðz1; z2Þ ¼ Gðz j1ÞXj−1ðz1; z2Þ

D2
j ðz1; z2Þ ¼ Gðz j2ÞXj−1ðz1; z2Þ ð9Þ

Where z1 is the horizontal dimension, z2 is the vertical
one.

In order to present the underlying intuition of the
algorithm, it may be interesting to observe the effects



Fig. 7. Simulated image with a small (2×2px.) and weak target
embedded in a noisy background.

Fig. 9. Flow chart of the proposed algorithm for automatic spot
detection.
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of the application of the OCWT on a simulated image
in which a small and weak structure has been embed-
ded in a noisy background, see Fig. 7. Since the inten-
sity of the structure is not the maximum value in the
image, the situation presented would not be resolvable
by CFAR approaches, even if the spot is discernible by
eye.

In signal theory, it is quite intuitive that the difference
between noise and a structure is the spatial correlation.
More specifically, spatial correlation in the noise is low,
i.e., pixels are usually not related to each other, and it is
quite unlikely for a pixel to have a similar intensity than
its neighbours. On the contrary, spatial correlation on a
structure is high, i.e., the probability that a pixel has
similar intensity as its neighbours is high. When
applying the OCWT, this different behaviour is
transferred to the wavelet domain much more amplified
because the WT is an effective whitening process, see
Fig. 8. Detail of the wavelet coefficients for a zoom o
Fig. 8. In fact, Flandrin (1992) showed that within-scale
wavelet coefficients are uncorrelated for Fractional
Brownian Motion (FBM) (which is the traditional
model assumed for oceanic sea surface turbulences)
(Stewart et al., 1993). Moreover, since the WT enhances
the presence of singularities, the probability of coin-
cidence of local maxima in the different subbands
within a scale is low in the background noise, whereas
the probability of co-occurrence of local maxima is
high in the presence of a structure.

5. Automatic spot detection with single channel SAR
data

5.1. Theoretical principles

Based on the previous hypothesis and taking
advantage of the difference of behaviour of the noise
and the target in the wavelet domain, a novel approach
for ship detection in SAR imagery is proposed, see
Fig. 9. This algorithm consists of two operations per
iteration. The first one is the application of a single
iteration of the OCWT which leads to three different
n two different regions of the simulated image.



Fig. 10. Haar wavelet and corresponding scaling function.
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components D1
j, D

2
j and Xj as presented before. Then,

the second one consists of merging the three compo-
nents into one result by a spatial product. The spatial
product accounts for the different behaviour of the noise
and structural information and privileges co-occurrence
of local maxima in the wavelet subbands. As a result, the
presence of the structure is enhanced with respect to
clutter. This basic step can be iterated by applying it to
the wavelet subband Xj corresponding to a low pass
filtered version of the input image.

There exist different wavelet bases (Villasenor et al.,
1995). In fact, a wavelet family can be constructed
through dilations and translations of a mother wavelet
which can be any function ψϵL2® satisfying the admis-
sibility condition, i.e. having zero average

Z þl

−l
wðtÞdt ¼ 0: ð10Þ

Then, the difference between mother wavelets relies
on two properties: the number of vanishing moments of
ψ and size of its support. On the one hand, it has been
seen before that a WT can be though of as a multiscale
differential operator. The number of vanishing moments
of the mother wavelet is related to the order of the
derivative (Mallat, 1999). On the other hand, the size of
Fig. 11. RADARSAT image with
the compact support of the wavelet is the number of
non-zero coefficients in time or space. According to
these criteria for the selection of the wavelet as well as to
the type of application focused, the Haar basis is
considered in the following, see Fig. 10. First, the Haar
wavelet has the shortest support among all orthogonal
wavelets. The size of the support is critical for loca-
lization purposes involved in ship detection. The Haar
wavelet has only two non-zero coefficients at n=0 and
n=1. Second, it has only one vanishing moment, i.e.,
it can be considered as a multiscale differential operator
of order 1. In that sense, it can be treated as the Canny
edge detector, not well localized in frequency and
therefore not well suited to approximate smooth func-
tions, but quite appropriate to spot detection.

For the number of iterations and according to the
span of resolutions of space-borne sensors that are ope-
rational nowadays and to the reasonable dimensions of
ships it is enough by applying four loops of the algo-
rithm. Nevertheless, most of the vessels appear in the
second and the third scale, even if their presence is
transmitted over higher scales.

A detailed example with a 128×128 pixels RADAR-
SAT image is presented in Fig. 11.

After applying one iteration of the OCWT to the input
image with a ship in its centre, three wavelet components
are obtained, with the same dimensions, see Fig. 12.
Fig. 12a highlights horizontal discontinuities of the input
image; Fig. 12b does the same for vertical irregularities
whereas Fig. 12c corresponds to a lowpass filtered version
of the original image. Even if the presence of the ship is
still appreciable in each of these components separately,
none of them facilitates the detection compared to the
input image. However, by combining them with a spatial
product, the distribution corresponding to the background
sea, uncorrelated between wavelet subbands, and that
of the targets are considerably separated, as observed in
Fig. 13, rendering easier (trivial in most of the cases) final
decision step.
its corresponding histogram.



Fig. 12. Resulting wavelet subbands. (a) Wavelet component corresponding to horizontal edges, (b) wavelet component corresponding to vertical
edges, (c) low pass component.
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In order to evaluate the goodness of the algorithm
proposed for automatic spot detection, its most inte-
resting properties will be first analyzed and discussed.
After this, a practical validation of the method is per-
formed by applying it to RADARSAT and ENVISAT
oceanic images. Unless specified, the resulting images
shown correspond directly to the spatial product of the
wavelet subbands: no threshold has been applied, i.e. the
images are not binarized.

5.2. Particular properties of the algorithm

5.2.1. Preservation of the spatial resolution
The OCWT does not require the subsampling step of

the conventional discrete WT in spite of higher redun-
dancy and consequently, there is no degradation of the
original resolution. Therefore, even smaller vessels can
be detected (Fig. 14).

5.2.2. Vessel to clutter contrast enhancement
The most noticeable effect of the algorithm is the

enhancement of contrast reached between the target and
its surroundings. Since this separation of distributions is
directly related to the success of the final decision step, a
parameter, called significance, and denoted by, s is de-
Fig. 13. Result of the application of the algorithm to the image in Fig. 11
fined in order to estimate quantitatively the impact of the
proposed technique.

s ¼
xtarget− ̂xbackground

rbackground
ð11Þ

where xtarget stands for the peak intensity of the target,
x̂ background stands for the value of the background mean
and σbackground is the background standard deviation.

Some illustrative examples are shown in Figs. 15
and 16 with their corresponding histograms. Moreover,
in order to image the difficulty of deciding the way of
setting the threshold, inversely related to the capabilities
of detection, a gray square has been superimposed to the
histogram representing the region in which the applica-
tion of a threshold will provide a correct result: detection
of the central target with no false alarms. Hence, a wider
coloured zone means a higher flexibility in the appli-
cation of the threshold and so larger possibilities of
success in the automatic detection.

5.2.3. Statistical distribution of the clutter invariant in
the wavelet domain

It has been previously stated that the most reasonable
way of facing the interpretation of SAR data is by
and corresponding histogram (direct result, no threshold applied).



Fig. 14. Two examples of application of the algorithm to the detection
of small targets (direct result, no threshold applied) in a RADARSAT
image, SGF mode, HH polarization, acquired in June 2005.
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assuming that SAR images are realizations of some
underlying random variable. Therefore, the research of
the most adequate analysis tools requires the determi-
nation of the statistical characteristics of these underly-
ing random processes. In fact, the knowledge of the pdf
makes the intrinsic randomness of the problem more
manageable. Nevertheless, the great diversity of natural
scenarios observed by the SAR sensors, translated into
images with different statistical characteristics, makes
the setting of automatic algorithms very problematic.
Thus, an interesting property of the algorithm is that it
brings any statistical distribution of the input data to one
which is always of the same type at the output. Hence,
decision rules, associated to the evaluation of a thresh-
old, are easier.

It is demonstrated through extensive modelling of
real data that the subband decompositions have signi-
ficantly non-Gaussian statistics that are best described
by families of heavy-tailed distributions such as the
alpha-stable family (Mallat, 1999). More specifically, it
is usually assumed for the wavelet coefficients that they
follow an exponential pdf fx(x) of the form

fxðxÞ ¼ K exp −
j ffiffiffi

x
p j
a

� �b" #
ð12Þ

with

K ¼ b
2aCð1=bÞ ð13Þ
and

b ¼ F−1 mean2

variance

� �
ð14Þ

where

FðxÞ ¼ Cð2=xÞ
Cð3=xÞCð1=xÞ ð15Þ

In the algorithm proposed in this paper, after the
wavelet decomposition, a spatial product is applied. Let
us consider z=xy and let us assume x and y independent
random variables with the same distribution, then the
pdf of the resulting coefficients follows

fzðzÞ ¼
Z þl

−l

1
jxj fxy x;

z
x

� �
dx: ð16Þ

As x and y are independent

fxyðx; yÞ ¼ fxðxÞfyðyÞ ð17Þ

Moreover, x and y have the same statistical distribution.
Then:

fzðzÞ ¼
Z þl

−l

1
jxj fxðxÞfx

z
x

� �
dx ð18Þ

Finally:

fzðzÞ ¼
Z þl

−l

1
jxjK exp −

jxj
a

� �b" #
K exp −

jz=xj
a

� �b" #
dx

ð19Þ

fzðzÞ ¼ K2
Z þl

−l

1
jxj exp −

jxj
a

� �b
−

jz=xj
a

� �b" #
dx ð20Þ

So, even if the resulting formula is not very sug-
gestive, it turns out that the final image has always the
same nature of statistical distribution (Eq. (20)),
independently from the type of statistical distribution
of the input image. This makes the algorithm more
robust to heterogeneities than conventional approaches
which assume beforehand a particular statistical distri-
bution of the input, as it can be seen in the example
given in Fig. 17. Moreover, the subsequent decision is
easier to be automatically adjusted.
5.2.4. Capability of managing discontinuities at
different scales

The technique proposed has a multiscale capability,
i.e. it can focus on different elements at different scales.



Fig. 15. Enhancement of contrast performed by the proposed algorithm. First row: original image (ENVISAT ASAR image, IM mode, VV
polarization, acquired in May 2004) and result (direct result, no threshold applied). Second row: corresponding histograms with the region of
applicability of a successful threshold.

Fig. 16. Enhancement of contrast performed by the proposed algorithm. First row: original image (ENVISAT ASAR image, IM mode, VV
polarization, acquired in May 2004) and result (direct result, no threshold applied). Second row: corresponding histograms with the region of
applicability of a successful threshold.
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Fig. 17. Application of the proposed algorithm to an heterogeneous scene (RADARSAT image, SGF mode, HH polarization, acquired in September
2001). First row: original image and result (direct result, no threshold applied). Second row: corresponding histograms.
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This means, for example, that if the method is looking
for ships, which are supposed to be less than 500 m long,
and are then expected to appear in the lower scales after
3 or 4 iterations, a big rock in the middle of the ocean
would not produce a positive even if its signature is very
bright in the SAR image since it will appear at higher
scales, not taken into account for the purpose of ship
detection. As a consequence, the algorithm proposed
can intelligently manage discontinuities, usually source
of false alarms.
Fig. 18. Application of the algorithm to an heterogeneous scene. (a) Original
January 2003). (b) Corresponding histogram. (c) Result of the direct applica
Moreover, the technique proposed is also sensitive to
a geometrical aspect in such a way that the spatial
constructive coincidence of maxima only happens if the
structure is localized. Therefore, other types of struc-
tures, as for example elongated ones (e.g. ice shelves)
would not disturb spot detection, even if their response
to the radar is very intense. An example in which a ship
appears very close to ice is shown in Fig. 18. The
maximum value of reflectivity of the image is on the ice
surface. As a consequence, this particular situation of
image (RADARSAT image, SCN mode, HH polarization, acquired in
tion of a threshold.



Fig. 19. Result of the application of the proposed algorithm to the image in Fig. 18 (direct result, no threshold applied) and corresponding histogram.
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detection cannot be solved directly by the application of
a threshold. To illustrate this point, a threshold whose
value is the maximum intensity of the target has been
applied. The resulting binarized image exhibits a lot of
false alarms which cannot be removed since an
augmentation of the value of the threshold is accompa-
nied by a loss of the target. On the contrary, after the
application of the proposed algorithm based on the
OCWT, in this example, the target becomes the maxi-
mum value in the image and it is then possible to choose
the value of the threshold among a large span of values
leading to a correct detection: positive for the central
target and absence of false alarms, see Fig. 19.
Fig. 20. Result of the application of the algorithm in a harbour (RADARSAT
original image and result (direct result, no threshold applied). Second row: c
This property is particularly useful for the treatment
of the region near to the coast, which is particularly
critical and which is subject to increasing stress from
different agencies. Conventional ship detection algo-
rithms include a first step which consists on a land
masking of the input image. This is a quite awkward
process which requires the availability of precise and
actualized maps. In fact, ship detection rates are
considerably lower in the near-shore region than in the
open sea (Greidanus, 2005).

Of course, robustness of the algorithm to disconti-
nuities, see Figs. 19, 20 and 21, does not prevent from
using a land mask since spots can also be found in the
image, SGF mode, HH polarization, acquired in June 2005). First row:
orresponding histograms.



Fig. 21. Two examples of application of the algorithm in a harbour
(direct result, no threshold applied). RADARSAT image, SGF mode,
HH polarization, acquired in October 2004.

Fig. 22. RADARSAT image of the Cantabrico area, Northern Spain.
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land, even more densely than in the sea. Nevertheless,
detection in near shore waters is less problematic.

5.2.5. Detection independent of the intensity
The algorithm presented in this paper does not

exclusively depend on the intensity of the targets'
signature; it also depends on the local spatial correla-
tion. As a consequence, the algorithm can detect weak
targets with low reflectivities. In fact, this high sensi-
tivity of the proposed algorithm can be regarded as a
possible disadvantage. Nevertheless, this technique
has been conceived in the belief that the critical issue
in this kind of application is detection, rather than false
alarms.

5.3. Validation

The method presented in this paper has been imple-
mented to be able to efficiently process complete SAR
images of different types. A final threshold step has
been added after the application of the algorithm based
on the WT. A text file is then obtained with the list of
positions of eventual targets. This procedure is com-
pletely unsupervised and it takes few minutes, depend-
ing on the dimensions of the image. Two examples of
processing are presented hereafter. In order to test the
performance of the algorithm proposed, the positions
obtained have been compared to ground truth data
(when available) and to visual inspection. Moreover,
results have also been correlated to the detections of
other automatic and operational algorithms tested on
the same images within the scope of the DECLIMS
project (Greidanus et al., 2004). All of those operational
systems rely on the detection of bright pixels compared
to the local background (CFAR approach), sometimes
employing a template to match expected target shape.
One of the main findings of the DECLIMS project was
that the operational algorithms, although performing
markedly different on individual images, had an overall
comparable performance.

5.3.1. Example of operation on a RADARSAT image
The first example of analysis corresponds to a

8892×8711 pixels SGF mode RADARSAT image,
acquired in July 2002 in the Cantabrico area, Northern
Spain (see Fig. 22). The resolution is about 22 m in
range and 27 m in azimuth. This image has been se-
lected because the region usually presents a high traffic
of fisheries. Vessels in this region are usually very small
and made of wood so that most of them are difficult to
detect.

After running the algorithm proposed based on the
WT, 103 possible targets were detected. The specific
distribution of these positives is as follows:

• 22 targets detected by other automatic algorithms and
corresponding quite probably to vessels, 5 of them
reported their VMS position.

• 2 targets not detected by other automatic algo-
rithms but with a reported VMS position, as shown
in Fig. 23.

• 56 targets not detected by other automatic algorithms
and corresponding quite probably to vessels. These
targets have been considered as vessels by means of
visual inspection. Some representative examples are
shown in Fig. 24.



Fig. 23. Positives (direct result, no threshold applied) validated
through VMS positions.
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• 23 targets not detected by other automatic algo-
rithms and visual inspection cannot decide whether
they may correspond to ships signatures or not.
Some representative examples of this category are
shown in Fig. 25. It may be interesting to notice
that, even if a decision is not possible, the auto-
matic algorithm is performing correctly since each
positive is due to the presence of a spot in the
Fig. 24. Four representative examples (direct result, no thresho
original image. Moreover, these spots could reason-
ably constitute signatures of ships. In fact, two
examples of signatures certainly belonging to ships
(as VMS ground truth was available) can be seen in
Fig. 23 and they are similar to the examples shown
in this one.

Additionally, an extensive visual inspection did not
find any other possible target not detected by the pro-
posed algorithm.

5.3.2. Example of operation on an ENVISAT image
The second example of analysis corresponds to a

4641×8513 pixels ENVISAT ASAR IMP image ac-
quired in July 2004, see Fig. 26. The resolution is about
30 both in range and in azimuth.

In this image, 100 targets were detected by the
algorithm proposed in this paper. Similarly, the specific
distribution of these positives is as follows:

• 66 targets detected by other automatic algorithms and
corresponding quite probably to ships signatures.

• 26 targets not detected by other automatic algo-
rithms and corresponding quite probably to ships
signatures. Some illustrative examples are shown in
Fig. 27.

• 8 targets not detected by other automatic algorithms
and visual inspection cannot decide whether they
may correspond to ships signatures or not. Some
illustrative examples are shown in Fig. 28.
ld applied) of positives corresponding probably to ships.



Fig. 26. ENVISAT image.

Fig. 25. Three representative examples (direct result, no threshold applied) of positives in which visual inspection could not decide whether they
correspond to a possible target or not.
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Additionally, the visual inspection of the image did
not find any other possible target not detected by the
proposed algorithm.

6. Extension to multidimensional data

As presented in the previous sections, the particular
properties of the data provided by SAR systems, in
conjunction with advanced signal processing techni-
ques, make possible to define a robust technique for ship
detection, both in coastal areas and in the open ocean.
Nevertheless, the important impact of the SAR techni-
ques in remote sensing must be found in the fact that
multidimensional SAR configurations are possible.
These new configurations are basically designed to
exploit the correlation structure among the different
SAR images, making possible to retrieve quantitative
physical information (Cloude and Pottier, 1996).
Despite this correlation structure is not taken into
account, it will be shown in the following that the
availability of multiple SAR images of the same area
can improve the performance of the detection algorithm
presented in the previous sections.

SAR interferometry (InSAR) is based on acquiring
two SAR images from slightly different positions in
space (Bamler and Hartl, 1998). This diversity in space
allows retrieving information about the vertical structure
of the surface, so that topographic information can be
derived. In the case of space borne SAR systems, this
multidimensional configuration is not useful for the ship
detection problem since SAR images are acquired at
different times. Since this difference may range from
days to months, obviously, the two SAR images would
not contain the same ships. As a consequence, both SAR
images cannot be jointly considered to improve ship
delectability. Polarimetric SAR systems (PolSAR) rep-
resent a second type of multidimensional SAR system
configuration, in which the diversity is obtained by



Fig. 27. Four representative examples (direct result, no threshold applied) of positives corresponding probably to ships.
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considering transmitted and received echoes at different
electromagnetic field polarizations (Ulaby and Elachi,
1990). The most usual configuration of this type of fully
polarimetric SAR systems is a monostatic SAR, where
the transmitter and the receiver are located at the same
spatial position. In this case, the PolSAR system records
three SAR images at the same time. Nevertheless, cur-
rently there is no fully polarimetric data of spaceborne
Fig. 28. Three representative examples (direct result, no threshold applied)
correspond to a possible target or not.
SAR systems available, although some future missions
are planned as the Canadian RADARSAT 2 and the
German TerraSAR X or, as the Japanese ALOS system
that is already in the commissioning phase.

The only current system which can be considered to
test the ship detection improvement by means of mul-
tiple SAR images is the European ENVISAT ASAR
system in its alternating polarization (AP) operation
of positives in which visual inspection could not decide whether they



Fig. 29. Ship detection algorithms with PolSAR data. (a) Algorithm based of the spatial product of the single SAR imagery detection results. (b)
Algorithm based on performing ship detection on the spatial product of SAR images. S1 and S2 denote every one of the SAR images considered by the
detection algorithms.
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mode. In this mode, ASAR is not able to provide fully
polarimetric information, but partial polarimetric infor-
mation (Souyris et al., 2005), i.e., the system records
two instead of three SAR images. Although the com-
plete polarimetric information about the scatterer of
interest cannot be retrieved, utilizing both SAR images
shows nevertheless great potential to improve ship de-
tection. Two approaches accounting for this issue will be
outlined in the following.

The first point to consider when multiple SAR
images are available is how to combine them in such a
way that ship detection is improved. The algorithm
detailed in the previous sections employs the spatial
product of the different components of the wavelet
transform of the input SAR image, based on the as-
sumption that ship locations are not altered by the
transform itself. Since PolSAR systems acquire the
images at the same instant of time, one can extend the
Fig. 30. (a) First SAR image HH pol., (b) second SAR image HV pol., (c) spa
(e) ship detection applied of the image (b), (f) ship detection applied to the
previous idea to the spatial product of the different SAR
images. As depicted in Fig. 29, two algorithms have
been developed based on this extension. They mainly
differ in the stage of processing, at which the two (or
even more) images are combined.

Both algorithms have been applied to several
ENVISAT datasets acquired in AP mode. Based on
the parameter of significance, see Eq. (11), it has been
found that ship detection performance of both
approaches is quite similar. Therefore, considering the
lower computational cost, the second algorithm has
been selected since it applies the ship detection algo-
rithm only once to the result of the spatial product of the
different images. The results of this approach are vi-
sualized in Figs. 30 and 31. The first conclusion which
can be drawn from both figures is the expected result
that the use of multiple SAR images improves ship
detection. If one compares Fig. 30f with d and e, it is
tial product of SAR images, (d) ship detection applied of the image (a),
spatial product of SAR images.



Fig. 31. (a) First SAR image HH pol., (b) second SAR image HV pol., (c) spatial product of SAR images, (d) ship detection applied of the image (a),
(e) ship detection applied of the image (b), (f) ship detection applied to the spatial product of SAR images.
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possible to observe that the proposed algorithm is able to
double the significance parameter, which implies a
better detection performance and a decrease of the false
alarm rate.

Since PolSAR data is sensitive to the geometric
properties of the target under investigation (depending
on the particular position of a ship with respect to the
imaging system) some ships may not appear in one of
the SAR images. This situation is for instance visible in
Fig. 31. As a result, the ship would be only detected in
the first SAR image. Nevertheless, this situation can be
still exploited with the proposed algorithm for PolSAR
data. Although the ship is not visible in the second SAR
image, the information of this image can be exploited in
order to reduce the effect of the clutter on the first SAR
image. Again, one may observe that the proposed algo-
rithm is able to double the detection capability, even in
awkward situations.

The results provided by the algorithms presented and
analyzed in this section lead to the conclusion that, even
under the limitations of the ENVISATAP imaging mode
regarding the completeness of polarimetric information,
this imaging mode can be successfully exploited to
improve ship detection. Although the presented algo-
rithms have been applied to only two polarimetric SAR
images, they can be easily extended to fully polarimetric
SAR or even to other multidimensional SAR system
configurations.
7. Conclusions

After justifying the use of a time–frequency frame-
work for the exploitation of SAR images and in particu-
lar for ship detection purposes, an alternative automatic
technique to CFAR methods has been presented. The
algorithm proposed appears to be simple, robust and
reliable. It is not exclusively dependent on the intensity
and therefore it is able to detect weak targets. Moreover,
its multiscale capability makes it useful to intelligently
deal with complex clutter situations and for the auto-
matic treatment of near shore waters. The algorithm has
been extended to multidimensional data and it has been
shown that the availability of polarimetric diversity
augments the automatic detection capabilities.

The results obtained confirm that spaceborne SAR
systems, jointly with a set of specific algorithms for a
reliable and quick interpretation of SAR data can con-
stitute an extremely valuable tool to assist authorities in
monitoring vessel traffic.
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