
B

r
B

Error analysis for the lidar backward inversion algorithm

Francesc Rocadenbosch and Adolfo Comerón

Here we depart from the inhomogeneous solution of a lidar equation using the backward inversion
algorithm that is nowadays generally referred to as the Klett method. In particular, we develop an error
sensitivity study that relates errors in the user-input parameters boundary extinction and exponential
term in the extinction-to-backscatter relationship to errors in the inverted extinction profile. The
validity of the analysis presented is limited only by the validity of application of the inversion algorithm
itself, its numerical performance having been tested for optical depths in the 0.01–10 range. Toward this
end, we focus on an introductory background about how uncertainties in these two parameters can apply
to a family of inverted extinction profiles rather than a single profile and on its range-dependent behavior
as a function of the optical thickness of the lidar inversion range. Next, we performed a mathematical
study to derive the error span of the inverted extinction profile that is due to uncertainties in the
above-mentioned user calibration parameters. This takes the form of upper and lower range-dependent
error bounds. Finally, appropriate inversion plots are presented as application examples of this study
to a parameterized set of atmospheric scenes inverted from both synthesized elastic-backscatter lidar
signals and a live signal. © 1999 Optical Society of America

OCIS codes: 010.0010, 010.1290, 010.3640.
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1. Introduction

Lidar inversion methods have been discussed for ap-
proximately three decades and are still under discus-
sion. The method of using Bernoulli’s differential
equation form of the lidar equation ~to be presented
next! was proposed as early as 1954 by Hitschfeld and

ordan1 to invert the rain rate from radar returns
~although an unstable form! and has been applied or
estated to invert lidar returns by, e.g., Barret and
en-Dov,2 Viezee et al.,3 Davis,4 Fernald et al.,5 Collis

and Russell,6 Kohl,7 and Klett,8 raising considerable
controversy about its stability. Thanks to all these
and other contributions, in 1981 Klett presented a
stable analytical form for the inversion solution,8 and
nowadays this method is generally referred to as the
Klett method.

This is a straightforward nonadaptive inversion
method that is used, for example, in automated
ceilometers9 and other lidar systems. Its most
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prominent feature is that of inverting inhomogeneous
profiles ~compared with the classic slope-method10

and least-squares fitting algorithms,11 which can in-
vert only homogeneous atmospheres! at low compu-
tational cost and with excellent stability. Yet, in
spite of the fact that the algorithm is nonadaptive
~i.e., independent inversions are performed for each
new incoming data burst!, the reliability of the in-
verted profile is hampered by the accuracy of two user
inputs to the algorithm ~in its simplest form!: the
ssumed boundary extinction at the far end of the
nversion range and the assumed exponential term in
he extinction-to-backscatter relationship.

Historically, authors who have studied different
roblems concerning the boundary condition are
ainly Kunz,12 Ferguson and Stephans,13 Fernald,14

Sasano,15 Hughes et al.,16 Klett,17 and Bissonnette.18

The assumption of different backscatter-to-extinction
ratio forms in inversion algorithms has been dis-
cussed by Sasano and Nakane,19 Klett,20 and Keast-
ner21 among others. Even with these relevant
contributions and the sensitivity analysis of Bisson-
nette18 ~which was oriented to test the stability of

ifferent solution forms!, there is still a void that
ncompasses the derivation of practical error bounds
n the inverted extinction that are due to error
ounds in the user calibrations. To fill this void, our
oal is to derive different pairs of range-dependent
rror functions ~referred to as upper and lower
ounds! that limit the error span of the inverted ex-
20 July 1999 y Vol. 38, No. 21 y APPLIED OPTICS 4461
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tinction in response to practical error margins for the
above-mentioned user-input parameters of the algo-
rithm.

A. Review of the Klett Method

Let us introduce the monostatic pulsed lidar equa-
tion. Under the assumption of single scattering, it
takes the form

P~R! 5
A
R2 b~R!expF22 *

0

R

a~r!drG , (1)

where P~R! represents the range-return power in
watts, b~R! is the range-dependent atmospheric
backscatter coefficient of the atmosphere ~in inverse
kilometers times inverse steradians!, a~R! is the
range-dependent atmospheric extinction coefficient
~in inverse kilometers!, R is the range ~in kilometers!,
and A is the system constant. Alternatively, Eq. ~1!
is often reformulated in differential form as

dS~R!

dR
5

1
b~R!

db~R!

dR
2 2a~R!, (2)

where S~R! is the range-corrected power defined as

S~R! 5 ln@R2P~R!#. (3)

It is obvious that the ultimate goal of lidar inver-
sion is to retrieve both range-dependent extinction
and backscatter functions, a~R! and b~R!, but, since
this is an ambitious endeavor, different kinds of cor-
relation hypotheses are introduced to simplify the
problem. Thus, if the aerosol spectral form or com-
position does vary with location, b~R! and a~R! can be
regarded as having a proportionality that is range
dependent so that the traditional way to relate both
functions is to assume a power-law relationship of the
form

b~R! 5 Ba~R!k, (4)

where, in the most general case, both B and k are
unctions of R.

Here, we encounter different approaches: A most
general one assumes that k 5 1 and a variable
backscatter-to-extinction ratio of B~R!.20 As a fur-
ther refinement, one can even distinguish between
aerosol and molecular backscatter-to-extinction ra-
tios, Ba~R! and Bm, respectively.14,20 Even though a
theoretical analysis of the errors caused by use of a
constant backscatter-to-extinction ratio instead of a
spatially variable ratio is discussed in Ref. 22, under
most circumstances it is not possible to know a priori
the backscatter-to-extinction ratio as a function of the
range and a constant ratio B with range is used.

his hypothesis has only a physical meaning if gas-
ous absorption is negligible ~typical figures of the
ptical parameters lie in the ranges a 5 5 3 1022 55

km21, b 5 3.5 3 1024 to 2.7 km21 sr21! and there are
no multiple-scattering effects.19,20 As a result of
multiple scattering, the return power exceeds the
value predicted by Eq. ~1! because it includes photons
462 APPLIED OPTICS y Vol. 38, No. 21 y 20 July 1999
that have been scattered more than once. In a prac-
tical application, multiple scattering can be neglected
in visually clear ~i.e., noncloudy! atmospheres in
which the one-way optical thickness is less than ap-
proximately 1, given the field of view of the receiving
optics of several milliradians or less. These effects
tend to be much more important in fog, cloud, and
rain situations6 because of the much larger probabil-
ity of scattering and the larger scattering particles,
which focus a much larger fraction of scattered pho-
tons in near-forward directions.

Equivalently, the assumption of a constant ratio B
essentially assumes that the size distribution and
composition of the aerosol scatterers do not change
with range from the lidar and that variation in back-
scatter from aerosols is due to changes in their num-
ber density.14 This is the only hypothesis we can use
without a priori information, and it can be justified
only from the point of view of the numerical analysis
of lidar data as a first inversion trial. The custom-
ary alternative approach, whereby information on
backscatter and extinction is cast in the form of a
power-law relationship of Eq. ~4! with B and k as a
pair of constants, has a less direct physical justifica-
tion but nevertheless also has a practical value.20

Collis and Russell,6 Pinnick et al.,23 and Russell et
al.24 have provided values of the backscatter-to-
extinction ratio, which depends on the size distribu-
tion and complex refractive index of the aerosols and
usually varies from 10 to 100.25,26 Reported values
of k are usually in the 0.67 , k , 1.3 range.20,27,28

All things considered, the simple power-law ap-
proach of Eq. ~4! with constants B and k has been
shown by experiment to be reasonably good8 even
though the transformation between a and b is in
general a many-to-one problem, as more than one
value of B can occur, at different locations, for the
same value of a ~see Ref. 20!. See Refs. 27 and 29 for
a deeper insight into the nonuniqueness problem of
the backscatter–extinction relation.

Under these considerations, if Eq. ~4! is substituted
into Eq. ~2! with constants B and k, it becomes

dS~R!

dR
5

k
a~R!

da~R!

dR
2 2a~R!. (5)

ote that the backscatter-to-extinction constant ratio
is irrelevant for inversion of the extinction profile

but not the backscatter profile! and vanishes @see
lso Eq. ~7!#. Only k is retained as a reminder of the
orrelation between extinction and backscatter.

Equation ~5! is a Bernouilli differential equation in
~R! and, when a calibration of the extinction coeffi-
ient at the maximum inversion range Rm is fed to
he algorithm6,30 as

S~Rm! 5 Sm7 a~Rm! 5 am, (6)



s
a
i
t

p
l
w
s
v

n
a

o

i
r
m
~
w
s
t
e
s

k

the backward solution proposed by Klett arises:

a~R! 5
exp@~S 2 Sm!yk#

am
21 1

2
k *

R

Rm

exp@~S 2 Sm!yk#dr

. (7)

This solution, with which the extinction coefficient is
calibrated at the maximum range Rm, is highly stable
because, as R decreases from the end of the exploring
range, where the signal-to-noise ratio is lower, a~R!
in Eq. ~7! becomes the ratio of two numbers progres-
ively larger. @Here, it is assumed that S~R! gener-
lly decreases with increasing range R. This occurs
n most practical applications because of the effect of
he extinction term in Eq. ~1!.#

Following this simplified approach, a refinement of
ractical advantage is to divide the atmosphere into
ayers as in the so-called slice method of inversion,
hich is merely an extremely close variant of the

lope method but applied to successive range inter-
als.31 In its application to the Klett method, B and

k are allowed to vary among the layers. Throughout
this study we consider the oversimplification of hav-
ing one single slice in the inversion interval ~some-
times, even in front of substantial variations in the
return signal! in order to test the robustness of the
error bounds that are derived here.

B. Calibration Problem Facts

Except when balloonborne and plenty of cooperative
equipment is used, selection of k and the boundary
extinction am is always a problem. For optical
depths greater than unity, an adequate estimate of
am can usually be obtained with the well-known slope
method as minus one half of the average slope of the
S~R! curve30 @the assumption of a homogeneous at-
mosphere in the case of the slope method is equiva-
lent to daydR 5 0 in Eq. ~5! and, hence, am ' 1y2
S~R!#. Of course, this approach often becomes quite
inaccurate and is risky for less turbid atmospheres
because microstructure variation along the lidar
beam path could easily lead to relatively large fluc-
tuations of the fractional gradient of attenuation
kyadaydR compared with 22a~R! in Eq. ~5!, hence
invalidating local application of the slope method.
Although the utility of the slope method increases
with increased optical depth,8 it is also necessary that
a priori information confirm ~1! the existence of a
homogeneous atmosphere at the last slice of the in-
version interval used to calibrate the boundary ex-
tinction and ~2! enough signal-to-noise ratio. If this
information is unavailable point ~1! could yield to
situations in which an inhomogeneous reflection ~e.g.,
a cloud reflection! could not be distinguished from the
returns of a homogeneous atmosphere ~see Appendix
B in Ref. 29!, and point ~2! could yield to situations in
which the return signal would be buried in noise.

Similar comments apply but with higher noise im-
munity when the selected algorithm to estimate the
boundary extinction over the interval ~R, Rm! is a
curve-fitting exponential11

mina,b$iR2P~R! 2 b exp~2aR!i2%

5 mina,bH(
i51

N

@Ri
2P~Ri! 2 b exp~2aRi!#

2J , (8)

instead of the classic slope method. In Eq. ~8! the
orm minimization is performed over the variables
5 2a and b 5 Ab for all the points Ri [ ~R, Rm!.

Hence, an estimate ac of the true calibration am is
btained as ac 5 ay2.
Finally, another uncertainty example30 is that, if

one imposes the constraint that the average extinc-
tion over @0, Rm# is the same as over the last slice
@R0, Rm#, both high and low visibility boundary val-
ues of extinction can be found for a given return
signal, and so the question arises as to how one can
discriminate between the two possibilities. Again,
the answer must come from appropriate a priori in-
formation such as direct observation ~under many
circumstances! or cooperative instrumentation.

As for the correlation constant k of Eq. ~4!, even an
estimate is difficult to achieve and, in practice, this
value comes from a few values reported in the liter-
ature.27,28

In short, k and am represent properties of the at-
mospheric aerosols that are impossible to calibrate
perfectly, which serves to justify that the core of this
paper is to study the sensitivity of the inverted ex-
tinction to k and am.

C. Limits of Validity of the Study

The error study tends to be as general as possible, its
validity being limited only insofar as application of
the Klett method by use of the power-law relationship
of Eq. ~4! and a constant value for B. Thus, we con-
ducted and tested the study from a theoretical point
of view to ensure an optical thickness application
range as wide as t ' 0.01–10 @optical thickness def-
nitions are discussed later in Eqs. ~13!–~14!#. We
ealize that this could encompass situations in which
olecular scattering or multiple scattering effects

depending on the field of view of the receiving optics!
ould become significant and, therefore, hamper

trict application of the inversion method. Never-
heless, in this case, since the multiple-scattering
quation basically reduces the conventional single-
cattering lidar equation using correction terms,32

the following analysis can still be extrapolated by the
potential user. Weinman,33 for example, gives a
single-scattering inversion solution for the lidar re-
turn measured by a central field-of-view detector at
which a linear backscatter-to-extinction relation is
assumed.32

2. Inversion Problem as a Family of Functions

With the practical uncertainties in the estimation of
the input parameters of Eq. ~7!, k and am, the in-
verted profile â~R, kc, ac! from user-selected values of

c and ac become a single representative of the two-
20 July 1999 y Vol. 38, No. 21 y APPLIED OPTICS 4463
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dimensional family yielded by Eq. ~2! when the se-
lected pairs ~kc, ac! sweep the user error span:

kc,min , kc , kc,max,

ac,min , ac , ac,max. (9)

Subscripts max and min indicate maximum and min-
imum limits of the selected values for these param-
eters, and we assume that they were chosen
conservatively so that they always include the true
atmospheric pair, k and am ~unknown by the user!.

The relationship between the user-inverted profile
ˆ ~R, kc, ac! and the true atmospheric extinction pro-
file a~R, k, am! in Eq. ~7! is derived in the Appendix
and takes the form

â~R, kc, ac! 5
a~R!kykcI~R, kc,a!

am
kykc

ac
I~Rm, kc, a! 1

2
kc

F~R, k, kc, a!

,

(10)

where I~R, kc, a! and F~R, k, kc, a! are auxiliary
functions defined as

I~R, kc, a! 5 expF2
2
kc *

R0

R

a~r!drG , (11)

F~R, k, kc, a! 5 *
R

Rm

a~r!kykcI~r, kc, a!dr. (12)

The cap over a means estimate of, a is a reminder of
he functional dependency of any function on the at-
ospheric profile a~R!, and R0 is some predetermined

minimum range that becomes irrelevant in Eq. ~10!.
quation ~10! describes the inverted extinction pro-
le in terms of the atmospheric profile a~R!, the at-
ospheric pair ~k, am!, and the user-selected pair ~kc,

ac!. Equation ~10! is of advantage only for simula-
tion and study purposes because it relates the true
atmospheric extinction profile ~e.g., a computer-
synthesized profile! with parameters ~k, am! to the

ser-inverted extinction profile with parameters ~kc,
c! without the need to compute the logarithmic

range-corrected power S~R! as in Eq. ~7!. Obviously,
â~R, kc, ac! 3 a~R! as long as ~kc, ac! 3 ~k, am!.

Figure 1 illustrates an example of the problem by
comparison of a synthesized atmospheric extinction
profile a~R, k, am! to a set of user-inverted profiles
ˆ ~R, kc, ac!. The atmospheric profile, which is la-
beled as true extinction, is much the same as the one
used by Klett to test the stability of his algorithm in
Ref. 8. It was built so that the extinction of the
bottom base of the trapezium platform is a and that
of the top base is 2a. In practice, this could be rep-
resentative of an exploration path where inhomoge-
neities are not very large ~a factor of 2 in the
simulations!.

Before proceeding further, we find it convenient to
describe the atmospheric condition in terms of the
464 APPLIED OPTICS y Vol. 38, No. 21 y 20 July 1999
optical thickness or path-integrated extinction coef-
ficient

t~Rmin, Rmax! 5 *
Rmin

Rmax

a~r!dr (13)

or, equivalently, as the two-way transmission

T 5 10 log@exp~22t# 5 28.686t ~dB! (14)

rather than use of the terms bottom base and top base
extinction.

In addition, it is also necessary to define the words
family and branch within the context of Fig. 1 and the
like. We define a family as a bundle of plots that
leave from the same user-selected boundary extinc-
tion ac at Rm and a branch as any curve that belongs
to a family. Each branch of a family is defined by a
user-selected kc.

Using the above definitions, we plotted a family of
curves in Fig. 1, all of which are solutions of the lidar
equation by use of Klett’s method with different
boundary conditions ~kc, ac! in Eq. ~7!, in response to
synthesized lidar signals generated from a common
shape in the extinction profile. Figure 1~a! corre-
sponds to an optical thickness t 5 7.4 ~T 5 264.3 dB!,
whereas Fig. 1~b! corresponds to t 5 0.74 ~T 5 26.5
dB!. In both cases, the two families shown are mis-
calibrated up to ac 5 2am and each branch â~R, kc, ac!
corresponds to curves with kc 5 0.67, 1, and 1.34.
Each family has been computed according to Eq. ~10!

Fig. 1. Trapezium profile. Solutions of the synthesized lidar sig-
nals according to Eq. ~10! with a common shape of the extinction
profile ~true ext.! by use of different values for kc ~0.67 # kc # 1.34!
and the boundary condition ac 5 2am. The 3 indicates the user-
selected boundary extinction ac at Rm. Simulations are parame-
terized for optical thicknesses of ~a! t 5 7.4 and ~b! t 5 0.74.
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in response to the synthesized atmospheric test pro-
file a~R, k, am! for which k 5 1 and am 5 1 km21.

At first glance, one might wonder whether the ex-
ample of Fig. 1~a! is at all representative considering
that such an optical thickness ~t 5 7.4! plus the geo-
metric attenuation R2 would yield to a low signal-to-

oise ratio at Rm. However, it must be said that the
same plots are reencountered when abscissas are
downscaled by some predefined factor and, conse-
quently, when the optical thickness has more practi-
cal values.

To study the sensitivity of the inverted extinction
profile to values of the pair ~kc, ac!, in Fig. 2 we
plotted ten profiles â~R, kc, ac! inverted in response to
the same input test profiles as in Fig. 1 ~this profile is
labeled as true ext.! when kc and ac sweep the range
kc,min 5 0.67 and kc,max 5 1.34 ~in three linear steps!
nd ac,min 5amy2 and ac,max 5 2am ~in five log steps!
ccording to expression ~9!. The latter error interval
epresents a factor of 2 misestimation from am in the

user-selected boundary extinction ac. Superim-
posed on each plot, Fig. 2 depicts the sought-after
upper and lower error bounds of the inverted extinc-
tion. These bounds are the best in the sense that
they represent the envelope of the two-dimensional
function â~R, kc, ac! when its principal variables ~kc,
ac! are within the user-uncertainty span of expres-
sion ~9!. Based on the graphic results obtained, we
determined that computation of these uncertainty or
error bounds becomes more complicated because
branches that belong to different families intersperse
and overlap along the inversion range. As a result,
the upper and lower envelope representatives of the

Fig. 2. Trapezium profile. Same as Fig. 1 but kc and ac span the
user-error margin amy2 # ac # 2am and 0.67 # kc # 1.34 @expres-
sion ~9!#.
uncertainty interval in the inverted extinction, which
we want to determine, are formed by a myriad of
branches instead of by two particular ones.

We tackle this problem in subsequent sections.
In the examples of Figs. 1 and 2, where the atmo-

spheric profile is simulated and hence is perfectly
known, reconstruction errors in the solution can be
calculated from Eq. ~10! as

e~R, kc, ac, k, am! 5 F1 2
â~R, kc, ac!

a~R, k, am!G100%. (15)

Error e is a range-dependent function and it depends
on the particular atmospheric extinction profile at
hand, the boundary range Rm, the assumed pair ~kc,
ac!, and the atmospheric pair ~k, am!.

A comprehensive set of simulations has been per-
formed to help to reveal significant trends about the
sensitivity of the inverted extinction to the pair ~kc,
ac! for different optical depths. We can conclude
that:

~1! The solution is less sensitive to the boundary
value ratio for increasing optical depths @this can also
e inferred from comparison of Fig. 2~a! with Fig.
~b!#. An explanation for this is that, for increased
ptical depths, ac becomes a large number. Its in-

verse in Eq. ~7! is a small number and, hence, the
ackward solution simply becomes the ratio of the
ormalized signal and the path-integrated normal-

zed signal. Consequently, the influence of the re-
ote calibration vanishes. This coincides with the

riterion8 that, for t . 1, the inversion method can be
applied in principle by using only that information
contained in the signal itself. In other words, it is a
question of the range of optical thickness that deter-
mines the convergence to the true extinction.

~2! Overestimates of the boundary value are pre-
ferred to underestimates, ~which is shown analyti-
cally in Eq. ~A6! under the simplification that kc 5 k.

~3! In homogeneous intervals, the choice of kc is
completely irrelevant because the term kyadaydR in
Eq. ~2! tends to zero and the inverted profiles tend to
be parallel lines in these intervals @consider, for ex-
ample, Fig. 2~b! between the 1.8- and 3.39-km range
interval#. For the same reason, in inhomogeneous
intervals for which heterogeneities are not very large
~approximately a factor of 2!, the sensitivity of the
nverted extinction profile to errors in kc is usually
utweighed by errors in the boundary extinction ac.
~4! e~R! is generally a nonmonotonic decreasing

unction with increasing distance from the boundary
alibration at Rm. Precise conclusions about the

variation of the value e with range can hardly be
erived because errors depend on the aerosol distri-
ution. Thus, in Fig. 2~a! e~R! increases in the range
etween 0.5 and 1.5 km, even though there is an
verall decreasing trend as one moves backward from
he boundary @see also Fig. 2~b!#.

The conclusions outlined here from the simulation
esults presented are in close agreement with those of
20 July 1999 y Vol. 38, No. 21 y APPLIED OPTICS 4465
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Sasano and Nakane.19 In a practical inversion,
however, Eq. ~7! would become more sensitive to the
measurement noise and this would also contribute to
an increase in inversion errors.

3. Some Absolute Bounds

In Section 2 we showed that a two-dimensional set of
solutions exists for one lidar signal if no a priori
information is available. Otherwise, the user-
uncertainty intervals described by expression ~9! can
be translated into appropriate error bounds for the
inverted extinction of the form

alow~R! # â~R, kc, ac! # aup~R!, (16)

where aup~R! and alow~R! correspond to the upper and
lower error bounds, respectively. Here we are com-
mitted to the analytical derivation of absolute bounds
for lidar return signals P~R!, even though these
bounds are not the closest and, obviously, not the
most unique for all range R, but they are a first
approximation to them. Inputs and outputs of the
computation procedure are sketched in Fig. 3.

The key to the mathematical procedure lies in re-
writing Eq. ~7! in terms of an auxiliary function @see
also Eq. ~3!#,

x~R! 5 exp@S~R! 2 Sm# 5
R2P~R!

Rm
2P~Rm!

, (17)

nd of the auxiliary variables,

g 5 1ykc; a 5 1yac, (18)

so that Eq. ~7! becomes

â~R, g, a! 5
x~R!g

a 1 2g *
R

Rm

x~r!gdr

. (19)

In the future, the pairs ~g, a! and ~kc, ac! will be used
indiscriminately. Note that to this end Eq. ~19! re-
mains the backward inversion method similar to Eq.
~7!, given that g and a are now the user-selected
parameters.

By using the basic properties of xg and that of x~R!
. 0, one can easily limit this function between two
others of the same kind, for example,

x~R!gmin , x~R!g , x~R!gmax for x~R! . 1,

Fig. 3. Flow diagram indicating inputs and outputs of the error
bound computation algorithms for the inverted extinction given a
priori uncertainty information.
466 APPLIED OPTICS y Vol. 38, No. 21 y 20 July 1999
x~R! max , x~R! , x~R! min for x~R! , 1. (20)

These inequalities turn into equalities for x~R! 5 1
because all the curves of the family coincide at the
point ~1, 1!. gmin and gmax were computed from the
uncertainty interval of kc with expression ~9!.

By introducing the definitions of the Heaviside and
delta functions, denoted u~x! and d~x!, respectively,

u~x! ; H1 x $ 1
0 otherwise , (21)

d~x! ; H1 x 5 0
0 otherwise , (22)

We expressed inequalities ~20! in terms of the upper
and lower bounds of x~R!g, yup~R!, and ylow~R!, respec-
tively, as follows:

yup~R! 5 xgmaxu~x 2 1! 1 xgminu~1 2 x! 2 d~x 2 1!,

ylow~R! 5 xgminu~x 2 1! 1 xgmaxu~1 2 x! 2 d~x 2 1!,

(23)

where variable R is a reminder of the range depen-
dence of x~R!.

We achieved the derivation of the absolute range-
dependent bounds for the inverted extinction profile
by combining Eq. ~7!, the uncertainty span of ~g, a!
based on expression ~9!, and Eqs. ~23!. Eventually
aup~R! and alow~R! in inequality ~16! were computed
as the worst bounds of Eq. ~19!, i.e., as the ratio of the

aximum numerator to the minimum denominator
f Eq. ~19! for the upper bound and vice versa for the
ower bound. Mathematically,

ylow~R!

amax 1 2gmax *
R

Rm

yup~r!dr

# â~R, g, a!

#
yup~R!

amin 1 2gmin *
R

Rm

ylow~r!dr

,

(24)

where amax 5 1yamin and amin 5 1yamax @Eqs. ~18!#.
igure 4 shows an application of this result to the
xample of Fig. 2. The behavior of absolute bounds
arrants some comments.
First, it must be stressed that the bounds are

ange-dependent error-sensitivity functions of the in-
erted extinction and that the only inputs needed to
ompute them are the lidar signal itself and the user-
rror span @expression ~9!#, as indicated in Fig. 3. A
econd point is that performance is strongly depen-
ent on optical depth. Thus, for large optical depths
Fig. 4~a!#, divergence of the absolute upper bound
ccurs and inequality ~24! tends to the trivial case of

, â~R, g, a! , `. For moderate-to-low optical
depths @Fig. 4~b!#, the bounds are always convergent
to the upper and lower bounds depicted in Fig. 2
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~these are the closest bounds and, for the time being,
let us assume that they have been obtained by using
some graphic procedure!. This distinguishing be-
havior is, in turn, due to that of x~R!g. For large
optical depths, the range-received power P~R! causes
x~R! to span several orders of magnitude along the
inversion path. Since the power-law bounds of ine-
qualities ~20! are particularly sensitive to g for x~R! .
1 when x~R! is large, a reduced uncertainty in g
causes x~R!gmin and x~R!gmax to be fairly different in
magnitude. This trend reverses, however, for low
optical depths, where the order of magnitude of the
normalized return power x~R! is around approxi-
mately 1. Inasmuch as moderate-to-low and low op-
tical depth situations are precisely the ones in which
all the extinction branches â~R, kc, ac! move further
apart, the absolute bounds assessed in these situa-
tions are particularly welcome.

4. Closest Bounds: Uncertainty Envelope

The absolute bounds derived in Section 3 are compu-
tationally simple but not unique. In fact, they are
only some limiting functions, but not the closest ones,
of the infinite branches of â~R, g, a! when g and a @see
Eq. ~18!# sweep error intervals of expression ~9!.
Here we tackle the mathematical derivation of such
unique bounds, equivalently, the upper and lower
envelopes of â~R, g, a!.

We reconsider Fig. 2 and the already discussed fact
that it is not possible to find a single branch belonging
to some particular family that behaves as the upper
or lower bound of â~R, g, a! @Eq. ~16!# throughout
range R. This means that, for each range R 5 R0,
optimum pairs ~g, a! can be found ~i.e., worst-case
user-selected pairs!,

~gopt
~max, aopt

~max! ~gopt
~min, aopt

~min!,

or which the inverted extinction

â~R0, gopt
~max, aopt

~max!

reaches a maximum value equal to the value of the
upper envelope at this range,

â~R0, gopt
~max, aopt

~max! aup~R0!,

and a minimum one, which corresponds to the lower
envelope, so that

â~R0, gopt
~min, aopt

~min! 5 alow~R0!.

he notation, for example, gopt
~min, should be read as

optimum or a worst-case user-selected value of g, for
hich the inverted extinction â is minimum ~the sin-
le left-hand parenthesis is used to distinguish the
uperscript from a mathematical exponent!. Note
hat by this means we have transformed the problem
f finding the upper and lower envelopes of â~R, g, a!

into an optimization problem with variables ~g, a!
and that this is equivalent to finding the absolute
extrema of this function at each range of R 5 R0.

By use of the classic optimization theory it is
known that the extrema ~maxima or minima! of a
function f ~g, a! 5 â~R0, g, a! in a convex domain ~Fig.
5!, as is the case in expression ~9!, lie either inside or
within the boundary of the domain. Extremum can-
didates inside the domain are points with ¹f 5 0 and
those lying within the boundary are formed by both
local extrema of the boundary curves and corner
points of the domain.

In our case, Eq. ~19! has dâyda , 0 for all R and g
and, therefore, candidate points to absolute extrema
must come from a set of candidates formed by local
extrema in the boundary curves of the domain ~g,

Fig. 5. Absolute and relative extrema of â~R0, g, a! in the feasible
domain ~g, a!. Curves within circles correspond to afit~R0, g, amin!
nd afit~R0, g, amax! @Eq. ~31!#, for which function â~R0, g, a! always

attains its absolute maximum and minimum. In this example,
they correspond to corner points ~gmax, amin! and ~gmin, amax!, re-
spectively within solid boxes!. Corner points ~gmin, amin! and
~gmax, amax! and local maximum ~gc, amax! ~dotted box! are failed
candidates of the absolute extrema. ~The plot has been computed
from the real live scene shown in Fig. 10, where R0 5 497.5 m!.
Fig. 4. Trapezium profile. Comparison between the absolute
bounds listed in Section 3 and the closest bounds in Section 4
relative to Fig. 2. Subplots ~a! and ~b!, details for t 5 7.4 and t 5
.74, respectively. Subplots ~c! and ~d!, reproduction of the closest
ounds depicted in Fig. 2 ~same scale! with superimposed absolute

bounds of subplots ~a! and ~b! for comparison. Performance of the
absolute bounds improves when the optical depths decrease.
20 July 1999 y Vol. 38, No. 21 y APPLIED OPTICS 4467
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amax! and ~g, amin!, and the four corner points of the
domain, ~gmin, amin!, ~gmin, amax!, ~gmax, amin!, and
~gmax, amax!. This obviously involves function eval-

ation of â~R, g, a! at the candidate points as the root
~candidate! selection procedure.

Inasmuch as dâyda , 0, aopt
~max 5 amin, aopt

~min 5
amax, and the closest bounds or envelope of â~R, g, a!
can be written as

â~R, gopt
min, amax! , â~R, g, a! , â~R, gopt

max, amin!.

(25)

his relationship represents the optimum branch of
amilies â~R, g, amin! and â~R, g, amax!, which, at each

succeeding range R 5 R0, yields maximum and min-
imum inverted extinction, respectively, given Eqs.
~18! and the user-uncertainty parameters of expres-
sion ~9!, and it is the solution of the posed problem.

Local extrema gc, is the domain boundary curves
~g, amax! and ~g, amin!, can be computed as

dâ

dg
U

a5amax
R5R0

5 0;
dâ

dg
U

a5amin
R5R0

5 0. (26)

At this point, note that we distinguish between gc and
gopt. The former represents a critical point in the
domain of Fig. 5 ~i.e., an eligible point to absolute
extrema!, whereas the latter is an absolute extrema.
Equations ~26! are the most difficult part of the prob-
lem because analytical optimization of Eq. ~19! with
respect to g involves solution of an integral equation
n this parameter for each range R. Although, in

theory, this formulation of the problem is valid, in
practice, the complexity and computational effort in-
volved invalidate the procedure. However, there is
a way around the problem if we take into account the
reduced error span of g and a Taylor series expansion
is used.

First, let us rewrite Eq. ~19! as

â~R, g, a! 5
x~R!g

a 1 q~R, g!
, (27)

where the integral term is redefined as

q~R, g! 5 2g *
R

Rm

x~r!gdr. (28)

nasmuch as Eq. ~26! requires partial derivatives in g
or each range of R 5 R0, let us develop q0~g! 5 q~R0,

g! in a series expansion around g 5 1 ~this is approx-
mately the geometric mean between gmin

5 1ykc,max 5 0.75 and gmax 5 1ykc,min 5 1.50! as

q0~g! < 2gc0 1 2g~g 2 1!c1 1 g~g 2 1!2c2, (29)

where

cn 5 *
R0

Rm

x~r!lnnx~r!dr. (30)
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Coefficients cn assimilate the morphology of the nor-
malized lidar function around R 5 R0, g 5 1, and

ust be recomputed at each point of the inversion
nterval according to the current data sampling in-
erval ~that is to say, we have a different series ex-
ansion for each range R!.
Going one step further, if approximation ~29! is

ubstituted into Eq. ~27! and a second-order series
xpansion is reused around g 5 1, one can obtain a
uadratic fitting function that describes the behavior
f â~R, g, a! around R 5 R0, g 5 1. After consider-
ble algebraic manipulation, we found that

fit~R0, g, a! 5
x0

a 1 2c0
1

x0

a 1 2c0
Slnx0 2

2~c0 1 c1!

a 1 2c0
D

3 ~g 2 1! 1
x0

a 1 2c0
F1⁄2 ln2x0

2
~2c1 1 c2!

a 1 2c0
2 Sln x0 2

2~c0 1 c1!

a 1 2c0
D

3
2~c0 1 c1!

a 1 2c0
G~g 2 1!2 1 O@~g 2 1!3#,

(31)

where x0 5 x~R0!.
Two of these functions, afit~R0, g, amin! and afit~R0,

g, amax!, are plotted in Fig. 5 as curves within circles.
They fit the sensitivity of the inverted extinction pro-
file at R 5 R0 with g for two boundary extinction
calibrations located within the limits of the uncer-
tainty domain, a 5 amin and a 5 amax. Critical
points of â~R, g, a! always lie on these boundary
curves. A combination of Eqs. ~26! and ~31! yields a
pair of first-order equations in g ~one for each deriv-
ative!, after which local extrema gc,1 and gc,2 can
easily be solved.

Eventually, since candidate points to absolute ex-
trema gopt

~max gopt
~min are formed by the corner

points plus the local extrema that lie inside the un-
certainty intervals of expression ~9!, the sought-after
bounds for the inverted extinction can be computed
as

Haup~R! 5 max@â~R, gi, amin!#
alow~R! 5 min@â~R, gi, amax!#

;

gi 5 gmax, gmin, gc,1~R!, gc,2~R!. (32)

The functional dependence of gc with range R is a
reminder that local extrema must be recomputed at
each range of R 5 R0.

Equation ~32! is the solution of expression ~25!.
Even though the computational load per inversion
point of the procedure is virtually nil with the com-
putational tools available today, Eq. ~32! adds up to
six function evaluations @four in Eq. ~32! and two
more to solve the first-order equation pair derived
with Eqs. ~26! and ~31!# plus computation of three
numerical integrals @coefficients c0, c1, and c2 in Eq.
~30!#. Contrary to what happens with the corner
points, the main drawback of the calculation of gc,1
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and gc,2 stems from the fact that they must be recom-
puted at each succeeding range R. Although still
computationally efficient because Eq. ~30! can easily
be vectorized, this makes the algorithm less straight-
forward.

Considerable work in the form of reconsideration of
Eq. ~31! for both simulated and real data sets has
proved two points.

~1! When computation of local candidates gc,1~R0!
and gc,2~R0! is neglected, negligible error results ~see

ection 5! for all the situations studied. Note that
this results in substantial simplification of the proce-
dure outlined above because it leaves only the four
corner points as the only valid candidates and these
points do not need to be recomputed at each range
R because they are constants that define the span of
the feasible domain. Examples are discussed in
Section 5.

~2! Expansion of Eq. ~31! to higher orders is ill-
dvised, because it is necessary to strike a balance
etween the improvement in accuracy of afit~R, g, a!

and the complexity increase in the root selection pro-
cedure. Even though this enabled us to fit more
complicated shapes of â~R, g, a! with g and, therefore,
to output more local candidates, in practice, most of
them lie outside the feasible domain @expression ~9!#
or correspond to inflection points. For most of the
situations studied, â~R, g, a! resembles an inclined
plane and even shapes similar to those in Fig. 5 are
less frequent. In other words, considering the re-
duced span of g, the shape of â~R, g, a! is not more
complicated than the one shown in Fig. 5.

5. Quantification of the Closeness Error

To quantify numerically the performance of the
bounds inverted in Sections 3 and 4, we define the
closeness error, e~R!, for the upper bound as

eup~R! 5
aup~R! 2 max$a~R, g, a!%

max$a~R, g, a!%
. (33)

For each range R, eup~R! is computed as the relative
difference between the upper bound, aup~R!, and the
upper envelope of all the inverted extinction families.
If, with the aid of a computer, a sufficiently large
number of families are available, this expression be-
comes representative of the closeness error. Like-
wise,

elow~R! 5
alow~R! 2 min$a~R, g, a!%

min$a~R, g, a!%
(34)

estimates the closeness error for the lower bound,
alow~R!. Application of this expression might, how-
ever, become difficult for low extinctions because Eq.
~34! becomes the ratio of two small numbers and, as
a result, peaking might occur in the plot of elow versus
ange.

Alternatively, the ratio of the error interval be-
ween the upper and the lower bounds to the thick-
ess of the envelope of all the family curves can be
used as a likelihood function to quantify composite
performance of the bounds. This formulation copes
with the sensitivity problem of Eq. ~34! for low ex-
tinctions. It can be expressed as

L~R! 5
uaup~R! 2 alow~R!u

max$a~R, g, a!% 2 min$a~R, g, a!%
. (35)

This ratio tends to unity as long as the bounds tend to
coincide with the upper and lower envelopes of all the
families. Then, the error function L~R! 2 1 tends to
zero.

An often more convenient way of assessing close-
ness errors is, however, to compute Eqs. ~33!–~35! in

scalar fashion rather than as range-dependent
unctions. One can achieve this by using the cus-
omary error-norm definition.

iei 5 F1
N (

i51

N

e~Ri!
2G1y2

. (36)

In the case of the likelihood function L~R! 2 1 is
computed as the scalar iLi 2 1.

Without the need to use these error expressions,
simple visual cross examination of Figs. 2 and 4 is
enough to reveal outstanding performance of the clos-
est bounds of Section 4, even when local extrema
@gc,1~R0! and gc,2~R0! from Eqs. ~26! and ~31!# are not
taken into account. Analytical justification of this
approximation, for example, in terms of the optical
depth, is difficult because coefficients cn~R! in Eq. ~30!
depend on the morphology of the optical return and,
eventually, on physical parameters of the aerosols.

Until now, the inversion examples of Fig. 2 and
related bounds of Fig. 4 have relied on the inversion
of power returns synthesized from a common shape of
the extinction profile ~the trapezium platform de-
cribed in Section 2!, which is a slow-varying function
ith range. From the point of view of the morphol-
gy of the function and with a view to assessing close-
ess errors as comprehensively as possible, it is

nteresting to extend our simulations to fast-varying
nput extinction profiles as well and to parameterize
he simulations for different inversion ranges ~not
ecessarily from 0.2 to 5 km as we have done so far!
nd optical depths. These criteria build the core of
8 parametric simulations that will be discussed
ext. Afterward, we will be able to assess closeness
rrors.
Fast-varying scalable extinction profiles have been

evised by use of an affine transformation of the form

a~R! 5 a# f ~aR 1 b!, (37)

here f is a unity-mean fast-varying function, a and
are scaling parameters, and a# is the mean extinc-

ion of a~R!. f was constructed as a two-hump profile
ith superimposed frequency varying ringing of the

orm

f ~t! 5 g~t! 1 c sin@dtg~t!# 1 e,
20 July 1999 y Vol. 38, No. 21 y APPLIED OPTICS 4469



a
s
i
e

p

@

4

g~t! 5 g0F 1
~t 2 t0!

2 1 t1
1

1
~t 2 t2!

2 1 t3
G ,

(38)

where c, d, e, g0, t0, t1, t2, and t3 are characteristic
shape parameters.

Figure 6, which is the fast-varying counterpart of
Fig. 2, illustrates a parametric study for optical
depths in the t 5 0.049–4.9 range by use of the Eq.
~37! profile. Figures 6~a1!–6~c1! depict inverted ex-
tinction families given the user-error margin amy2 #
ac # 2am and 0.67 # kc # 1.34 @expression ~9!# for
decreasing optical depths and Figs. 6~a2!–6~c2! plot
associate error bounds as in Fig. 4. The closeness
error functions @Eqs. ~33! and ~34!# for the absolute
bounds plotted in Figs. 6~a2!–6~c2! ~dashed curves!
re shown in Fig. 7. As a result, we reencounter the
ame behavior for fast-varying functions as we found
n Section 3 for slow-varying functions: closeness
rrors eup~R! and elow~R! progressively reduce as long

as the optical depth decreases. In particular, con-
vergence is achieved only in cases ~b! and ~c! ~t 5 0.49
and 0.049, respectively!.

Figure 8 summarizes the closeness error of the 18
parametric simulations introduced above, which in-
clude all the examples presented so far. The two
examples comprising slow- and fast-varying profiles
~Figs. 2, 4, and 6, respectively! have been repeated
now for the three cases listed in Table 1 and, in turn,
each case study has been repeated for three optical
thicknesses separated by a factor of 10. As a result,
we get two simulation sets: slow-varying or trape-
zium profile and fast-varying or the Eq. ~37! profile,
each set comprising nine simulations. In contrast
with Fig. 7, Fig. 8 plots the scalar closeness error or
per-unit norm-error @Eq. ~36!#. Of course, closeness

Fig. 6. Parametric study versus optical depth similar to that in
Figs. 2 and 4, with Eq. ~37! as the common shape of the extinction

rofile: ~a! t 5 4.9, ~b! t 5 0.49, ~c! t 5 0.049 ~a1!–~c1! show
families of inverted solutions with superimposed closest bounds:
E, upper bounds; 3, lower bounds. ~a2!–~c2! show related error
bounds: closest bounds as indicated; absolute bounds repre-
sented by a dashed curve!. This is case study ~3! in Table 1.
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errors for the error bounds retrieved in our previous
examples and shown in Figs. 4 and 6~a2!–6~c2! can be
identified by label ~3! in Table 1 and the correspond-
ing optical thickness t in Fig. 8.

Judging by Fig. 8, performance of the closest
bounds is usually much better than that of the abso-
lute bounds, as expected, with ieupi seldom exceeding
some 0.1% and ielowi being virtually nil. iLi 2 1 ~not
shown! is always below 21023 ~20.1%! and usually

Fig. 7. Parametric study of the closeness error for the absolute
bounds illustrated in Figs. 6~a2!–6~c2!. Here, ~a1!–~c1! show
eup~R! @Eq. ~33!# and ~a2!–~c2! show elow~R! @Eq. ~34!#. Note that
e~R! is computed as a per-unit variation.

Fig. 8. Comparative plots showing closeness errors of the abso-
lute and closest bounds ~Sections 3 and 4, respectively! for optical
depths in the range of t 5 0.01–10 and by use of two different
extinction scenes as inputs: ~a!, ~b! trapezium profile; ~c!, ~d! Eq.
~37! profile: 3 closeness error ieupi @Eqs. ~33! and ~36!#; E, ielowi
Eq. ~34! and ~36!#; labels 1, 2, and 3 are explained in Table 1. In

all cases, performance of the closest bounds is much better than
that of the absolute bounds with ieupi typically well below 1023

~0.1%! and ielowi virtually negligible. For the absolute bounds, the
results are also much more dependent on optical thickness.
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Table 1. Simulation Ranges and Labels for Figs. 8 and 9
falls to some 10215 round-off numerical error floor.
n principle, application of the closest bounds is thus
ossible for any optical depth, without any other
ain limitations. In practice, application of the

losest bounds is limited only by the extent of validity
f the aerosol-dominant backward inversion method
f Eq. ~7!, the power-law relationship of Eq. ~4!, and

the single-scatter lidar equation ~1!. Convergence of
the absolute bounds is, however, restricted to optical
depths t , 1 and practical results are usually ob-
tained for t , 0.1 ~this yields closeness errors of some
30% for the upper bound and less than 10% for the
lower bound!.

6. Errors on the Retrieved Optical Thickness

Similar to Fig. 8, Fig. 9 plots over estimation and
underestimation errors ~et,max and et,min, respective-
y! on the retrieved optical thickness for the two sim-
lation sets considered. These errors are defined as

et,max 5
t~aup! 2 t0

t0
, (39)

et,min 5
t0 2 t~alow!

t0
, (40)

where t~aup! and t~alow! are the computed optical
hicknesses obtained with Eq. ~13! by use of the upper
losest bound aup~R! and the lower bound, alow~R! as
xtinction functions @Eq. ~32!#, respectively, and t0 is

the nominal optical thickness of the synthesized pro-
file ~i.e., without calibration errors or, equivalently,
with ideal parameters k and am!. Note that both
Eqs. ~39! and ~40! are defined as positive quantities
and can be interpreted as overestimation and under-
estimation errors, respectively.

Inspection of the plots in Fig. 9 reveals two impor-
tant points:

Fig. 9. Error margin on the retrieved optical thickness for the two
simulation sets studied: ~a! trapezium profile input, ~b! Eq. ~37!
profile input; 3 et,max @Eq. ~39!#; E, et,min @Eq. ~40!#; labels 1, 2 and
3 are explained in Table 1.

Label
Minimum Range

Rmin (m)
Maximum Range

Rmax (m)
Resolution

DR (m)

(1) 5.000 5.300 1
(2) 10 300 1
(3) 200 5.000 10
One is that errors in the retrieved optical thickness
reduce for increased optical thickness. This is in
agreement with point ~1! of Section 2.

The other comes from cross examination of sub-
plots ~a! and ~b! in Fig. 9. Errors et,max, et,min, and
the error margin uet,max 2 et,minu as well ~i.e., the

istance between 3 and E for a given t! are lower for
low-varying functions @Fig. 9~a!# than for fast-
arying functions @Fig. 9~b!#. As a result, if we com-
are performance of et,max in both plots, the different

morphology of the extinction function represents ap-
proximately a factor of 2 difference ~this can best be
een for t , 1!. Although this is inferred from only
wo sets ~nine simulations each!, this figure might be
xtrapolated to a sensitivity figure of the closest
ounds in front of different input atmospheric scenes.

7. Application to a Live Scene

As a final example to demonstrate to the reader that
the theory developed can be used freely to play with
the real-world range of slow- and fast-varying extinc-
tion profiles and optical depths, Figs. 10 and 11 illus-
trate its application to a real lidar return from storm
clouds. In this case, the procedure in Section 4 has
been computed twice in all the cases, once including
computation of local extrema @Eqs. ~26!–~31!# and
nce taking into consideration corner points only
ithout significant differences. As already dis-

ussed in Subsection 1.A, it is widely acknowledged
hat the assumption of a constant extinction-to-
ackscatter ratio and exponent term k over all the
nversion range is an oversimplification of the prob-
em and that accurate inversion would certainly re-
uire convenient partitioning of the inversion range
nto appropriate subintervals,31 each with a particu-

lar pair of B and k @Eq. ~4!#.
We collected live data using a Nd:YAG elastic back-

scatter lidar system. The 10-ns-long laser emitted
390 mJ of energy, produced 10-Hz repetition rate
pulses, was equipped with a 12-bit 20-MHz digitizer,
and was used to obtain sample points spaced 7.5 m
apart over the lidar return. The field of view of the
receiving optics was 0.2 mrad so that only single-
scattered components of the backscattered laser ra-

Fig. 10. Normalized R2-corrected function x~R! corresponding to a
real inversion example ~445–895 m!. The profile shows two storm
cloud layers located between 450 and 550 m and between 785 and
835 m.
20 July 1999 y Vol. 38, No. 21 y APPLIED OPTICS 4471
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diation were detected. The normalized R2-corrected
return, x~R!, is shown in Fig. 10. It was formed by
averaging 40 return pulses in the range interval be-
tween 445 and 895 m. This averaging factor was
adjusted by trial and error and was shortened to the
temporal correlation length of the atmosphere ~i.e.,
stationarity can be assumed!. The interval shows
two dense water cloud layers, the first between 450
and 550 m and the second between 785 and 835 m.
Since the cloud is optically thick, an estimate of the
boundary extinction @am in Eq. ~6!# at 895 m was
computed from application of the exponential curve-
fitting method of Eq. ~8! to the end interval between
850 and 895 m, which yielded ac ' 2.0 km21.

For computation of the error bounds, we followed
the methodology used in the preceding examples, five
inversion families ~three branches each! were in-
erted from x~R! using the same error percentages

~690% for ac or, equivalently, ac 5 0.2, 1.1, 2.0, 2.9,
and 3.8 km21 and 0.67–1.34 for k! for comparative
purposes. Absolute and closest extinction bounds
are plotted in Fig. 11~a!, and Fig. 11~b! expands the
ange interval ~550–800 m! between the two cloud

layers.
With respect to the computed closeness error for

the absolute bounds we obtained ieupi 5 3.4, ielowi 5
0.37, and iLi 2 1 5 5.7. These figures are in good
agreement with what we assessed in Fig. 8~c! for
fast-varying functions x~R! @equivalently, fast-
varying extinction profiles such as in Eq. ~37!#. The
same figures for the closest bound errors are com-

Fig. 11. Error bounds for the live scene of Fig. 10: ~a! compar-
ison between the absolute bounds of Section 3, Eq. ~24! ~dashed
curves! and the closest bounds of Section 4, Eq. ~32! ~curves with
circles!. ~b! Zoom-in detail of the range interval between the two
cloud layers ~550 and 800 m!.
472 APPLIED OPTICS y Vol. 38, No. 21 y 20 July 1999
pletely negligible ~,10 !, and again we retrieved
higher errors for the upper bound than for the lower
bound.

To estimate errors in the retrieved optical thick-
ness, the closest bounds inverted in Fig. 11, aup~R!
and alow~R!, yielded an optical thickness range be-
tween t 5 0.55 and 2.4 ~T 5 24.8 and 220.6 dB!.
When we computed nominal thickness t0 from Eq.
~13! with a~R! 5 a~R, kc, ac! and kc 5 1 and ac 5 2

m21 ~i.e., we computed the inverted extinction from
the user guesses!, t0 5 1.4 ~211.9 dB! was obtained.

ventually, this translates into et,max 5 0.74 and
et,min 5 0.60, which is also in accordance with the
rror assessment plot of Fig. 11~b!.

8. Conclusions

We departed from the lidar backward inversion algo-
rithm that yields a stable inhomogeneous solution of
the lidar equation and focused on the development of
an error sensitivity study that enables one to relate
errors in the user-input parameters boundary extinc-
tion and exponential term in the extinction-to-
backscatter relationship, ~kc, ac!, to errors in the
inverted extinction profile. The choice of these par-
ticular parameters has been based on the customary
approach, whereby backscatter and extinction pro-
files are related by a power-law relationship @Eq. ~4!#,

hich has been proved to be of practical value.20 We
tested the validity of the study for optical depths by
extensive simulation in the range t 5 0.01–10.
Hence, the theory we developed can be used freely to
play with the real-world range of extinction and op-
tical depths without any limitations on the extent of
the valid backward inversion algorithm itself @partic-
ularly, Eqs. ~4! and ~7!# at these optical depths.

As introductory background, we have shown that,
when parameters ~kc, ac! ~equivalently, g 5 1ykc and
a 5 1yac! take any possible value from the predeter-
mined user-defined uncertainty interval, a set of in-
verted extinction families â~R, g, a! can be obtained,
all of which are solutions of the lidar equation. Al-
though this is not new, it has allowed us to derive
analytical sensitivity studies that relate the inverted
set of extinction profiles to atmospheric profiles.
Yet, the core of this work has been devoted to the
derivation of range-dependent error functions or
bounds of â~R, g, a!, ~in Sections 3 and 4!, which has
enabled us to compute the range-dependent error
span of the inverted extinction with ~1! the user-error
span in the sensitivity parameters and ~2! the elastic
backscatter optical return. This has been done in
two main steps with progressively improved accu-
racy:

First, in the case of absolute bounds, some upper
and lower envelopes of the inverted families â~R, g, a!
have been found but are not necessarily the closest
bounds. It has been shown that the closeness error
reduces for moderate-to-low optical depths and that
the performance of the lower absolute bound is al-
ways much better than that of the upper bound.

The second step comprises derivation of a mathe-
matical procedure that yields the sought-after closest
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possible bounds ~i.e., with a closeness error that is
virtually nil!. These are the best bounds. The key
f the procedure is the appropriate transformation of
he initial problem into an equivalent optimization
ith variables ~g, a!, whose feasible domain is the

user-uncertainty span. Further refinement has led
to a simpler and more straightforward method with
closeness errors around an encouraging 0.1%. This
has reduced the procedure to four function evalua-
tions of â~R, g, a! ~the corner points of the feasible
domain! per inversion cell. Simulations and the in-
version of a live return have also shown that excellent
performance is maintained for both slow- and fast-
varying profiles.

All things considered, since the results obtained
here can be perfectly applied to successive intervals
of the atmosphere as in the so-called slice method of
inversion, we are certain that the closest bounds pro-
cedure will be a long-lasting practical contribution of
this research to the field of lidar inversion.

Appendix: Relationship between the Inverted and the
True Extinction Profiles

Assume that kc and ac are the user-selected values for
the exponential term in the backscatter-to-extinction
ratio of Eq. ~4! and the boundary extinction of Eq. ~6!,
espectively, and that k and am are their true atmo-

spheric counterparts. Therefore, the user-inverted
extinction profile corresponds to the backward solu-
tion of Eq. ~7! except for the replacement of k by kc
and am by ac as follows:

â~R, kc, ac! 5
exp@~S 2 Sm!ykc#

ac
21 1

2
kc *

R

Rm

exp@~S 2 Sm!ykc#dr

.

(A1)

By substituting the basic single-scatter lidar Eq. ~1!
nto Eq. ~17!, the normalized R2-corrected return

power, x~R!, takes the form

x~R! 5 exp~S 2 Sm! 5

a~R!k expF22 *
R0

R Sa~r!drG
am

k expF22 *
R0

Rm

a~r!drG ,

(A2)

here Rm is the maximum range and R0 is some
predetermined minimum range, which is irrelevant
in Eq. ~10!.

If Eq. ~A2! is substituted into Eq. ~A1! and the
auxiliary functions defined in Eqs. ~11! and ~12! are
reconsidered, we obtain the sought-after solution of
Eq. ~10!.

When the error in the exponential term of the
extinction-to-backscatter ratio can be assumed to be
negligible ~i.e., the approximation kc ' k holds true!
and only the boundary extinction calibration error is
of interest, it is possible to derive a simple error sen-
sitivity relationship that links the relative error in
such a parameter to the inverted extinction profile.

We depart from the equivalent form of Eq. ~12!, and
we substitute Eq. ~11! into Eq. ~12!. When we use
kc 5 k,

F~R, a! 5 *
R

Rm

a~r!expH2
2
k *

R0

r

a~z!dzJdr. (A3)

Equation ~A3! can be integrated by use of the substi-
tution

u~r! 5 expH2
2
k *

R0

r

a~z!dzJ (A4)

so that it yields

F~R, a! 5
k
2

@I~R, k! 2 I~Rm, k!#. (A5)

Eventually, substitution of k 5 kc and Eq. ~A5! into
Eq. ~10! would yield the simple form

â~R, k, ac! 5
a~R!

1 1 S1
ec

2 1DI~Rm, k, a!

I~R, k, a!

; ec 5
ac

am
.

(A6)

Equation ~A6! relates the user-inverted extinction
rofile â~R, k, ac! to the true atmospheric extinction

profile a~R! ~equivalently, a in vector form! as a func-
tion of the relative error in the calibration of the
boundary extinction ec. It is advantageous to use
Eq. ~A6! for simulation purposes when a computer-
enerated atmospheric profile a~R! is available and
n error sensitivity study is performed as discussed
n the preceding sections.

In the conclusion of Section 2 we stipulated that
verestimation of the boundary extinction am is usu-

ally preferred to underestimation because it can be
easily corroborated by taking into account the ampli-
fication error term ~1yec 2 1! in Eq. ~A6!. Thus, for
example, ac 5 10 am yields an error amplification of
only 20.9, whereas for ac 5 0.1 am the error ampli-
fication becomes ten times larger.

We acknowledge the sponsorship of the Intermin-
istry Committee for Science and Technology under
grants AMB96-C02-C01 and TIC431-93.
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