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Statistics of the slope-method estimator

Francesc Rocadenbosch, Adolfo Comerón, and Lorena Albiol

The slope method has customarily been used and is still used for inversion of atmospheric optical
parameters, extinction, and backscatter in homogeneous atmospheres from lidar returns. Our aim is to
study the underlying statistics of the old slope method and ultimately to compare its inversion perfor-
mance with that of the present-day nonlinear least-squares solution ~the so-called exponential-curve
fitting!. The contents are twofold: First, an analytical study is conducted to characterize the bias and
the mean-square-estimation error of the regression operator, which permits estimation of the optical
parameters from the logarithm of the range-compensated lidar return. Second, universal plots for most
short- and far-range tropospheric backscatter lidars are presented as a rule of thumb for obtaining the
optimum regression interval length that yields unbiased estimates. As a result, the simple graphic basis
of the slope method is still maintained, and its inversion performance improves up to that of the
present-day computer-oriented exponential-curve fitting, which ends the controversy between these two
algorithms. © 2000 Optical Society of America

OCIS codes: 010.0010, 010.1290, 010.3640.
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1. Introduction

The slope method first proposed by Collis1 has been
sed for more than three decades and is still used as
simple straightforward algorithm for estimating

he atmospheric extinction and backscatter optical
omponents in lidar systems under the assumption of

homogeneous atmosphere. This method departs
rom the simple single-scattering monostatic lidar
quation2

P~R! 5
K
R2 b~R!expF22 *

0

R

a~r!drG , (1)

where P~R! represents the range-return power ~in
watts!, b~R! is the range-dependent atmospheric
backscatter coefficient ~in inverse kilometers per
teradian!, a~R! is the range-dependent atmospheric
xtinction coefficient ~in inverse kilometers!, R is the
ange ~in kilometers!, and K is the system constant
in watts times cubic kilometers! ~a function of the
aser energy and effective receiver area!.

Under the assumption of a homogeneous atmo-
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phere @a~R! ' a, b~R! ' b#, the sought-after optical
oefficients ~a and b! can be estimated from slope m
nd intercept c of a linear regression applied to the
ogarithm of the range-corrected lidar signal:

S~R! 5 ln$R2@P~R! 1 n~R!#%

5
mR 1 CÇ

ideal line
1

lnF1 1
n~R!

P~R!G
Ç
noisy term

, (2)

with

m 5 22a, c 5 ln~Kb!. (3)

he utility of the slope method increases with in-
reasing optical depth, and, in particular, for optical
epths greater than unity, a safe estimate can usu-
lly be obtained3 from Eq. ~2! @if the signal-to-noise

ratio ~SNR! is high enough, the noisy term can be
made redundant#. However, we must warn the
reader that a priori information confirming the exis-
tence of a homogeneous atmosphere is strictly neces-
sary. Otherwise, the algorithm may yield to
situations in which an inhomogeneous reflection ~e.g.,
a cloud reflection! cannot be distinguished from the
returns of a homogeneous atmosphere ~see Appendix
B in Ref. 4!. Other applications of the slope method
in inhomogeneous atmospheres encompass boundary
calibration of Klett’s method3,5 and the so-called slice
method of inversion, which is merely an extremely
close variant of the slope method but applied to suc-
cessive range intervals.6
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As originally reported by Kunz and Leeuw, al-
though the simplicity and straightforwardness of the
slope method is advantageous, its biased estimation
for low SNR’s, caused by samples of the return signal
approaching the noise floor @n~R! ' 2P~R! in Eq. ~2!#,
emerges as the main drawback of the algorithm.
This effect is illustrated in Section 2, and in Section 3
we study the bias and the mean-square error ~MSE!
associated with the regression operator used in the
slope-method algorithm from a statistical point of
view.

Currently, with the computational tools available,
direct application of the slope method itself has been
superseded ~in terms of inversion errors! by the ap-
plication of nonlinear least-squares ~NLSQ! proce-
dures to exponential-curve fitting, as demonstrated
in Ref. 8. Formally, we wish to solve

min@iS~R! 2 b exp~2aR!i2#a,b 5

minH(
i51

N

@S~Ri! 2 b exp~2aR!#2J
a,b

, (4)

here Ri is the range of the ith observation cell and
and b are unbiased estimates of the terms 2a and
b, respectively.
The largest advantage of the exponential-curve-

fitting method over the customary slope method, in
which all the available samples are considered for
regression, is that the exponential fitting of Eq. ~4!
introduces no bias and therefore there is a lower in-
version error result. This is because Eq. ~4! gives
more weight to the largest terms of the summation,
which correspond to the first samples of S~R! and for
which the SNR is higher. However, its main disad-
vantages are that a computational approach is
needed to solve nonlinear Eq. ~4! by means of some
numerical iterative recipe9 and that a reasonably
ood initialization is also needed for the algorithm to
ay off. In such iterative solutions, having a good
rst guess, which often comes from the slope method
s in the present case or from a look-up visibility
able, is 90% of the battle; the inversion results are
ndependent of the initialization method used, pro-
ided that the quality of the guess is good enough.
therwise, unrealistic divergent results occur.7
In Section 4 we consider the optimum slope

method, in which the optimum interval length for the
minimum MSE is selected for regression, and its per-
formance is compared with that of the NLSQ
exponential-curve fitting introduced above @Eq. ~4!#.

omputation of the optimum length is presented in
he form of universal plots suitable for most short-
nd far-range tropospheric backscatter lidars.
For the sake of simplicity in this study, we have

ssumed full overlap between the laser beam and the
eceiver’s field of view in the regression interval of
q. ~2! and we have neglected the influence of the

receiver bandwidth limitation on the estimated opti-
cal parameters. The former topic is covered in detail
in Ref. 10, the latter in Ref. 11, and a practical rule for
choosing the regression interval, given the range of
050 APPLIED OPTICS y Vol. 39, No. 33 y 20 November 2000
full overlap and the receiver bandwidth, is given in
Ref. 8.

2. Noise Performance

If the noise contribution n~R! at each observation cell
Ri along the lidar exploration path is interpreted as a
random variable Ni, then the range-corrected func-
tion S~R! of Eq. ~2! can be expressed as a set of ran-
dom variables of the form

Si 5 ln@Ri
2~Pi 1 Ni!# 5 c 1 mRi 1 Ni9, (5)

where the log-noise and the observation-noise ran-
dom variables Ni9 and Ni, respectively, are related by

Ni9 5 lnS1 1
Ni

Pi
D . (6)

Hereafter, capital letters represent random vari-
bles except for Pi and Ri, which denote the deter-

ministic return power and the range, already defined;
lowercase letters represent feasible values of the ran-
dom variable in its existence domain!.

A. Bias

If the signal strength P~R! is typically more than 50
photons over the integration time, as is always the
case, the statistics of the observation-noise random
variable Ni, which merges into single-body signal-
induced dark-current shot noises and electronic ther-
mal noise, can be assumed continuous Gaussian
ones8 ~computation of the system’s total noise vari-
ance is also given in the same reference!. Conse-
uently there is some likelihood, particularly higher
or decreasing SNR’s, that a noise realization of Ni

approaching the noise floor 2Pi at the ith observation
cell Ri causes either a large noise spike in Ni9 or even
a singularity in Eq. ~6!. This is illustrated in Fig. 1,
in which it is evident that noise spikes at the end

Fig. 1. Illustration of the bias effect for the slope method: solid
curve, noisy realization of the log- and range-corrected signal S~R!
in Eq. ~2!; dotted line, unbiased ideal line built from the true
atmospheric parameters in the simulator ~a 5 1 km21, b 5 3 3
022 km21 sr21!; solid line, regressed line from the noisy S~R! in

application of the slope method. The line becomes tilted down-
ward as a result of the estimator bias; dashed–dotted curves, 80%
noise confidence limits for Ni9 @Eq. ~8!#.
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range are so large that the regressed line computed
from direct application of the slope method @Eq. ~2!#
ecomes biased ~i.e., slightly tilted downward! from
he ideal line built with the true atmospheric param-
ters ~a 5 1 km21, b 5 3 3 1022 km21 sr21! in the

simulator.8 This is how inversion errors arise.
The gist of the role bias plays on the slope method

for different SNR’s can be inferred from the limiting
locus

@S0~R! 2 gl9~R!, S0~R! 1 gu9~R!# (7)

in Fig. 1, where S0~R! is the noiseless ideal regression
line indicated in Eq. ~2! and gl9~R! and gu9~R! are two
functions, still to be computed, that ensure at each
range Ri that

p~Ni9 # gl,i9! 5 10%, p~Ni9 $ gu,i9! 5 10%, (8)

here the subscript l indicates the lower limit, u
ndicates the upper limit, and i indicates Ri.

To solve Eq. ~8! for gl,i9 and gu,i9, we use the fact
that Eq. ~6! is a monotonic increasing function @see

ig. 2~a!# and we use the basic properties of proba-
ility density function ~PDF! transformations.12,13

Fig. 2. ~a! Equation ~6! functional relationship between Ni9 and
Ni random variables. Note that the symmetric interval @gl,i, gu,i#
or the Gaussian variable Ni translates into an asymmetric one

@gl,i9, gu,i9# for variable Ni9. As a result E@Ni9# Þ 0 and the esti-
mator becomes biased. ~b! PDF of the threshold-limited Gaussian
random variable Ni.
2

By these means, the probability of Ni9 can be related
to that of the Gaussian random variable Ni as

p~Ni9 # ni9! 5 p~Ni # ni! 5
1
2

1
1
2

erfS ni

Î2si
D , (9)

so that solution of the first equation of Eqs. ~8! be-
comes

p~Ni9 # gl,i9! 5 0.1f gl,i9 5 lnF1 2
1.28s~Ri!

P~Ri!
G . (10)

The procedure is analogous for gu,i9.
In addition, by using Eq. ~8! and relation ~10!, we

can establish a one-to-one relation between the 80%
probability intervals in Ni and Ni9 as follows:

p~gl,i9 # Ni9 # gu,i9! 5 80%N

p~21.28si # Ni # 1.28si! 5 80%. (11)

Finally, after introducing the SNR definition, we can
write the solutions of Eqs. ~8! as

gl,i9 5 lnF1 2
1.28

SNR~Ri!
G , gu,i9 5 lnF1 1

1.28
SNR~Ri!

G .

(12)

Figure 1 shows the Eq. ~7! locus for a 5 1 km21,
Rmin 5 0.2 km, and SNR~Rmin! 5 15 ~in linear units!.
Because for a given backscatter lidar system we can
always relate the product Kb in Eq. ~1! @or, alterna-
tively, K if the pair ~a, b! is related by means of some
look-up visibility table14,15 to the SNR at the starting
point Rmin of full overlap between the laser beam and
the telescope field of view7,8 @hereafter SNR~Rmin!#,
we can indistinctly parameterize our plots in terms of
SNR~Rmin!’s or K’s. Selection of SNR~Rmin! instead
of K in Fig. 1 is preferred because the former is not
related to any particular set of system parameters.

For SNR~R! , 5, a simple visual inspection of Fig.
1 is enough to reveal that the Ni9 80% confidence
limit starts to distribute asymmetrically. In other
words, relation ~11! translates a symmetric probabil-
ity distribution ~a Gaussian one! for Ni into a non-
symmetric one for the log-random variable Ni9. This
effect is at the core of the slope-method algorithm,
and it is responsible for unwanted biased estimation
~E@Ni9# Þ 0, where E@ . # is the expectancy operation!.

B. Singularities

In theory, noise values ni equal to or exceeding the
asymptotic noise floor 2P~Ri! in Fig. 2~a! lead to un-

efined figures in the logarithm of the range-
ompensated signal S~R!. In practice, however,
hese singularities are avoided by means of some lim-
ting criterion. Two of the most commonly used cri-
eria consist of either discarding or resetting negative
eaks of S~R! larger than some predefined threshold
l. In the former case, discarded points are not used

for regression and the observation points Ri become a
nonuniform set. The latter case yields a uniform set
Ri, and it is equivalent to limiting the domain of the
0 November 2000 y Vol. 39, No. 33 y APPLIED OPTICS 6051
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Ni PDF fNi
~ni! to @2unl,iu, `! @see Fig. 2~b!#. Formally,

fter Eq. ~6!

Si 5 vlf nl,i 5 Pi@exp~cl,i! 2 1#, (13)

where

cl,i 5 nl 2 c 2 mRi 5 lnS1 1
nl,i

Pi
D . (14)

ote that in Eq. ~13!, the same limiting threshold vl
yields to different limits, nl,i, one for each cell along
the exploration path. A good proposal for vl is to
locate it approximately one unit below the expected
S~Rmax!. Formally,

nl 5 S1 2 2âmax~Rmax 2 R1! 2 1, (15)

where S1 is the first sample of S~R! and âmax is a user
stimation of the largest expected extinction. This
nsures that the limiting threshold vl is well below

the ideal regression line @Eq. ~2!#.
Of course, each decision rule ~resetting or discard-

ing! leads to different statistics for the truncated
Gaussian Ni and therefore a different bias perfor-
mance should, in principle, be expected. However,
extensive simulation has shown that either a rule or
the vl figure plays a significant role in the final esti-
mator performance only if SNR~Rmin! , 30. Taking
into account that, for most tropospheric backscatter
lidars SNR~Rmin! is approximately between 102 and
04 for atmospheric extinctions in the 1022–10-km21

range,8 we can assume that the statistical results
that are derived next are not restricted to any deci-
sion rule, even though the resetting decision rule of
Eq. ~13! is assumed for simplicity reasons.

3. Statistics of the Regression Operator

Close inspection of Fig. 1 suggests that if we re-
moved the far-end samples from the regression in-
terval, bias would be considerably reduced because
it is precisely the end part of the regression interval
where the 80% confidence noise limits are most
asymmetric. However, if the regression interval
were too short, fewer useful samples would be used
and therefore the inversion error would have a
larger variance. As a result, it seems sensible to
guess that an optimum regression interval length
for minimum MSE exists.

In this study, we commit to the statistics of slope
estimate m̂ @Eqs. ~3!# only because the procedure is
ompletely similar for the intercept estimate ĉ, al-
hough mathematically it is much more involved
nd does not shed any new light on the concluding
esults.

A. Bias and Mean-Square Error

The estimates of slope m̂ and intercept ĉ for a
traight-line fit to the log- and the range-corrected
052 APPLIED OPTICS y Vol. 39, No. 33 y 20 November 2000
idar set of data $xi 5 Ri, yi 5 Si%, i 5 1 . . . N takes
he form16

m̂ 5
xy 2 xy

x2 2 x#2
, ĉ 5 y# 2 m̂x# , (16)

where m̂ and ĉ yield the sought-after atmospheric
optical estimates after Eqs. ~3! and xN 5 RN is defined
as the maximum detection range; equivalently, N
represents the maximum number of available sam-
ples up to that range where the received power equals
the noise-equivalent power of the receiver @SNR~RN!
5 1#. A plot of Rmax versus SNR~Rmin! is shown in
Fig. 1 of Ref. 8, and a mathematical approximation of
Rmax can be found in Appendix A of Ref. 7.

Because for each incoming measurement, Eqs. ~16!
ield the pair of estimates m̂ and ĉ, which are them-
elves random variables and are expected to be close
o their atmospheric counterparts m and c, we can
ompute the bias and the MSE associated with them.
he estimator bias associated with m̂ is defined as

bias 5 E@m̂ 2 m# 5 E@m̂# 2 m, (17)

and the MSE takes the form

εm̂
2 5 E@~m̂ 2 m!2# 5 E@m̂2# 2 2mE@m̂# 1 m2. (18)

The solutions of Eqs. ~17! and ~18! require computa-
tion of the first and the second moments of m̂ as
follows.

We can easily compute the first moment of m̂ in two
steps, first by applying the expectancy operator to
both terms of Eqs. ~16! and second by expressing the
xpectancy of Si, E@Si# as a function of the log-noise

expectancy E@Ni9# by means of Eq. ~5!. This yields

E@m̂# 5 m 1
1

NQ (
i51

N

~Ri 2 R# !E@Ni9#, (19)

where Q will be defined by Eq. ~25! for contextual
reasons. The computation of E@m̂2# is more in-
volved, but it follows a similar procedure that finally
reduces to the computation of E@Ni9#, E@Nj9#. As-
suming independence if i Þ j, we obtain

E@m̂2# 5 E@m̂#2 1
1

N2Q2 (
i51

N

~Ri 2 R# !2~E@Ni9
2#

2 E@Ni9#
2!. (20)

inally, substitution of Eq. ~19! into Eq. ~17! and of
qs. ~19! and ~20! into Eq. ~18! yields the sought-after
ias and MSE, respectively. It follows that

bias 5
1

NQ (
i51

N

~Ri 2 R# !E@Ni9#, (21)

εm̂
2 5

1
N2Q2 ~A 1 B!, (22)
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where

A 5 S(
i51

N

~Ri 2 R# !E@Ni9#D2

, (23)

B 5 (
i51

N

~Ri 2 R# !2~E@Ni9
2# 2 E2@Ni9#!

5 (
i51

N

~Ri 2 R# !2sNi 9
2, (24)

Q 5
1
N (

i51

N

Ri
2 2 R# 2. (25)

nterpretation of the bias results of Eq. ~21! becomes
evident after our discussion in Subsection 2.A and
identification of the term E@Ni9#.

For the MSE results of Eq. ~22!, it follows that the
MSE is proportional to the sum of two terms, A and
B, which are related to different noise characteristics.
The former depends on the estimation bias E@Ni9#,
whereas the latter has to do with the log-noise power
~i.e., the variance of Ni9!. However, mean and vari-
ance of the Ni9 are not the only key factors that de-
ermine the final MSE performance because the noise
ontribution from each cell to the final MSE is
eighted by the distance from that cell to the center

f the regression interval ~Ri 2 R# !. As a result, noise
from cells located at the inversion interval bound-
aries is magnified. The definition of Q in Eq. ~25! is
also related to the interval length, and it represents
the variance of the discrete set Ri.

B. Computation of the Optimum Regression Interval
Length

It is now time to justify our qualitative reasoning
given in the introduction of Section 3 from a mathe-
matical point of view by using Eqs. ~22!–~25! in this
way: Assume that we consider a subinterval of
length k , N samples, which begins at Rmin as above
so that we substitute k by N in Eqs. ~22!–~25!. If we
increase the interval length k toward N, which is
equivalent to including new samples from the right-
hand side of Fig. 1 to the regression process, this not
only increases Q but also A and B terms in Eqs. ~23!
and ~24!, respectively. This is so because the new
samples represent not only additional terms in the
series but higher bias and variance contributions,
which in turn are magnified by the fact that these
samples are located farther from the interval center
point R# . As a result, Eq. ~22! becomes the ratio of
two numbers progressively larger. As long as the
increment of Q offsets that of the term A 1 B, the
MSE decreases and adding new samples to the re-
gression interval is advantageous. However, for
some k $ Nopt ~note that Nopt 5 N is also possible for
large SNR’s! this trend reverses and the MSE wors-
ens. Consequently, we are interested in solving

dεm̂
2

dN
5 0f N 5 Nopt. (26)
2

The best way to do this is to find the minimum
MSE from a MSE versus N plot of Eq. ~22!, as shown
n Fig. 3. Note that Fig. 3 plots the relative inver-
ion error defined as

er,a 5
ÎMSEm̂

2a
3 100%. (27)

The Fig. 3 plot requires successive evaluation of Eqs.
~22!–~25! and, particularly, computation of the first-
and the second-order moments of Ni9, E@Ni9#, and

@Ni9
2#. In the most general case, such computation

mplies evaluation of the integral expressions in Eqs.
A5! and ~A6! in Appendix A, but for SNR~Nopt! . 9 it
as been found by experiment that approximations
B7! and ~B8! are good, easy-to-use approximations
hat yield 61 sample errors for most extinction
anges ~a 5 0.1–10 km21!. In general, for those in-

terested in either of these two mathematical proce-
dures ~Appendix A or Appendix B!, we advise
rounding the Nopt figure upward because the flat zone
of the MSE versus N plot always tend to be larger to
the right of Nopt, as in Fig. 3. The procedure is rel-
atively simple if the SNR enables us to use the ap-
proximated expressions given in Appendix B.

4. Optimum Slope Method and Exponential-Curve
Fitting

The main problem with the procedure just described
to solve Eq. ~26! is that the whole computational pro-
edure must be repeated for each particular case
tudy, which comprises the following parameters:
he ~simulated! atmospheric extinction a under

study, the minimum system range Rmin, the spatial
sampling DR ~equivalently, the system acquisition
rate!, the SNR at the minimum range SNR~Rmin!,
nd, finally, a set of different system noise parame-
ers, namely, the signal-induced and the dark-
urrent shot-noise spectral densities and the
hermal-noise spectral density ssh_s,i

2, ssh_d,i
2, and

Fig. 3. Equation ~22! plot of the relative inversion error @as de-
fined in Eq. ~27!# versus N. The study parameters are a 5 1
km21, SNR~Rmin 5 100, Rmin 5 0.2 km, DR 5 7.5 m ~sampling rate
0 3 106 samplesys!, r 5 2 3 1025 Hz21y2.
0 November 2000 y Vol. 39, No. 33 y APPLIED OPTICS 6053
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sth,i
2, respectively.17,18 With so many parameters,

the computation of Eq. ~22! becomes cumbersome and
time-consuming.

Working on the basis of simplicity has suggested to
us the goal of drawing universal plots to solve Nopt.
These plots should be parameterized by a subset of
independent parameters so that the remaining pa-
rameters from those given above should play a sec-
ondary role in the determination of Nopt. The
universality of these plots stems from the fact that we
have considered typical high-, medium-, and low-
performance front-end lidar receivers, either ava-
lanche photodiode or p-i-n-based receivers.

The struggle to find the most appropriate subsets
has led us to an advanced computer-oriented statis-
tical study that solves Eqs. ~22!–~26! for all combina-
tions of the typical system parameters of Table 1.
For SNR~Rmin! $ 100 in Table 1, approximations ~B7!
nd ~B8! have been used, but for SNR~Rmin! 5 30 we

have had to resort to the integral computation of Eqs.
~A5! and ~A6!. In addition, decorrelation studies
have suggested the definition of an auxiliary noise
parameter r, which merges into a single-body detec-
or and system-noise parameters as follows:

r 5
2qFM

~ssh_d,i
2 1 sth,i

2!1y2 ~Hz21y2!, (28)

where q is the electron change, M is the avalanche
hotodiode multiplication factor, F is its related

excess-noise factor,19 sth,i
2 is the system’s equivalent

thermal-noise spectral density ~in square amperes

Plots

a ~km21! 0.1, 1, 10
SNR~Rmin! 30, 100, 251, 630, 1584, 3961, 10.000
Rmin ~km! 0.2, 0.6, 1
DR ~m! 7.5, 15, 35, 50
r ~Hz21y2! @Eq. ~28!# 7 3 1025, 2 3 1025, 6 3 1026

Fig. 4. ~a! Example of a regression plot used to compute the univ
tmospheric extinction ~a 5 10 km21 here!. In this example, the
, r 5 2 3 1025 Hz21y2; and E, r 5 7 3 1025 Hz21y2. Note that for

into the flat zone of Fig. 3. ~b! Binned data used to estimate the
054 APPLIED OPTICS y Vol. 39, No. 33 y 20 November 2000
er hertz! and ssh_d,i is the receiver’s dark-current
spectral density ~in square amperes per hertz!, both
of which are referred to as the transimpedance am-
plifier’s input ~see Appendix A of Ref. 8 for further
insight!. @One can easily extend Eq. ~28! to include

-i-n-based receivers by taking F 5 1, M 5 1 in Eq.
28!.#

As a first result of the statistical simulation, we
ound that all the study cases of the Table 1 output
urves are similar in shape to those in Fig. 3, all of
hich consist of a plateau-like interval around Nopt,

which spans approximately 60.1 N. In the second
tep, this morphological feature was put at the core of
regression study, as in the example of Fig. 4~a!,
hich enabled us to identify NoptyN, SNR~Rmin!, and

the atmospheric extinction a as the primary subset
and Rmin, DR, and r as the secondary subset. In all
cases, the quality of the regressed data has been
checked with the exact computation of Nopt, again by
use of Eqs. ~22!–~25!. The relative regression error

fit
a is typically less than 5% for a 5 10 km21 @see the

ig. 4~b! histogram# and ;1% for a 5 0.1–1 km21 ~not
shown!.

The universal plots, which enable us to solve the
ratio NoptyN from an available estimation of the at-
mospheric extinction a ~its order of magnitude! and
SNR~Rmin!, are shown in Fig. 5. Note that N is de-

ned as that range in which the received power is
quivalent to the noise-equivalent power of the re-
eiver @SNR~RN! 5 1# and hence it must be known to

solve Nopt from the ratio NoptyN.
An additional comment with regard to Fig. 5 is the

asymptotic behavior of Nopt with increasing
SNR~Rmin!. Thus, as long as SNR~Rmin! increases,
for each atmospheric extinction a and system param-
eter subset ~Rmin, DR, r!, Nopt tends toward a satu-
ration figure, which we determined as SNR~Rmin! 5
00 for a 5 10 km21, SNR~Rmin! 5 1500 for a 5 1
m21, and SNR~Rmin! 5 104 for a 5 0.1 km21.
herefore there is no need to recompute Nopt for

SNR~Rmin!’s greater than these SNR limits.

l plots. This plot solves NoptyN given SNR~Rmin! for a simulated
essed data sweep only r from Table 1: 1, r 5 6 3 1026 Hz21y2;
t of the trials NoptyN is within a 60.1 interval, which can be fitted
ession error quality, which is typically ;5% for a 5 10 km21.
ersa
regr
mos
regr
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Finally, Fig. 6 compares the error performances
@Eq. ~27!# achieved by the next three algorithms:
Fig. 6~a!, the customary slope method, i.e., by using
all the available samples N with SNR~R! . 1 for
regression and by limiting S~R! to a constant thresh-
old vl, as described in Subsection 2.B; Fig. 6~b!, the
ptimum slope method discussed here, i.e., by using
opt # N samples for regression and the same limit-

ing threshold as in Fig. 6~a! to cope with singularities;
and Fig. 6~c!, the exponential-curve fitting described
in Section 1, Eq. ~4!, initialized from the results of the

Fig. 5. Universal plots to solve Nopt for minimum MSE in the
slope method given SNR~Rmin!, an estimate of the order of magni-
ude of the atmospheric extinction a, and N, which is defined as
hat range where the received power equals the noise-equivalent
ower of the receiver @i.e., SNR~RN! 5 1, as explained in Subsection
.A#.

Fig. 6. Comparison of the relative inversion errors @Eq. ~27!#
mong ~a! the customary nonoptimized slope method, which uses
ll the available samples for inversion; ~b! the optimized slope
ethod, which uses the optimum interval length Nopt; ~c! the

NLSQ exponential fitting described in Section 1. It is shown that
the performances of ~b! and ~c! algorithms unify in similar inver-
sion errors, which ends an old controversy between the slope
method and the exponential-curve fitting.
2

slope method of Fig. 6~a! to prevent divergence of the
NLSQ numerical routine.9

If we compare the plots in Figs. 6~a! and 6~b! and
note the log scale in the grid, it becomes obvious that
the most significant improvement with regard to the
optimum slope method in lieu of the customary
method is for moderate and poor SNR~Rmin!’s.
Thus, for low SNR’s, such as SNR~Rmin! 5 50, er,a~N!
5 40% and er,a~Nopt! 5 5% represent a 35% gain; for
large SNR~Rmin!’s, such as SNR~Rmin! 5 104, er,a~N!

3% and er,a~Nopt! 5 0.02% represent a 3% gain,
although this is not significant in absolute terms.
Similar conclusions follow for the rest of the atmo-
spheric extinctions of Table 1.

Finally, a comparison of Figs. 6~b! and 6~c! proved
that the slope method with optimum inversion length
and the exponential-curve fitting converge to similar
inversion error figures, with the optimum slope
method being the simplest because the regression can
even be performed graphically with the help of Fig. 5.
A comparison of Figs. 6~a! and 6~c! is also in good
agreement with the error figures reported in Ref. 8.
As a result, we can conclude that selection of the
optimum regression interval length for the slope
method yields a virtually unbiased estimator whose
performance in a minimum MSE is similar to that of
the exponential-curve fitting of Eq. ~4!.

5. Conclusions

A statistical and computer-oriented simulation study
has been conducted to characterize the statistics of
the well-known slope method, in particular, its bias
and mean-square inversion error, and to compare its
inversion performance with that of the exponential-
curve fitting by use of a previous study.8

It has been shown that the slope method is domi-
nated by its inherent biased estimation and that in-
version errors can largely be reduced if one chooses
an optimum interval length for regression. To com-
pute this length, analytical expressions, either exact
or approximated, have been derived @Eqs. ~22!–~25!
plus Eqs. ~A5! and ~A6! for SNR~Rmin! 5 30 or ap-
proximations ~B7! and ~B8! for SNR~Rmin! $ 100# as
well as the quick-reference universal plots of Fig. 5,
which are valid for most typical elastic-backscatter
lidar systems according to Table 1.

Finally, we found that, when such an optimum
regression length is considered, the MSE of the slope
method reduces to that of the unbiased exponential-
curve-fitting estimator @Eq. ~4!#, and hence both al-
orithms are equivalent in terms of minimum bias
nd MSE performance.

Appendix A: Integral Computation of E@Ni*#, E@Ni*
2#

We depart from the Gaussian-limited PDF random
variable Ni, fNi

~ni!, described in Subsection 2.B and
depicted in Fig. 2~b! and from application of the ex-
pectancy theorem12 to Eq. ~6!, which states that the
xpectancy of a random variable Ni9 related to an-

other random variable Ni by means of a functional
0 November 2000 y Vol. 39, No. 33 y APPLIED OPTICS 6055
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relationship @Eq. ~6! in the present case# can be com-
uted as

E@Ni9# 5 *
2`

`

lnS1 1
n
Pi
DfNi

~n!dn. (A1)

Based on the fact that the existence domain of Ni is
@nl,i, `! and that the interval that has been removed
2`, nl,i! is equivalent to a delta function with area

~probability!

p 5 *
2`

nl,i 1

Î2psn,i

expS2
n2

2sn,i
2Ddn 5

1
2

erfS 2nl,i

Î2sn,i
D ,

(A2)

q. ~A1! can be computed as

E@Ni9# 5 *
2`

nl,i

lnS1 1
n
Pi
Dpd~n 2 nl,i!dn

1
*

nl,i

`

lnS1 1
n
Pi
D 1

Î2psn,i

expF2
1
2 S n

sn,i
D2Gdn

main term

.

(A3)

After identifying cl,i @Eq. ~14!# in the first integral
erm and introducing the following substitutions in
he main term for enhanced numerical processing,

x 5 lnS1 1
n
Pi
D , n 5 Pi~e

x 2 1!, dn 5 Pie
xdx,

(A4)

we finally obtain

E@Ni9# 5 pcl,i 1 *
cl,i

`

xex Pi

Î2psn,i

3 expH2
1
2 FPi~e

x 2 1!

sn,i
G2Jdx. (A5)

omputation of E@Ni9
2# follows the same procedure

nd yields

E@Ni9
2# 5 pcl,i

2 1 *
cl,i

`

x2ex Pi

Î2psn,i

3 expH2
1
2 FPi~e

x 2 1!

sn,i
G2Jdx. (A6)

Equations ~A5! and ~A6!, together with Eqs. ~22!–
~25!, enable exact computation of the MSE. This
requires knowledge of only the measured return
power samples Pi and the sampling points Ri and
characterization of the range-dependent system-
noise standard deviation sn,i from system parame-
ters.8
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Appendix B: Practical Computation of E@Ni*#, E@Ni* #

In nearly all practical cases, the range-dependent
SNR associated with each particular sampling cell Ri
is high enough to enable considerable simplification
of Eqs. ~A5! and ~A6! into the expressions that are
presented next. Validity of this approximate
method is limited to SNR~R! .. 5 along all the in-
version range with SNR . 9 being a practical lower
bound found by experiment.

For most practical SNR’s,7,8 the role of the limiting
threshold nl in Eq. ~13! or, equivalently, nl,i is to avoid
singularities caused by noise figures that exceed the
noise floor 2Pi rather than clip noise. This is par-
ticularly true for any conservative choice of nl well
elow the expected S~Rmax!, as indicated in Subsec-
ion 2.B. Under these circumstances, the nl,i thresh-

old is not restrictive, and hence we can write

nl,i ,, 25sn,if p < 0. (B1)

As a result, the first term of Eq. ~A5! can be neglected
and E@Ni9# can be approximated by

E@Ni9# < *
nl,i

`

lnS1 1
n
Pi
D 1

Î2psn,i

expF2
1
2 S n

sn,i
D2Gdn,

(B2)

which, in turn, we can compute by means of a Taylor
series expansion by noting that

ln~1 1 x! 5 x 2
x2

2
1

x3

3
2

x4

4
1 O~x5!, uxu ,, 1,

(B3)

where x 5 nyPi. Using relation ~B1! above, we can
ewrite the convergence radius constraint as

Unmax

Pi
U ,, 1f

5sn,i

Pi
,, 1f SNRi .. 5, (B4)

hich indicates that the SNR must be much higher
han 5 to ensure series convergence.

Now, if Eq. ~B3! is substituted into approximation
B2! and the integration limits are expanded from 2`
o `, again based on the fact that under the constraint
f relation ~B1! the contribution of the ~2`, nl,i! in-

terval to the integral is negligible, then E@Ni9# in
approximation ~B2! can be expressed in terms of the
moments of Gaussian random variable Ni as

E@Ni9# <
E@Ni#

Pi
2

E@Ni
2#

2Pi
2 1

E@Ni
3#

3Pi
3 2

E@Ni
4#

4Pi
4 . (B5)

Note that the nth-order moments of a Gaussian ran-
dom variable X 5 Ni of zero mean and s standard
deviation12 are

E@Xn# 5 5snn!
2ny2 n 5 even

0 n 5 odd
. (B6)
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By substituting these variables into approximation
~B5!, we finally obtain

E@Ni9# < 2
1
2

1
SNRi

2 2
3
2

1
SNRi

4 . (B7)

Derivation of an approximate expression for E@Ni9
2#

follows the exact same procedure, and the final result
can be expressed as

E@Ni9
2# <

1
SNRi

2 1
11
2

1
SNRi

4 1
137
8

1
SNRi

6 . (B8)

At this point, it is important to warn that validity
of final approximations ~B7! and ~B8! is conditioned
o that of relation ~B4!, irrespective of the number of
erms used for series expansion, because relation ~B4!
onstraint is due to singularitylike behavior of the
eries for values close to x 5 21. Cross examination
f the exact and the approximate equation sets given
y Eqs. ~A5! and ~A6! and approximations ~B7! and
B8!, respectively, has shown that the approximate
et of approximations ~B7!–~B8! can perfectly be used
or the computation of the optimum interval length
Nopt, as described in Subsection 3.B! and its associ-

ated MSE @Eqs. ~22!–~25! in Subsection 3A#, provided
that SNR~Nopt! . 9.
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