
PUNCTURED COMBINATORIAL NULLSTELLENSÄTZE

SIMEON BALL AND ORIOL SERRA

Abstract. In this article we present a punctured version of Alon’s Nullstellensatz which
states that if f vanishes at nearly all, but not all, of the common zeros of some polyno-
mials g1(X1), . . . , gn(Xn) then every I-residue of f , where the ideal I = 〈g1, . . . , gn〉, has
a large degree.

Furthermore, we extend Alon’s Nullstellensatz to functions which have multiple zeros
at the common zeros of g1, g2, . . . , gn and prove a punctured version of this generalised
version.

Some applications of these punctured Nullstellensätze to projective and affine geome-
tries over an arbitrary field are considered which, in the case that the field is finite, will
lead to some bounds related to linear codes containing the all one vector.

1. Introduction

The Combinatorial Nullstellensatz proved by Alon in [2] has been used for a host of
applications, some recent examples of which can be found in [9], [13], [14], [16] and [17].
In this article some extensions of Alon’s Nullstellensatz are proven, related to zeros of
multiplicity and punctured cases in which a polynomial vanishes over almost all, but not
all, of the common zeros of some uni-variate polynomials g1, g2, . . . , gn.

Before proving these extensions we consider a geometrical application which will be proven
in a more general setting in Theorem 5.1.

Consider two lines l1 and l2 of a projective plane over a field F and finite non-intersecting
subsets of points Si of li. Let A be a set of points with the property that every line joining
a point of S1 to a point of S2 is incident with a point of A. If we asked ourselves how
small can A be then obviously we could simply choose A to be the smaller of the Si and
clearly we can do no better. If, however, we impose the restriction that one of the lines
joining a point P1 of S1 to a point P2 of S2 is not incident with any point of A then it
is not so obvious how small can A can be. According to Theorem 5.1 we need at least
|S1| + |S2| − 2 points, which is clearly an attainable bound, for example take A to be
(S1 ∪ S2) \ {P1, P2}. Theorem 5.1 generalises this bound to arbitrary dimension and to
sets that have not just one point incident with the lines joining a point of S1 to a point
of S2, but a fixed number t of points.
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Let F be a field and let f be a polynomial in F[X1, X2, . . . , Xn]. Suppose that S1, S2, . . . , Sn

are arbitrary non-empty finite subsets of F and define

gi(Xi) =
∏

si∈Si

(Xi − si).

Alon’s Combinatorial Nullstellensatz [2, Theorem 1.1] is the following, which differs from
the classical Nullstellensatz of Hilbert [10, pp.21], in that the polynomials in Alon’s version
are univariate and the field is arbitrary, whereas in the classical version the polynomials
are arbitrary and the field is algebraically closed.

Theorem 1.1. If f vanishes over all the common zeros of g1, g2, . . . , gn, in other words
f(s1, s2, . . . , sn) = 0 for all si ∈ Si, then there are polynomials h1, h2, . . . , hn ∈ F[X1, X2, . . . , Xn]
satisfying deg(hi) ≤ deg(f)− deg(gi) with the property that

f =
n∑

i=1

higi.

Although not explicitly stated in his article, the following corollary is easily proven. Note
that under the hypothesis, there is always at least one point of the grid where f does not
vanish. This corollary incorporates Theorem 5 from Alon and Füredi [3].

Corollary 1.2. If f ∈ F[X1, X2, . . . , Xn] has a term of maximum degree Xr1
1 . . . Xrn

n ,
where ri = |Si|−ti and ti ≥ 1 for all i, then a grid which contains the points of S1×. . .×Sn

where f does not vanish, has size at least t1 × . . .× tn.

Proof. Suppose that there is a grid M1 × . . . × Mn, where nj = |Mj| < tj for some j,
containing all the points S1 × . . .× Sn where f does not vanish. Let

ej(Xj) =
∏

mj∈Mj

(Xj −mj).

The polynomial fej is zero at all points of S1 × . . . × Sn and has a term of maximum

degree Xr1
1 . . . X

rj−1

j−1 X
rj+nj

j X
rj+1

j+1 . . . Xrn
n . Note that rj + nj < |Sj| and ri < |Si| for i 6= j.

By Theorem 1.1 the polynomial fej =
∑n

i=1 gihi for some polynomials hi of degree at
most deg(f) − deg(gi) + nj. The terms of maximum degree in fej have degree in Xi at
least |Si| for some i, a contradiction. �

2. Punctured Combinatorial Nullstellensatz

In Alon’s Combinatorial Nullstellensatz, Theorem 1.1, the function f was assumed to
have zeros at all points of the grid S1 × S2 × . . . × Sn. In the case that there is a point
in S1 × S2 × . . . × Sn where f does not vanish a slightly different conclusion holds. The
following can be thought of as a punctured version of Alon’s Combinatorial Nullstellensatz.

Let F be a field and let f be a polynomial in F[X1, X2, . . . , Xn]. For i = 1, . . . , n, let Di

and Si be finite non-empty subsets of F, where Di ⊂ Si, and define

gi(Xi) =
∏

si∈Si

(Xi − si), and li(Xi) =
∏

di∈Di

(Xi − di).
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Theorem 2.1. If f vanishes over all the common zeros of g1, g2, . . . , gn except at least
one element of D1 × D2 × . . . × Dn, where it is not zero, then there are polynomials
h1, h2, . . . , hn ∈ F[X1, X2, . . . , Xn] satisfying deg(hi) ≤ deg(f) − deg(gi) and a non-zero
polynomial w, whose degree in Xi is less than |Si| and whose overall degree is at most the
degree of f , with the property that

f =
n∑

i=1

higi + w,

and

w = u

n∏
i=1

gi

li
,

for some non-zero polynomial u. In particular, deg(f) ≥
∑n

i=1(|Si| − |Di|).

Proof. We can write

f =
n∑

i=1

gihi + w,

for some polynomials hi of degree at most deg(f) − deg(gi), and a polynomial w, where
the degree of w in Xi is less than the degree of gi and the overall degree of w is at most the
degree of f . For each i the polynomial fli has zeros on all common zeros of g1, g2, . . . , gn,
by assumption, and hence so does wli. By Alon’s Nullstellensatz there are polynomials vi

with the property that

wli =
n∑

i=1

givi.

However the degree of Xj in wli, for j 6= i, is less than the degree of gj(Xj) and so
wli = givi. Thus gi divides wli. Note that li divides gi, so this divisibility implies gi/li
divides w. Hence

w = u
n∏

i=1

gi

li

for some polynomial u and u is not zero since 0 6= f(d1, d2, . . . , dn) = w(d1, d2, . . . , dn) for
some di ∈ Di.

Since w 6= 0 and deg(f) ≥ deg(w) we conclude that deg(f) ≥
∑n

i=1(|Si| − |Di|). �

The following corollary is a converse of the corollary to Alon’s Nullstellensatz, Corol-
lary 1.2.

Corollary 2.2. If D1× . . .×Dn is a grid containg all the points of the grid S1× . . .×Sn

where f does not vanish, then f has a term Xr1
1 . . . Xrn

n , where |Si| − 1 ≥ ri ≥ |Si| − |Di|.

Proof. Let

gi(Xi) =
∏

si∈Si

(Xi − si), and li(Xi) =
∏

di∈Di

(Xi − di).

By Theorem 2.1 we can write

f =
n∑

i=1

higi + w,
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and

w = u
n∏

i=1

gi

li
,

for some non-zero polynomial u, and the degree in Xi of w is less than |Si|. �

Note that Corollary 2.2 is not the exact converse of Corollary 1.2 since we cannot conlude
that the term Xr1

1 . . . Xrn
n will be of maximum degree. Indeed it is easy to construct

examples where f does not have such a term of maximum degree. For i = 1, 2 let
Di = {0} and Si = {0, 1} and therefore gi(X1) = Xi(Xi − 1). The polynomial

f(X1, X2) = X2
1 (X1 − 1) + (X1 − 1)(X2 − 1)

is zero at all points of the grid S1 × S2 except at the origin which is the unique point in
D1 ×D2. According to Corollary 2.2 f has a term X1X2, which is the case, but it is not
a term of maximum degree.

3. Combinatorial Nullstellensätze with multiplicity

In this section we take into account the multiplicities of the zeros of the polynomial f .
The following proof of Theorem 3.1 is based on the proof of Theorem 1.3 in [8].

In the following theorem we use the term a ∈ Fn is a zero of multiplicity t of a polynomial
f ∈ F[X1, X2, . . . , Xn]. This is defined to be the maximum non-negative integer t with the
property that for every term X t1

1 X t2
2 . . . X tn

n which occurs in f(X1−a1, X2−a2, . . . , Xn−an)
the sum t1 + t2 + . . . + tn is at least t.

Let T be the set of all non-decreasing sequences of length t on the set {1, 2, . . . , n}. For
any τ ∈ T , let τ(i) denote the i-th element in the sequence τ .

Let F be a field and let f be a polynomial in F[X1, X2, . . . , Xn]. Suppose that S1, S2, . . . , Sn

are arbitrary non-empty finite subsets of F and define

gi(Xi) =
∏

si∈Si

(Xi − si).

Theorem 3.1. If f has a zero of multiplicity t at all the common zeros of g1, g2, . . . , gn

then there are polynomials hτ in F[X1, X2, . . . , Xn], satisfying deg(hτ ) ≤ deg(f)−
∑

i∈τ deg(gi),
such that

f =
∑
τ∈T

gτ(1) . . . gτ(t)hτ .

Proof. We shall prove this by double induction on n and t. If n = 1 and f has a zero of
degree t for all s1 ∈ S1 then f = g(X1)

th(X1) for some polynomial h. If t = 1 then the
theorem is Alon’s Nullstellensatz, Theorem 1.1.

Assume that the theorem holds whenever m < n and u ≤ t or whenever m ≤ n and u < t.

Let α ∈ Sn. Write f = (Xn − α)Aα + Bα, where Aα ∈ Fq[X1, X2, . . . , Xn] and Bα ∈
Fq[X1, X2, . . . , Xn−1]. The polynomial Bα has a zero of multilplicity of t at all elements
of S1 × S2 × . . .× Sn−1, so by induction

Bα =
∑

τ∈Tn−1,t

gτ(1), . . . , gτ(t)hτ ,
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where deg(hτ ) is at most deg(f)−
∑

i∈τ deg(gi).

Let β ∈ Sn with β 6= α. Write Aα = (Xn − β)Aβ + Bβ, where Aβ ∈ Fq[X1, X2, . . . , Xn]
and Bβ ∈ Fq[X1, X2, . . . , Xn−1]. Again by induction, the polynomial

Bβ =
∑

τ∈Tn−1,t

gτ(1), . . . , gτ(t)lτ ,

for some polynomials lτ , where deg(lτ ) ≤ deg(Bβ)−
∑

i∈τ deg(gi) ≤ deg(f)−1−
∑

i∈τ deg(gi).

Thus we can write f = (Xn − α)(Xn − β)Aβ + Uαβ for some

Uαβ =
∑

τ∈Tn−1,t

gτ(1), . . . , gτ(t)mτ ,

where mτ has degree at most deg(f)−
∑

i∈τ deg(gi).

Continuing in this way we can write f = gn(Xn)A + B where A has degree at most
deg(f)− deg(gn) and

B =
∑

τ∈Tn−1,t

gτ(1), . . . , gτ(t)oτ ,

where oτ has degree at most deg(f)−
∑

i∈τ deg(gi).

The polynomial gn(Xn)A has a zero of multiplicity t at all points of S1 × S2 × . . . × Sn

and so A has a zero of multiplicity t− 1 at all points of S1 × S2 × . . .× Sn. By induction

A =
∑

τ∈Tn,t−1

gτ(1), . . . , gτ(t−1)pτ ,

where pτ has degree at most deg(A)−
∑

i∈τ deg(gi).

Therefore, f can be written in the desired way. �

Theorem 3.1 has the following corollary.

Corollary 3.2. Let F be a field and let f be a polynomial in F[X1, X2, . . . , Xn] and
suppose that f has a term Xr1

1 Xr2
2 . . . Xrn

n of maximum degree. If S1, S2, . . . , Sn are non-
empty subsets of F with the property that for all non-negative integers α1, . . . , αn satisfying∑n

i=1 αi = t, one has

ri < αi|Si|,
for some i, then there is a point a = (a1, a2, . . . , an), with ai ∈ Si, where f has a zero of
multiplicity at most t− 1.

Proof. Suppose that f has a zero of degree at least t at all elements of S1×S2× . . .×Sn.
By Theorem 3.1 there are polynomials hτ ∈ F[X1, X2, . . . , Xn] with the property that

f =
∑
τ∈T

gτ(1), . . . , gτ(t)hτ ,

and hτ has degree at most deg(f)−
∑

i∈τ deg(gi). On the right hand side of this equality

the terms of highest degree are divisible by
∏

i∈τ X
|Si|
i for some τ . Therefore, there is a

τ for which ri ≥
∑

i∈τ |Si| for all i ∈ τ . Let αi be the number of times i occurs in the
sequence τ . The sum

∑n
i=1 αi = t and ri ≥ αi|Si| for all i, a contradiction. �
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Note that the above corollary with t = 1 is the original corollary to Alon’s Nullstellen-
satz that has proven so useful. Specifically, if ri < |Si| for all i then there is a point
(a1, a2, . . . , an), with ai ∈ Si, where f does not vanish.

The following is a version of the punctured Nullstellensatz, Theorem 2.1, taking into
account the multiplicity of the zeros of f .

Let F be a field and let f be a polynomial in F[X1, X2, . . . , Xn]. For i = 1, . . . , n, let Di

and Si be finite non-empty subsets of F, where Di ⊂ Si, and define

gi(Xi) =
∏

si∈Si

(Xi − si), and li(Xi) =
∏

di∈Di

(Xi − di).

Theorem 3.3. If f has a zero of multiplicity at least t at all the common zeros of
g1, g2, . . . , gn, except at at least one point of D1 × D2 × . . . × Dn where it has a zero
of multiplicity less than t, then there are polynomials hτ in F[X1, X2, . . . , Xn], satisfy-
ing deg(hi) ≤ deg(f) −

∑
i∈τ deg(gi), and a non-zero polynomial u satisfying deg(u) ≤

deg(f)−
∑n

i=1(deg(gi)− deg(li)), such that

f =
∑
τ∈T

gτ(1) . . . gτ(t)hτ + u
n∏

i=1

gi

li
.

Moreover, if there is a point of D1 ×D2 × . . .×Dn where f is non-zero, then for any j,

deg(f) ≥ (t− 1)(|Sj| − |Dj|) +
n∑

i=1

(|Si| − |Di|).

Proof. We can write

f =
∑
τ∈T

gτ(1) . . . gτ(t)hτ + w,

where w has no terms Xr1
1 . . . Xrn

n for which there is a τ ∈ T with rj ≥
∑

j∈τ |Sj| for all j.

By hypothesis, for all i, flti has zeros of multiplicity t at all common zeros of g1, g2, . . . , gn

and hence, so does wlti. By Theorem 3.1 there are polynomials vτ with the property that

(3.1) wlti =
∑

τ∈Tt,n

gτ(1) . . . gτ(t)vτ .

However wlti has no terms Xr1
1 . . . Xrn

n for which there is a τ ∈ T with rj ≥
∑

j∈τ |Sj| for
all j, unless i ∈ τ . Thus

wlti = gi(Xi)
∑

τ∈Tt−1,n

gτ(1) . . . gτ(t−1)oτ ,

for some polynomials oτ , from which it follows that gili divides w for each i. Thus we can
write

f =
∑
τ∈T

gτ(1) . . . gτ(t)hτ + u
n∏

i=1

gi

li
,

for some polynomial u, where u 6≡ 0 since f 6∈ 〈gτ(1), . . . , gτ(t) | τ ∈ Tn,t〉.
To prove the lower bound on the degree of f , we will prove a lower bound on the degree
of u.
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Let (d1, . . . , dn) be a point of D1 × . . .×Dn where f is not zero. Equation 3.1 with i = 1
gives

u(X1, d2, . . . , dn)lt1
g1

l1
= gt

1v1,

for some polynomial v1, and hence (g1/l1)
t−1 divides u(X1, d2, . . . , dn).

It only remains to show that u(X1, d2, . . . , dn) is not zero. This follows immediately since
f(X1, . . . , dn) is not zero at X1 = d1, u(X1, d2, . . . , dn)g1/l1 isn’t either and hence neither
is u(X1, d2, . . . , dn). �

4. Applications to finite fields

The following Chevalley-Warning type theorem follows directly from Theorem 2.1.

Let Fq be the finite field with q elements.

Theorem 4.1. Let f1, f2, . . . , fm be polynomials of Fq[X1, X2, . . . , Xn] and let d = |D1|+
. . . + |Dn|, where Di is the set of elements a of Fq where there is common zero of
f1, f2, . . . , fm with i-th coordinate a. If d 6= 0, in other words if the polynomials f1, f2, . . . , fm

have a common zero, then
m∑

i=1

deg(fi) ≥
nq − d

q − 1
.

Proof. Define

f =
m∏

i=1

(1− fi(X1, X2 . . . , Xn)q−1).

and note that f is non-zero only when evaluated at a common zero of f1, f2, . . . , fm. If
there is a common zero then Theorem 2.1 implies that the degree of f ,

(q − 1)
m∑

i=1

deg(fi) ≥ nq −
n∑

i=1

|Di|.

�

If d 6= 0 then d ≥ n and when d = n there are examples of m polynomials fi with∑m
i=1 fi = n with exactly one common zero. For example, take η to be non-square in F,

let f1 = X2
1 − ηX2

2 , and for i = 2, . . . , n− 1 let fi = Xi −Xi+1. The only common zero of
the fi is the origin.

5. Applications to geometry

Let F be an arbitrary field and let PG(n, F) denote the n-dimensional projective geometry
over F.

Theorem 5.1. Let t be a positive integer and let l1, l2, . . . , ln be n concurrent lines, all
incident with the point x, spanning PG(n, F). Let Si be a subset of points of li \ {x} and
let Di be a proper non-empty subset of Si. Suppose that there is a set A of points with the
property that every hyperplane 〈s1, s2, . . . , sn〉 where (s1, . . . , sn) ∈ (S1 × . . .×Sn) \ (D1 ×
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. . .×Dn) is incident with at least t points of A. If there is a hyperplane 〈d1, d2, . . . , dn〉,
where (d1, . . . , dn) ∈ D1 × . . .×Dn, which is incident with no point of A, then for all j

|A| ≥ (t− 1)(|Sj| − |Dj|) +
n∑

i=1

(|Si| − |Di|).

Proof. Let H be a hyperplane that meets the lines li in a point of Si but is not incident
with any point of A. Apply a collineation of PG(n, F) that takes l1, l2, . . . , ln to the axes
of AG(n, F), the affine space obtained from PG(n, F) by removing the hyperplane H, and
takes the point H ∩ li to the point 〈ei〉, where ei is the canonical basis vector with a 1 in
the i-th coordinate and zero in the others.

We can then assume that A is a subset of AG(n, F), the affine space obtained from
PG(n, F) by removing the hyperplane H. The hyperplane H is defined by the equation
Xn+1 = 0.

Let Ti be the subset of F containing 0 with the property that s−1 ∈ Ti \ {0} if and only
if 〈sei + en+1〉 is a point of Si. Note that the line li, after applying the collineation, is
〈ei, en+1〉 and |Ti| = |Si|. Let Ei be the subset of F containing 0 with the property that
d−1 ∈ Ei \ {0} if and only if 〈dei + en+1〉 is a point of Di. Define

f(X1, X2, . . . , Xn) =
∏
a∈A

((
n∑

i=1

aiXi

)
− 1

)
.

The affine hyperplanes
∑n

i=1 tiXi = 1, where ti ∈ Ti are not all zero, are the affine
hyperplanes spanned by points s1, s2, . . . , sn, where si ∈ Si. By hypothesis there are t
points of A incident with these hyperplanes, unless ti ∈ Ei for all i, and so f has a zero
of multiplicity t at (t1, t2, . . . , tn), unless ti ∈ Ei for all i.

However 0 ∈ Ei for all i and F (0, 0, . . . , 0) = (−1)|A|, so there is an element of T1 × T2 ×
. . .× Tn where f does not vanish. Theorem 3.3 implies that for all j

|A| = deg(f) ≥ (t−1)(|Tj|−|Ej|)+
n∑

i=1

(|Ti|−|Ei|) = (t−1)(|Sj|−|Dj|)+
n∑

i=1

(|Si|−|Di|).

�

Note that the above proof also shows that the theorem holds for any multi-set A.

The condition that there is a hyperplane that is not incident with a point of A is essential.
If we do not impose this condition then there is always an appropriate choice of τ , a
sequence of length t whose elements come from {1, 2, . . . , n}, so that if we put A =
∪n

i=1Sτ(i) then A satisfies the hypothesis of the theorem, but

|A| = |Sτ(1)|+ . . . + |Sτ(t)| < (t− 1)|Sj|+
n∑

i=1

|Si|,

contradicting the conclusion.

For t = 1 the bound is tight. Take

A =
n⋃

i=1

(Si \Di).
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Theorem 5.1 has some corollaries. The following theorem is due to Bruen [8] and together
with Alon’s Nullstellensatz was the inspiration for this article. It was initially proven for
t = 1 by Jamison [12] but more pertinent here is the independent proof found by Brouwer
and Schrijver [7].

If F is a finite field Fq we usually write PG(n, q) instead of PG(n, Fq) and AG(n, q) instead
of AG(n, Fq).

Theorem 5.2. If every hyperplane of AG(n, q) is incident with at least t points of a set
of points A, then A has at least (n + t− 1)(q − 1) + 1 points.

Proof. Let l1, l2, . . . , ln be n lines of PG(n, q) incident with the same point x of A and
spanning PG(n, q). Let H be the hyperplane which is incident with no point of A and set
Si = li \ {x} and Di = li∩H. Theorem 5.1 implies |A|− 1 ≥ (t− 1)(q− 1)+n(q− 1). �

The bound in this theorem can be improved slightly in many cases when t ≤ q as was
proven in [5]. In Theorem 5.7 we shall investigate when this improvement applies to the
more general Theorem 5.4 below.

Firstly let us look at a consequence of Theorem 5.1 for projections.

Theorem 5.3. If there are m − 1 points x1, x2, . . . , xm−1 of PG(n, F) that project m
collinear points S1 onto m collinear points S2 then there is a further point xm which also
projects S1 onto S2.

Proof. Suppose that there is no such point xm which also projects S1 onto S2. Thus
there are m lines l1, . . . , lm that join a point of S1 to a point of S2 but are not incident
with any of the points x1, x2, . . . , xm−1. The points of S1 and S2 are all contained in
the same plane and so any two lines li and lj are incident. If they are not all incident
with a common point xm then we can choose m − 2 points y1, . . . , ym−2 such that yi is
incident with li but is not incident with lm and ym−2 is the intersection of the lines lm−2

and lm−1. Note we may have to relabel the lines to ensure that lm is not incident with
the intersection of the lines lm−2 and lm−1. The set A = {x1, x2, . . . , xm−1, y1, . . . , ym−2}
has the property that every line that joins a point of S1 to a point of S2 is incident with
a point of A except lm, which contradicts Theorem 5.1, which says that A should have at
least |S1| − 1 + |S2| − 1 = 2m− 2 points. �

In the case when m = 3 the nine points S1 ∪ S2 ∪ {x1, x2, x3} form an affine plane of
order 3 embedded in PG(2, F). This can be proven again applying Theorem 5.1 to the
dual structure. The 8 point structure, i.e. not including x3, is referred to as the 83

configuration, so the above theorem says that an 83 configuration embedded in PG(n, F)
extends to an affine plane of order three AG(2, 3) embedded in PG(n, F), see [1] and
[15]. One can readily check with coordinates when the 8 point structure is embedded in
PG(n, F), where the condition appears that this indeed occurs if and only if −3 is a square
in F and the characteristic is not 2 or the characteristic is 2 and F contains a primitive
third root of unity.

The following theorem is almost the dual of Theorem 5.1. It is slightly easier to prove
since here we fix a coordinate system.
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Theorem 5.4. Let A be a set of hyperplanes of AG(n, F) and let Di be a non-empty
proper subset of Si, a finite subset of F. If every point (s1, s2, . . . , sn), where si ∈ Si, is
incident with at least t hyperplanes of A except at least one point of D1 ×D2 × . . .×Dn,
which is incident with no hyperplane of A, then for all j

|A| ≥ (t− 1)(|Sj| − |Dj|) +
n∑

i=1

(|Si| − |Di|).

Proof. Define

f(X1, X2, . . . , Xn) =
∏((

n∑
i=1

aiXi

)
− an+1

)
,

where each factor in the product corresponds to a hyperplane, defined by the equation∑n
i=1 aiXi = an+1, in A. By hypothesis the polynomial f has a zero of mutiplicity t at all

the points of S1 × S2 × . . .× Sn except at least one point of D1 ×D2 × . . .×Dn where it
is not zero. By Theorem 3.3 the bound follows. �

If Si = Fq and Di = {0} then Theorem 5.4 implies that a set of hyperplanes A with the
property that every point of AG(n, q), different from the origin, is incident with at least t
hyperplanes of A has cardinality at least (n + t− 1)(q− 1), which dualising gives Bruen’s
Theorem, Theorem 5.2 again.

Theorem 5.4 has the following immediate corollaries for t = 1, which are due to Alon and
Füredi [3].

Theorem 5.5. Let h1, h2, . . . , hn be positive integers and let G be the set of points (y1, . . . , yn),
with 0 ≤ yi ≤ hi. A set of hyperplanes which covers all but one point of G has cardinality
at least h1 + h2 + . . . + hn.

Theorem 5.6. Let A be a set of hyperplanes of AG(n, F). If every point of S1 × . . .× Sn

is incident with a hyperplane of A, except at least one point, then there are at least
min(|{y1y2 . . . yn |

∑n
i=1 yi ≤ −|A|+

∑n
i=1 |Si|, yi < |Si|}|) points of S1× . . .×Sn incident

with no hyperplane of A.

We end this section by proving the following theorem which is similar to Theorem 5.4 but
in which there are translations of the set of hyperplanes of AG(n, q), not incident with
the origin, which also cover most, but not all, of the points of the grid S1 × . . .× Sn.

For any λ ∈ Fn and A, a finite subset of Fn, define A + λ = {a + λ | a ∈ A}.
In the following a punctured grid is a set of points (S1×. . .×Sn)\(D1×. . .×Dn), where Di

is a proper non-empty subset of Si, a finite subset of F. If (0, . . . , 0) ∈ D1× . . .×Dn then
we say that the grid is punctured at the origin. We define the weight of the punctured
grid to be

∑n
i=1(|Si| − |Di|).

Theorem 5.7. Let {Gλ | λ ∈ Λ} be a set of grids, punctured at the origin, which all have
the same width c and for which c1 = |S1| − |D1| does not depend on λ. Let A be a set
of vectors with the property that every point of Gλ is incident with at least t hyperplanes
defined by equations of the form

b1X1 + . . . + bnXn = 1,
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for some b ∈ A + λ.

Let m be minimal such that for all λ ∈ Λ∏
s∈Sλ

1 \Dλ
1

(X − s) = 1 + Xmrλ(X)

for some polynomial rλ, where Gλ is the punctured grid (Sλ
1 × . . .×Sλ

n) \ (Dλ
1 × . . .×Dλ

n).

Let µ = |{λ1 | (λ1, . . . , λn) ∈ Λ}| and let µA = |{λ1 | (λ1, . . . , λn) ∈ Λ ∩ (−A)}|.
Suppose there are non-negative integers j and k with the property that either

k ≤ j ≤ min{t− 1, m− 1, µA − 1}

or

k + 1 ≤ j ≤ min{t− 1, m− 1, µ− 1}.
If (

c + (t− 1)c1 + k

j

)
6= 0

then

|A| ≥ c + (t− 1)c1 + k + 1.

Note that applying Theorem 5.4 to A for any of the punctured grids Gλ gives the lower
bound c + (t− 1)c1.

Proof. Suppose that |A| = c + (t− 1)c1 + k. Let

fλ(X1, X2, . . . , Xn) =
∏
a∈A

((
n∑

i=1

(ai + λi)Xi

)
− 1

)
.

The degree of fλ is |A|− 1+ ε, where ε = 0 if λ = −a for some a ∈ A and ε = 1 if not. By
hypothesis the polynomial f has a zero of mutiplicity t at all the points of S1×S2×. . .×Sn

except at least one point of D1 ×D2 × . . .×Dn where it is non-zero. Let

gi(Xi) =
∏

si∈Si

(Xi − si) and li(Xi) =
∏

di∈Di

(Xi − di).

By Theorem 3.3

fλ(X1, . . . , Xn) =
∑
τ∈T

gτ(1) . . . gτ(t)hτ + u1

n∏
i=1

gi

li
,

for some polynomial u1 of degree at most (t − 1)(|S1| − |D1|) + k − 1 + ε. Since there
is a point, the origin, of D1 × D2 × . . . × Dn where fλ is non-zero, the polynomial u1 is
non-zero at this point. The polynomial in one variable

fλ(X, 0, . . . , 0) = gt
1h + u2

g1

l1
,

for some polynomial h and polynomial u2 of degree at most the degree of u1.
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By hypothesis fλ has a zero of multiplicity t at all the points (s1, 0, . . . , 0), where s1 ∈
S1 \D1. Therefore fλ(X, 0, . . . , 0) is divisible by(

g1

l1

)t

= (1 + Xmrλ(X))t.

Let A1 be the multiset where a1 appears as an element of A1 the number of times it
appears as the first coordinate of an element of A. Thus

fλ(X, 0, . . . , 0) = gt
1h + u2

g1

l1
,

can be written as ∏
a1∈A1

((a1 + λ1)X − 1) = (1 + Xmrλ)
t(u3 + hlt1),

for some polynomial u3 of degree at most the degree of u2 minus (t − 1)(|S1| − |D1|),
which is at most k − 1 + ε. Since 0 ∈ D1 we can write hlt1 = X th2 for some polynomial
h2. Thus, the coefficient of Xj in the right hand side of the equation above is zero for all
j for which k + ε ≤ j ≤ min{m − 1, t − 1}. On the left-hand side of the equation above
the coefficient of Xj is a polynomial in λ1 of degree at most j where the term λj

1, if it
appears in the polynomial, has coefficient(

|A|
j

)
.

If the number of λ1 which appear as first coordinate in the vectors in Λ is more than
j, then the coefficient of Xj, which is a polynomial in λ1 of degree at most j, must be
identically zero, and therefore the binomial coefficient is zero. �

The following corollary is a slight generalisation of Theorem 2.2 from [5].

Corollary 5.8. A set A of points of AG(n, q) with the property that every hyperplane
is incident with at least t points of A has size at least

(n + t− 1)(q − 1) + k + 1

provided that there exists a j with the property that k ≤ j ≤ min{t− 1, q − 2} and(
−n− t + k + 1

j

)
6= 0.

Proof. Apply Theorem 5.7 with Λ = −A, Si = Fq and Di = {0} for all i = 1, 2, . . . , n.
Note that for all i ∏

s∈Si\Di

(X − s) = Xq−1 − 1,

so m = q − 1 and that |{λ1 | (λ1, . . . , λn) ∈ Λ ∩ (−A)}| = |{−a1 | (a1, . . . , an) ∈ A}| = q.

We conclude that if there are non-negative integers j and k with the property that k ≤
j ≤ min{t− 1, q − 2} and(

(n + t− 1)(q − 1) + k

j

)
=

(
−n− t + k + 1

j

)
6= 0,

then
|A| ≥ (n + t− 1)(q − 1) + k + 1.
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�

The following corollary is from Blokhuis [6] for (t, q) = 1 and [4] in general.

Corollary 5.9. A set of points of AG(2, q) with the property that every line is incident
with at least t points of A has size at least (t + 1)q − (t, q).

Proof. The binomial coefficient in the previous corollary with n = 2 and j = k = t− (t, q)
is (

−1− (t, q)

t− (t, q)

)
,

which is non-zero by Lucas’ Theorem. �

6. Applications to linear codes

The set of columns of a generator matrix of a k-dimensional linear code of length n
containing the all-one vector, is a set S of n points of AG(k− 1, q). The minimum weight
of any non-zero codeword is the minimum distance d of the code. This implies that every
hyperplane of AG(k − 1, q) is incident with at most n− d points of S. Therefore the set
A of points which is the complement of S is a set of qk−1 − n points with the property
that every hyperplane is incident with at least t = qk−2 − (n − d) points of A. Thus the
bounds we have proved in Corollary 5.8 and Corollary 5.9 give bounds on the length of
such linear codes. For example, Corollary 5.9 has the following consequence.

Let e = n − k + 1 − d be the Singleton defect of a k-dimensional linear code of length n
and minimum distance d.

Corollary 6.1. A three-dimensional linear code containing the all-one vector with Sin-
gleton defect e has length at most

(e + 1)q + (e + 2, q).

Proof. By the comments immediately preceeding, Corollary 5.9 for k = 3 implies

q2 − n ≥ (q − n + d + 1)q − (n− d, q)

and hence
n ≤ (e + 1)q + (e + 2, q).

�

References

[1] M. S. Abdul-Elah, M. W. Al-Dhahir and D. Jungnickel, 83 in PG(2, q), Archiv der Mathematik, 49
(1987), 141–150.

[2] N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput., 8 (1999) 7–29.
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