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Abstract— This paper describes the port interconnection of
two subsystems: a power electronics subsystem (a back-to-back
AC/AC converter (B2B), coupled to a phase of the power grid),
and an electromechanical subsystem (a doubly-fed induction
machine (DFIM). The B2B is a variable structure system (VSS),
due to the presence of control-actuated switches; however, from
a modelling and simulation, as well as a control-design, point of
view, it is sensible to consider modulated transformers (MTF in
the bond graph language) instead of the pairs of complementary
switches. The port-Hamiltonian models of both subsystems
are presented and, using a power-preserving interconnection,
the Hamiltonian description of the whole system is obtained;
detailed bond graphs of all subsystems and the complete system
are also provided. Using passivity-based controllers computed
in the Hamiltonian formalism for both subsystems, the whole
model is simulated; simulations are run to test the correctness
and efficiency of the Hamiltonian network modelling approach
used in this work.

I. INTRODUCTION

The central paradigm of network modelling of complex
systems is to have individual open subsystems with well
defined port interfaces, hiding an internal model of variable
complexity, and a set of rules describing how the subsystems
interact through the port variables.

One implementation of this general idea is what is known
as port Hamiltonian systems or port-controlled Hamiltonian
systems (PCHS) [1][2] (see also [3] and references therein).
In this approach, energy plays a fundamental role, port
variables are conjugated variables such that their product
has dimension of power, and the interconnection of subsys-
tems is implemented by means of what is called a Dirac
structure, which enforces the preservation of power, and
can be seen as a generalization of Tellegen’s theorem of
circuit theory [4]. PCHS theory allows the coupling of
systems from different domains using energy as the linking
concept, and provides the mathematical foundation for bond-
graph modelling [5][6]. Although originally developed for
lumped parameter systems, PCHS theory has been extended
to distributed parameter systems as well [7].

Besides describing systems in a modular, scalable and
non domain-specific way, PCHS theory allows a natural
implementation of passivity-based control methods [8][9],
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using energy as the storage function. The clear separation
between (a) constitutive relations, given by the energy, or
Hamiltonian, function, (b) the structure matrix, describing
how energy flows inside the system, and (c) the power ports,
some of which may be terminated by dissipative elements,
allows the design of controllers with a clear physical inter-
pretation in what is known as Interconnection and Damping
Assignment Passivity-Based Control (IDA-PBC) [10].

Bond graphs [11] can be seen as a graphical representa-
tion of the PCHS. A bond graph is a graphical, network-
based description of a physical system and describes the
energy interconnection between its generating, storing and
dissipating elements. The bond graph description permits
the integration of submodels easily and, by means of a
simple computer algorithm, the simulation-ready equations
of a complex model can be obtained.

In this paper, bond graph and PCHS models of a complex
system, see Figure 1, obtained from the interconnection of
a doubly-fed induction machine (DFIM) and a back-to-back
(B2B) power converter, are presented. Simulations in closed
loop, with a control designed by means of Hamiltonian
passive techniques, are also performed.

Doubly-fed induction machines have been proposed in the
literature, among other applications, for high performance
storage systems [12], wind-turbine generators [13] or hybrid
engines [14]. The attractiveness of the DFIM stems primarily
from its ability to handle large speed variations around the
synchronous speed (see [15] for an extended literature survey
and discussion).

The back-to-back converter, connected to an auxiliary
single-phase grid, provides the desired PWM rotor voltages
to the DFIM. The B2B has the nice feature that power can
flow in any direction. In particular, in our application the
rotor energy of the DFIM can flow back to the converter for
some operating conditions [12].

The paper is organized as follows. Section II presents the
port Hamiltonian and bond graph models of the several sub-
systems and their interconnection, and the Dirac structures
involved in the interconnection and some associated transfor-
mations are identified. Using these, both a port Hamiltonian
and a bond graph models of the full system are constructed.
Section III displays simulations of the closed loop system
for several operating conditions, and Section IV states our
conclusions.
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Fig. 1. The system: A DFIM controlled by a B2B converter.

II. BOND GRAPH AND PORT-CONTROLLED
HAMILTONIAN MODELS

Bond graph theory is a powerful technique to model
physical systems [11]. This technique is graphically oriented
and represents the power flow between the different elements
of a system.

Mathematical equations suitable for simulation can be eas-
ily deduced, either manually or using specialized software,
from the bond graph representation . This represents a big
advantage for complex and/or large systems made of smaller
subsystems, since the bond graph description is inherently
modular and scalable.

Port-controlled Hamiltonian systems (PCHS) can be seen
as a mathematical description of bond graphs [6]. An explicit
PCHS has the form [3]{

ẋ = (J (x) −R(x))(∇H(x))T + g(x)u
y = gT (x)(∇H(x))T (1)

where x ∈ R
n are the energy variables, H(x) : R

n → R is
the energy (or Hamiltonian) function, u, y ∈ R

m are the port
variables, J (x) = −J T (x) ∈ R

n×n is the intra-connection
structure matrix, describing how the energy flows inside the
system, R = RT ≥ 0 ∈ R

n×n is the dissipation matrix,
and g(x) ∈ R

n×m is the interconnection matrix, describing
the port connection of the system to the outside world. Port
variables are conjugated, so that [u][y] has units of power.
Non-negativeness of R ensures that the map u → y is
passive.

A. The Doubly-fed Induction Machine

A Port-controlled Hamiltonian model of a DFIM is given
in [12]. This model is described in dq-coordinates [16], so
that three-phase variables (abc) are reduced to two-phase
variables (dq). The variables are (the D subindex refers
to the DFIM subsystem) xT

D = (λT
s , λT

r , Jmωr) ∈ R
5, or

xT
D = (ΛT , xm), where ΛT = (λT

s , λT
r ) ∈ R

4, λs, λr ∈ R
2

are the inductor fluxes in dq-coordinates (stator and rotor
respectively), xm = Jmωr is the mechanical Hamiltonian
variable, ωr the angular speed of the rotor, and Jm is the
total moment of inertia of the rotating parts. The structure
JD ∈ R

5×5 and damping RD ∈ R
5×5 matrices are

JD =

⎛⎝ −ωsLsJ2 −ωsLsrJ2 O2×1

−ωsLsrJ2 −(ωs − ωr)LrJ2 LsrJ2is
O1×2 Lsri

T
s J2 0

⎞⎠

RD =

⎛⎝ RsI2 O2×2 O2×1

O2×2 RrI2 O2×1

O1×2 O1×2 Br

⎞⎠ ,

where L are inductances, R are resistances, lower indices
s and r refer to stator and rotor respectively, Br is the
mechanical damping, is and ir ∈ R

2 are the stator and rotor
currents and

J2 =
(

0 −1
1 0

)
∈ R

2×2 I2 =
(

1 0
0 1

)
∈ R

2×2. (2)

Currents iT = (iTs , iTr ) ∈ R
4 and fluxes Λ are related by

Λ = Li, where the inductance matrix L is

L =
(

LsI2 LsrI2

LsrI2 LrI2

)
∈ R

4×4.

The interconnection matrix is

gD =

⎛⎝ I2 O2×2

O2×2 I2

O1×2 O1×2

⎞⎠ ∈ R
5×4

with the port variables uT = (vT
s , vT

r ) ∈ R
4, where vs, vr ∈

R
2 are the stator and rotor voltages. Finally, the Hamiltonian

function is

HD =
1
2
ΛTL−1Λ +

1
2Jm

x2
m.

The bond graph of the DFIM is depicted in Fig. 2.
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Fig. 2. Bond Graph of the DFIM.

B. The back-to-back converter

Fig. 3 shows the back-to-back converter selected for this
system. It is made of a full bridge AC/DC single-phase
boost-like rectifier and a 3-phase DC/AC inverter. The whole
converter has an AC single-phase voltage input and its output
are 3-phase PWM voltages which feed the rotor windings
of the electrical machine. This system can be split into
two parts: a dynamical subsystem (the full bridge rectifier,
containing the storage elements), and an static subsystem
(the inverter, which, from the energy point of view, acts like
a transformer).
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Fig. 3. Back-to-back converter.

vi(t) = E sin(ωst) is a single-phase AC voltage source,
L is the inductance (including the effect of any transformer
in the source), C is the capacitor of the DC part, r takes
into account all the resistance losses (inductor, source and
switches), sk and tk, k = 1, 2, 4, 5, 6. Switch states take
values in {−1, 1} and t-switches are complementary to s-
switches: tk = s̄k = −sk. Additionally, s2 = s̄1 = −s1.

The PCHS averaged model of the full-bridge rectifier is
as follows. The Hamiltonian variables are (B subindex refers
to the B2B subsystem) xT

B = (λ, q) ∈ R
2, where λ is the

inductor flux and q is the DC charge in the capacitor. The
Hamiltonian function is

HB =
1

2L
λ2 +

1
2C

q2,

while the structure and damping matrices are

JB =
(

0 −s1

s1 0

)
∈ R

2×2 RB =
(

r 0
0 0

)
∈ R

2×2.

The interconnection matrix is

gB =
(

1 O1×3

0 fT

)
∈ R

2×4, f =
1
2

⎛⎝ s6 − s4

s5 − s6

s4 − s5

⎞⎠ ∈ R
3,

with inputs

u =
(

vi

−iabc

)
∈ R

4,

where iTabc = (ia, ib, ic) ∈ R
3 are the three-phase currents in

the inverter part. Notice that the inverter subsystem can be
seen as a Dirac structure [3] with

vabc = fvDC

iDC = fT iabc

where vT
abc = (ia, ib, ic) ∈ R

3 are the three-phase voltages
and vDC ∈ R, is the DC voltage, and iDC ∈ R is the DC
current supplied by the rectifier subsystem.

The bond graph model of the B2B converter is depicted
in Fig. 4. The switch model has been taken as a transformer,
which has the same behavior than an ideal switch for an
averaged model [17].

C. The dq-transformation

From an analysis point of view it is convenient to express
the three-phase inverter voltages of the DFIM side in dq
components [16].
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Fig. 4. Bond Graph of the B2B converter.

First, from any set of three phase electrical variables yABC

we compute transformed variables yαβγ by means of

yαβγ = TyABC , (3)

with

T =

⎛⎜⎝
√

2√
3

− 1√
6

− 1√
6

0 1√
2

− 1√
2

1√
3

1√
3

1√
3

⎞⎟⎠ ,

with TT = T−1, so that this is a power–preserving
transformation 〈i, v〉 = 〈iABC , vABC〉. For a three-phase
equilibrated system, one has yA + yB + yC = 0; the dq-
transformation allows then working with only the two first
components (the α − β components) and neglect the third
one, the γ, or homopolar, component, which is zero for
any balanced set and which, in any case, is dynamically
decoupled from the other components.

The second part of the transformation relies on the as-
sumption that the induction machine is symmetric, with a
sinusoidal distribution of magnetic fluxes in the air gap. It
eliminates the dependence of the equations on θ (mechanical
position of the rotor), and consists in defining new variables
ydq via (

yαβs

yαβr

)
= K(θ, δ)

(
ydqs

ydqr

)
(4)

K(θ, δ) =
(

eJ2δ O2

O2 eJ2(δ−θ)

)
∈ R

4×4

where δ is an arbitrary function of time, and

eJ2φ =
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)
∈ R

2×2.

If δ̇ is the stator frequency ωs, this has the nice additional
property of converting the sinusoidal time-dependent stator
variables into constant values, which is useful for controlling
purposes [12].

The total ABC ↔ dq transformation can be seen as a
Dirac structure defined by

vABC = K(θ, δ)Tvdq (5)

idq = −(K(θ, δ)T )T iABC . (6)

The dq-transformation can be seen, in bond graph terms,
as a modulated transformation in two steps, Fig. 5. First the
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0 TF:

TF:

TF:
1

0

TF:

TF:

TF:

0

TF:

TF:

TF:

1

1

ea

ea

ea

ea

eb

eb

eb

eb

ec

ec

ec
ec

fa = fa1 + fa2 + fa3

fb = fb1 + fb2 + fb3

fc = fc1 + fc2 + fc3

fa1

fb1

fc1

fa2

fb2

fc2

fa3

fb3

fc3

t11

t12

t13

t21

t22

t23

t31

t32

t33

t11ea

t12eb

t13ec

t21ea

t22eb

t23ec

t31ea

t32eb

t33ec

1
t11

fa1

1
t12

fb1

1
t13

fc1

1
t21

fa2

1
t22

fb2

1
t23

fc2

1
t31

fa3

1
t32

fb3

1
t33

fc3

eα = t11ea + t12eb + t13ec

eβ = t21ea + t22eb + t23ec

eγ = t31ea + t32eb + t33ec

fα = 1
t11

fa1 = 1
t12

fb1 = 1
t13

fc1

fβ = 1
t21

fa2 = 1
t22

fb2 = 1
t23

fc2

fγ = 1
t31

fa3 = 1
t32

fb3 = 1
t33

fc3

Fig. 6. Bond graph corresponding to the T matrix of the dq-transformation.

T transformation reduces, in an equilibrated case, from a 3-
phase (abc) to a 2-phase (αβ). Then K(δ, θ) simplifies the
dynamical equations of the DFIM.

Fig. 6 shows a completed bond graph of the first step of
the dq-transformation. Indeed, we write the output equations
for efforts

eα = t11ea + t12eb + t13ec

eβ = t21ea + t22eb + t23ec (7)

eγ = t31ea + t32eb + t33ec.

which implement (3). For the flows we have (10)

fα =
1

t11
fa1 =

1
t12

fb1 =
1

t13
fc1

fβ =
1

t21
fa2 =

1
t22

fb2 =
1

t23
fc2 (8)

fγ =
1

t31
fa3 =

1
t32

fb3 =
1

t33
fc3

fa = fa1 + fa2 + fa3

fb = fb1 + fb2 + fb3 (9)

fc = fc1 + fc2 + fc3,

and finally
fabc = TT fαβγ , (10)

which, expressed in αβγ-components, is

fαβγ =
(
TT

)−1
fabc. (11)

Since TT = T−1 we recover expression (3) for flows. Note
that for an equilibrated 3-phase system the bond graph takes
a form where the γ-port disappears.

For the second part of the transformation, the bond graph
is shown in Fig.7. Following the same steps as for the first
part of the transformation, we recover (4), since e−J2φ =
(eJ2φ)T .
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Fig. 7. Bond graph corresponding to the K matrix of the dq-transformation.
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D. PCHS model of the whole system

Fig. 8 shows the interconnection scheme of the whole
system (B2B+DFIM). The dq-transformation connects the
B2B converter with the DFIM as a Dirac structure.

The interconnection relations are

vr = vdq, ir = idq, vABC = vabc, iABC = iabc. (12)

We use equations (12) and introduce a new K matrix

K = TT
∗ eJ2(δ−θ) ∈ R

3×2,

with T∗ defined so as to remove the homopolar component:

T∗ =

( √
2√
3

− 1√
6

− 1√
6

0 1√
2

− 1√
2

)
∈ R

2×3.

The variables of the whole PCHS system are xT =
(ΛT , Jmωr, λ, q) ∈ R

7, with energy function

H = HD + HB =
1
2
ΛTL−1Λ +

1
2Jm

x2
m +

1
2L

λ2 +
1

2C
q2.

The R
7×7 structure and dissipation matrices are

J −R =

⎛⎜⎜⎜⎜⎝
JD −RD

O2×1 O2×1

O2×1 KT f
0 0

O1×2 O1×2 0
O1×2 −fTK 0 JB −RB

⎞⎟⎟⎟⎟⎠ ,

and the interconnection matrix and port variables are

g =

⎛⎜⎜⎜⎜⎝
I2 O2×1

O2 O2×1

O1×2 0
O1×2 1
O1×2 0

⎞⎟⎟⎟⎟⎠ ∈ R
7×3 uT = (vT

s , vi) ∈ R
3.

The bond graph of the whole system is shown in Fig. 9.
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III. SIMULATIONS

In this Section we implement a numerical simulation of
the whole system controlled via the IDA-PBC controllers
[10], using two controllers designed for the DFIM and
the B2B in [12] and [18], respectively. The simulation has
been performed using the 20-sim1 modeling and simulation
software. The parameters used in the simulations are given
in Table I. For the purposes of testing the model, the desired

DFIM Lsr Lr , Ls Jm Br Rs Rr vg

Value 0.041 0.042 0.0005 0.005 0.087 0.0228 (380, 0)

B2B r L C E

Value 0.08 1 · 10−3 4.5 · 10−3 68.16

TABLE I

SIMULATION PARAMETER VALUES (IN SI UNITS) FOR THE DFIM AND

THE B2B. ADDITIONALLY, ωs = ωo = 2π50.

mechanical speed changes around ω = 2 · 50π (dotted line
in Fig. 10) and a desired bus voltage v∗

DC = 150 has been
selected.

Fig. 10 shows the desired and simulated mechanical speed.
Fig. 11 shows the reactive power compensation of the stator
side of the DFIM. Fig. 12 shows vDC , which remains close
to the desired value even in the transient of the machine.
The small oscillations of the DC-link voltage are intrinsic
to the system, due its 0-dynamics [19]. Finally, voltage vi

and current i at the single phase source feeding the B2B are
depicted in Fig. 13, showing that they are nearly in phase.
The small phase shift is due to the fact that the controller
designed in [18] disregards higher harmonics (for example
the second harmonic component of the DC-link voltage).

IV. CONCLUSIONS

We have modeled and simulated a complex system, with
several subsystems from the electric, power electronics and
mechanical domains, using both the PCHS and the Bond
Graph paradigms. The simulations have been run in closed

1See www.20sim.com
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loop with controllers designed with the IDA-PBC technique
developed for port Hamiltonian systems. The description of
the whole system as a network of interconnected subsystems
which exchange power in a preserving way has proved itself
useful both from the modelling and the control specification
and design points of view.
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