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Abstract - Saturation and detuning of high temperature
superconducting (HTS) resonators and filters may occur due to
the inherent nonlinear properties of the superconductor. In
HTS transmission lines, these nonlinear properties introduce a
dependence of the inductance and resistance per unit length on
the current through the line and, if the line forms a resonator,
this current dependence provokes changes in quality factor
and/or resonant frequency with incident power. This paper
derives equations for the dependence of the quality factor and
resonant frequency of a nonlinear transmission line vs. source
power and relates it to the circuit parameters of a nonlinear
transmission line. The equations are verified with
measurements in a 3.3 GHz YBa2Cu307, (YBCO) coplanar
waveguide (CPW) resonator at 76 K and with simulations
using harmonic balance.

Index Terms - Detuning, HTS, nonlinear transmission line,
saturation, superconductor, superconducting resonator.

I. INTRODUCTION

The high performance of planar superconducting devices
are known to be degraded by to the inherent nonlinear
response of the superconducting material itself; i.e. the
nonlinear Meissner effect [1]. This nonlinear effect can
produce saturation, detuning, and generation of harmonics
or intermodulation distortion (IMD) products. The
distributed origin of the nonlinear effects in high
temperature superconductors is known to be due to the
current dependence of the superconducting penetration
depth, which, for a quasi-TEM propagation mode, results in
a nonlinear distributed inductance L(i)=LO+AL(i) and a
nonlinear distributed resistance R(i)=RO+AR(i), where i is
the current through the line [2]. Determination of these
nonlinear terms is important for improving our
understanding of superconducting materials, for creating
accurate circuit models of superconducting devices, and for
developing strategies to reduce their nonlinear responses.
One of the most common techniques for characterizing

the nonlinear effects in superconducting devices is to
measure the power of the generated harmonic and IMD
signals. This method is very sensitive and allows for the
measurement of nonlinear effects with low incident power.
However, this method does not differentiate between
inductive and resistive nonlinear effects [3]. Phase
measurements of the harmonic generation [4] or scalar

broadband measurements of the IMD and harmonic
distortion [3][5] can differentiate between AL(i) and AR(i)
through the use of closed-form expressions to relate such
measurements to circuit parameters that characterize the
nonlinear transmission line. However, either phase or
broadband techniques require complex measurement setup.
Another alternative consists of measuring the detuning

(change in the resonant frequency f) and saturation (change
in the quality factor Q0) in resonators [6]. These
measurements need more input power than IMD
measurements, but allow the surface impedance versus
input power to the device to be obtained. Unfortunately,
relating the resistive and reactive terms of the surface
impedance with the nonlinear distributed parameters L(i)
and R(i)is not a trivial task.

These parameters can be obtained directly from the
frequency response of the device at different input powers
by performing nonlinear simulation with accurate
distributed circuit models [7]. This method has been shown
to be very powerful but requires software tools to perform
accurate nonlinear simulations.

Here, we present a simple alternative using analytical
closed-form expressions to relate the detuning and
saturation occurring in superconducting resonators with the
nonlinear distributed parameters AL and AR.

II. EQUIVALENT CIRCUIT AND FORMULATION

This section details the analytical procedure to obtain the
detuning and saturation occurring in a superconducting
transmission line resonator. We quantify the detuning and
saturation as the variation of the resonant frequency and
quality factor f/(I0) and Q4(I), respectively, with the current
maximum I, in the standing wave pattern of the resonant
mode. In what follows this current maximum is related with
the incident power to the resonator, since this is the
measurable quantity.
We analyzed f(I0) and Q,(I) in a superconducting half-

wave transmission line resonator. The distributed
superconducting nonlinear effects are taken into account by
modelling the transmission line as many cascaded RLCG
elemental segments [3], where the distributed resistance and
inductance R(i) and L(i) depend on the total rf current i
flowing through the line. Assuming superconducting
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intrinsic nonlinear effects [2] R(i) and L(i) follow a square
law dependence given by
L(i) = Ld + AL2i2 (1)

z
ZL= 0o

j tan 1+ 0

R(i) = Rd + AR2i2, (2

where Ld and Rd are respectively the distributed inductance
and resistance when i=O, and the terms AL2 and AR2
account for the strength of the inductive and resistive
nonlinear effects.

A. Detuning

In a half-wave resonant transmission line the current
distribution along the line is i = Io sin(Tz 11) cos(co0t), with
z going from 0 to 1, where /=A12, and Io is the maximum
current at the middle of the resonator (1=A14). Thus, the
resulting distributed inductance throughout the resonator

can be written as L(Io0) = Ld + AL2I2 sin2 (iTzz 1) and, under
the assumption of weak nonlinear effects, the characteristic
impedance Zo and phase constant /3o of the transmission line
are given by

') Now, from (6) the resonant condition including the
nonlinear effects is

(7)whic1h AL2It2 t

which leads to the resonant frequency

fo (IO) =
fo,o

(8)
1+ 2 I2

4Ld

wherefo,o is the resonant frequency for the linear case (AL2
= O).

This equation quantifies the detuning of the resonator due
to the nonlinear distributed inductance.

B. Saturation

The unloaded quality factor Q0 is defined as

Zo(Io,z)=Z0K1+ AI2 Io2 Sin2 ; Z,~j
j6o(oK1+

° °( 2Lo ° ( I))

o° °( ~2Lo ° ( )

(3)

(4)

Since the deviation in resonant frequency is dominated
primarily by the phase shift constant /o(Io, z), we will not
include the Z0 power dependence on the analysis performed
in this section.
To find the resonant frequency we use the equivalent

circuit of Fig. 1, which corresponds to an isolated open-

ended half-wave transmission line. At resonance, the
impedance seen from the middle of the transmission line to
the left ZL and right ZR should be 0; i.e., ZL=ZR=O. We can

obtain the impedance seen from the middle of the line by
cascading small segments of length dz with the z-dependent
phase constant given by (4).
The result is

7

jL t
/3l0 ('l+ -2 d, AL21

2 41 4L °
which, if d, tends to zero, simplifies to

(5)

I~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
LZR ZO,

Fig. 1. The open-ended resonator is broken into segments with a

nonuniform phase constant according to (4). This allows us to
determine the input impedance ZL+ZR at the centre of the line.

Qo (Io )=2;Tfo (Io ) ,u (9)
Rd(i)i2dz)

where the brackets <K> indicate time averaging.
Using (8) and (9) and taking into account the nonlinear

effects on the distributed inductance
(L(Io) = Ld + AL2IJ2 sin2 (iTz 1)) and distributed resistance

(R(Io) = Rd + AR2IJO2 sin2 (iTz 1)) along the resonator, we

obtain the unloaded quality factor of the superconducting
resonator as

Qo (Io ) = 2Tf0oo
Ld + AL2 IO2

Rd +4 AR2IO
(10)

This equation quantifies the saturation effect that a

nonlinear distributed resistance produces due to the increase
in losses (decreasing quality factor) as the incident power is
increased.
The resulting expressions quantifying the detuning (8)

and saturation (10) show how the resonant frequency and
quality factor, respectively, deviate from their linear values
(AL2=O and AR,2=O) as a function of the maximum current Io
flowing in the resonator. Since Io is not an observable
quantity, one needs to re-write (8) and (10) as a function of
the available source power PO. The section below shows
how to relate Io and PO in a nonlinear superconducting
resonator. Note that this cannot be done from conventional
network analysis theory because it requires consideration of
nonlinear distributed effects in the resonator.

C. Maximum current in the resonator IO
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To obtain the maximum current on the resonator we start
by writing the stored energy in the resonator Was [3]:

W= Qtf (I) (k (11)

where k is the coupling coefficient between the input and
output port and Po is the actual input power on the
resonator. Note that the coupling coefficient can be obtained
from experimental data by use
ofk = 0 5(S21 (f)) /(1-S21(f))
We can also write W as a function of the circuit

distributed parameters and the maximum current on the
resonator

W= L +-AL2I0 lI. (12)
Now, equating (11) and (12) and using (8) and (10) we
obtain the expression

16 k P_ J3AR2J416 2k =Rl + 3R
(I +2k)2 Rdl 04 Rd

(13)

When AR2=0 the dependence between Io and Po is identical
to that in a linear resonator. Otherwise, from (13) we can
determine Io from

-1+ 1 3A6 k PO
I - Rd (1+2k) Rdl
o - 3 AR-2

\ ~~2Rd

(14)

The combination of (14) with (8) and (10) allows for the
detuning and saturation occurring in a superconducting
resonator to be quantified as a function of the available
incident power feeding the resonator.

III. RESULTS

To verify the expressions of the previous section, we
modeled the resonator whose measurements are presented in
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Fig.2. Detuning of a nonlinear resonator. The lines display the
results of (8), (14), and the symbols are simulation results. Three
sets of results are shown: resistive contribution only (dashed line
and circles), inductive contribution only (solid line and squares)
and inductive-resistive contribution (dotted line and diamonds).

the next section. This resonator consists of a CPW half-
wave resonator patterned on a 60 nm thick YBCO, grown
by pulsed laser deposition on a 0.5 mm thick LaAlO3
substrate. The cross-sectional geometry of the resonator has
a central conductor with a width of 22 gm and gap spacing
between the central conductor and ground planes of 40 gim.
The length is 11.33 mm.
The circuit model consists of a cascade of 100 elemental

RLCG cells [3], with (linear) distributed parameters, the
distributed resistance Rd, inductance Ld, capacitance Cd and
conductance Gd values of 21 Q/m, 774 nH/m, 230 pF/m
and 0 S/m, respectively (the losses of the substrate are
considered negligible). Without nonlinear effects, this
results in a resonant frequency of 3.3 GHz and an unloaded
quality factor of 750.
Using the linear parameters above, we simulate three

different cases: (i) nonlinear effects with a contribution
from only the inductive part, with AL2=4.8 x 10-7 H/(A2m)
and AR2=0; (ii) with a contribution only from the resistive
part, with AL2=0 and AR2= 1 x 1 04 Q/(A2m); and (iii)
nonlinear effects with contributions from both inductive and
resistive parts, with AL2=3.4 x 10-7 H/(A2m) and AR2=7 x
103 Q/(A2m). We simulate these cases applying Harmonic
Balance (HB) techniques to the equivalent circuit model
describing the superconducting resonator. This method has
been used and verified to characterize and predict the
nonlinear response of several superconducting devices [6].

Before showing the effects of the nonlinearities on the
resonant frequency and quality factor, Fig. 2 shows the
resonant frequency as a function of the available power.
Solid, dashed and dotted lines represent the resonance
frequency obtained with (8) and (14) for cases i, ii and iii,
respectively. Squares, circles and diamonds indicate
respectively the resonant frequency obtained by simulating
the equivalent circuit described above using HB techniques,
for i, ii and iii. Agreement between simulation and
analytical results are excellent, within 3 00 error, up to 15
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Fig.3. Saturation of a nonlinear resonator. The lines display the
results of (10),(14), and the symbols are simulation results. Three
set of results are shown: resistive contribution only (dashed line
and circles), inductive contribution only (solid line and squares),
and inductive-resistive contribution (dotted line and diamonds).
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Fig.4. Resonant frequency asIanto onput power. Solid line
shows the best fit, using (8) (14), of the measured values (circles).

dBm input power.
Fig. 3 shows the unloaded quality factor. The quality

factor is obtained from the simulated S21, using the common
3 dB method. Solid, dashed and dotted lines correspond to
analytical results obtained from (10) and (14) for the cases i,
ii, and iii, respectively. Simulated results are shown,
respectively, as squares, circles and diamonds.
Determination of the quality factor also shows good
agreement between simulations and measurements for cases
ii and iii. For the case of inductive nonlinearities only (i),
the analytical expression predicts an almost flat behaviour,
whereas the simulations indicate a reduction of Qo as the
power increases. We believe that the method used to extract
the Qo fails when the resonance curve deviates from a
Lorentzian shape [8].

In the next section, we apply simulations and closed-form
expressions to determine the contribution of the nonlinear
inductance AL2 and the contribution of the nonlinear
resistance AR2 to the overall measured nonlinear response.

IV. MEASUREMENTS AND DISCUSSION

measuredf, and Q0, respectively. We applied (8), (10), and
(14) to extract the nonlinear inductance AL2 and nonlinear
resistance AR2 that best fit the measurements. The third row
in Table I details the values of AL2 and AR2. Analysis results
and measured ft and Qo show good agreement over the
whole power range, with only a small discrepancy in Qo at
high powers. As mentioned previously, this may be due to
the manner in which we obtained Qo when it deviates from
the Lorentzian shape.
We compare AL2 and AR2 obtained from the closed-form

equations with the ones published in [6], which were
obtained through an optimization process to fit the HB
simulations with the measurements. These last values are

TABLE I
SIMULATED AND EXTRACTED NONLINEAR TERMS

AL2 (H/A2m) AR2 (Q/A2m)
HB Simulation 1.555l106 9.7 103
Analytical 1.805106 8.5103

detailed in the second row of Table I and show good
agreement with the values of the first row. The analytical
solution is therefore an efficient and fast alternative to
discern between inductive and resistive nonlinear effects
from simple measurements of the power dependence in
superconducting resonators. Furthermore, the values of AL2
and AR2 obtained from the analytical solution are useful
initial values for the HB-based fitting, which is not subject
to the simplifying assumptions of the analytical approach.
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