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Abstract

Recently it has been shown that many networks associated with complex systems are
small-world (they have both a large local clustering and a small diameter) and they
are also scale-free (the degrees are distributed according to a power-law). Moreover,
these networks are very often hierarchical, as they describe the modularity of the
systems which are modeled. Most of the studies for complex networks are based on
stochastic methods. However, a deterministic method, with an exact determination
of the main relevant parameters of the networks, has proven useful. Indeed, this
approach complements and enhances the probabilistic and simulation techniques
and, therefore, it provides a better understanding of the systems modeled.

In this paper we find the radius, diameter, clustering and degree distribution of
a generic family of deterministic hierarchical small-world scale-free networks which
has been considered for modeling real life complex systems. Moreover a routing
algorithm is proposed.

Key words: Hierarchical network, Small-word, Scale-free, Degree, Routing
algorithm, Diameter, Clustering.

1 Introduction

With the publication in 1998 and 1999 of the papers by Watts and Strogatz on
small-world networks [21] and by Barabási and Albert on scale-free networks [3],
there has been a renewed interest in the study of networks associated to complex
systems which has received a considerable boost as an interdisciplinary subject.

Many real life networks, transportation and communication systems (including the
power distribution and telephone networks), Internet [9], World Wide Web [2],
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and several social and biological networks [10,11,13], belong to a class of networks
known as small-world scale-free networks. All these networks exhibit both a strong
local clustering (nodes have many mutual neighbors) and a small diameter. An-
other important characteristic is that the number of links attached to the nodes
usually obeys a power-law distribution (“scale-free” network). Several authors also
noticed that the modular structure of a network can be characterized by a specific
clustering distribution which depends on the degree. The network is then called hi-
erarchical [18,20,22]. Moreover, with the introduction of a new measuring technique
for graphs, it has been discovered that many real networks can also be categorized
as self-similar, see [19].

Along with these observational studies, researchers have developed different mod-
els [1,8,14], most of them stochastic, which should help to understand and predict
the behavior and characteristics of complex systems. However, new deterministic
models constructed by recursive methods, based on the existence of “cliques” (clus-
ters of nodes linked to each other), have also been introduced [5,6,7,12,23]. Such
deterministic models have the advantage that they allow one to compute analyti-
cally relevant properties and parameters, which may be compared with data from
real and simulated networks. In [5], Barabási et al. proposed a simple hierarchical
family of deterministic networks and showed it had a small-world scale-free nature.
However, their clustering is zero, in contrast with many real networks which have
a high clustering. Another family of hierarchical networks is proposed in [18]. Its
combines a modular structure with a scale-free topology and models the metabolic
networks of living organisms and networks associated with generic system-level cel-
lular organizations. A simple variation of this hierarchical network is considered
in [17], where the authors study other modular networks as WWW, the actor net-
work, Internet at the domain level, etc. This model is further generalized in [16].

In this paper, we study a family of hierarchical networks recursively defined from
an initial complete graph on n vertices. We find some of the main properties for
this family: routing, radius, diameter, and degree and clustering distributions.

2 The hierarchical graph Hn,k

In this section we generalize the constructions of deterministic hierarchical graphs
introduced by Ravasz et al. [17,18] and Noh [16]. Roughly speaking, these graphs
are constructed first by connecting a selected root vertex of a complete graph Kn

to some vertices of n − 1 replicas of Kn, and establishing also some edges between
such copies of Kn. This gives a graph with n2 vertices. Next, n − 1 replicas of the
new whole structure are added, again with some edges between them and to the
same root vertex. At this step the graph has n3 vertices. Then we iterate the process
until the desired graph order nk, for some integer k ≥ 1, is reached (see below for
a formal definition). Our model enhances the modularity and self-similarity of the
graph obtained, and allows us to design a routing algorithm, and to derive exact
expressions for the radius, diameter, degree and clustering distributions.
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2.1 Definition, order and size

Next we provide a recursive formal definition of the proposed family of graphs,
characterized by the parameters n ≥ 2 (order of the initial complete graph) and
k ≥ 1 (number of iterations or dimension). This allows us to give also a direct
definition and derive an expression for the number of edges (the radius and the
diameter will be studied in the next section).

Definition 2.1 Let n, k be positive integers, n ≥ 2. The hierarchical graph Hn,k has

vertex set Vn,k, with nk vertices denoted by the k-tuples x1x2x3 . . . xk, xi ∈ Zn, 0 ≤
i ≤ k − 1, and edge set En,k defined recursively as follows:

• Hn,1 is the complete graph Kn.

• For k > 1, Hn,k is obtained from the union of n copies of Hn,k−1, denoted by

Hα
n,k−1, 0 ≤ α ≤ n − 1, and with vertices xα

2xα
3 . . . xα

k ≡ αx2x3 . . . xk, by adding

the following new edges:

000 . . . 00 ∼ x1x2x3 . . . xk−1xk, xj 6= 0, 1 ≤ j ≤ k; (1)

x100 . . . 00 ∼ y100 . . . 00, x1, y1 6= 0, x1 6= y1. (2)

Alternatively, a direct definition of the edge set En,k is given by the following adja-
cency rules:

x1x2 . . . xk ∼ x1x2 . . . xk−1yk, yk 6= xk; (3)

x1x2 . . . xi00 . . . 0 ∼ x1x2 . . . xixi+1xi+2 . . . xk,

xj 6= 0, i + 1 ≤ j ≤ k, 0 ≤ i ≤ k − 2; (4)

x1x2 . . . xi00 . . . 0 ∼ x1x2 . . . xi−1yi00 . . . 0,

xi, yi 6= 0, yi 6= xi, 1 ≤ i ≤ k − 1. (5)

Notice that both conditions (1) and (2) of the recursive definition correspond to (4)
with i = 0, and (5) with i = 1, respectively.

To illustrate our construction, Fig. 1 shows the hierarchical graphs H4,k, for k =
1, 2, 3. The following result gives the number of edges of Hn,k, which can be easily
computed by using the recursive definition.

Proposition 2.2 The size of Hn,k is

|En,k| =
3

2
nk+1 − (n − 1)k+1 − 2nk −

n

2
+ 1. (6)

Proof. When constructing Hn,k from n copies of Hn−1,k, the adjacencies (1) and

(2) introduce (n − 1)k and
(

n−1
2

)

new edges, respectively. Therefore,

|En,k| = n|En,k−1| + (n − 1)k +

(

n − 1

2

)

.
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Figure 1. Hierarchical graphs with initial order 4: (a) H4,1, (b) H4,2, (c) H4,3

By applying recursively this formula and taking into account that |En,1| =
(

n

2

)

, we
get

|En,k| = nk−1

(

n

2

)

+
k

∑

i=2

nk−i(n − 1)i +

(

n − 1

2

)

k−2
∑

i=0

ni, (7)

which yields the result. 2

In fact, notice that the three summands in (7) correspond to the number of edges
defined by the adjacencies (3), (4) and (5), respectively. Indeed,

• By (3) we have nk−1 complete subgraphs Kn, whose number of edges adds up to

nk−1
(

n

2

)

= nk n−1
2

. (8)

• The number of edges induced by (4) is

∑k−2
i=0 ni(n − 1)k−i =

nk−2(n−1)2 n

n−1
−(n−1)k

n

n−1
−1

= (n − 1)2nk−1 − (n − 1)k+1. (9)

• By (5), and for i = 1, 2, . . . , k − 1, we get ni−1 subgraphs isomorphic to Kn−1

with the following total number of edges:

(

n−1
2

)

∑k−1
i=1 ni−1 = 1

2
(n − 2)(nk−1 − 1). (10)

2.2 Hierarchical properties

The hierarchical properties of the graphs Hn,k are summarized by the following facts
which are direct consequences of the definition:
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(a) According to (3), for each sequence of fixed values αi ∈ Zn, 1 ≤ i ≤ k − 1, the
vertex set {α1α2 . . . αk−1xk : xk ∈ Zn} induces a subgraph isomorphic to Kn.

(b) Vertex r := 00 . . . 0, which we distinguish and call root, is adjacent by (4) to
vertices x1x2 . . . xk, xi 6= 0, 1 ≤ i ≤ l, which we call peripheral.

(c) For every i, 1 ≤ i ≤ k − 1, Hn,k can be decomposed into ni vertex-disjoint
subgraphs isomorphic to Hn,k−i. Each of such subgraphs is denoted by Hα

n,k−i

and has vertex labels αxi+1xi+2 . . . xk, with α = α1α2 . . . αi ∈ Z
i
n being a fixed

sequence. In particular, for i = 1, Hn,k has n subgraphs Hα
n,k−1, α = 0, 1, . . . , n−1,

as stated in the recursive definition.

(d) The root vertex of the subgraph Hα

n,k−i is α00 k−i. . . 0. Thus, the total number of
root vertices, including the one in Hn,k, is

1 + (n − 1)
k−1
∑

i=1

ni−1 = nk−1, (11)

as expected since a given vertex x1x2 . . . xk is a root (of some subgraph) if and
only if xk = 0.

(e) The peripheral vertices of the subgraph Hα

n,k−i are of the form αxi+1xi+2 . . . xk,
where xj 6= 0, i + 1 ≤ j ≤ k. Thus, the total number of peripheral vertices,
including those in Hn,k, see (b), is

(n − 1)k + (n − 1)
k−1
∑

i=1

ni−1(n − 1)k−i = nk−1(n − 1), (12)

as expected since x1x2 . . . xk is a peripheral vertex (of some subgraph) if and
only if xk 6= 0. Note that adding up (11) and (12) we get nk = |Vn,k|, so that
every vertex of Hn,k is a root or peripheral of some subgraph isomorphic to Hn,k′ ,
1 ≤ k′ ≤ k.

(f) By collapsing in Hn,k each of the ni subgraphs Hα

n,k−i, α ∈ Z
i
n, into a single vertex

and all multiple edges into one we obtain a graph isomorphic to Hn,i.

(g) According to (5), for every fixed i, 1 ≤ i ≤ k, and given sequence α ∈ Z
i−1
n ,

there exist all possible edges among the n − 1 vertices labeled αxi00 . . . 0 with
xi ∈ Z

∗
n = {1, 2, . . . , n− 1}; that is, the root vertices of Hαxi

n,k−i. Thus, these edges
induce a complete graph isomorphic to Kn−1.

3 Routing and Diameter

This section introduces a routing algorithm for Hn,k. The algorithm is useful in the
determination of the radius, eccentricity of the root, and the diameter of Hn,k. The
diameter has also been determined using recursive methods.
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3.1 Routing

Let us consider two vertices in Hn,k, say x = x1x2 . . . xk and y = y1y2 . . . yk. Now
a routing from x to y consists of the following steps, where the symbols with an
asterisk as a superscript are supposed to be in Z

∗
n := Zn −0 = {1, 2, . . . , n−1}. The

key idea is to go first from x to the root r and then from r to y.

• Step 1:
(a) If xk−1 6= 0 and xk = 0, then go from x to x

∗
1 = x1x2 . . . xk−2x

∗
k−1x

∗
k;

if xk−1, xk 6= 0, then simply take x
∗
1 = x.

(b) If xk−1 = 0 and xk 6= 0, then go from x to x
0
1 = x1x2 . . . xk−200;

if xk−1 = xk = 0, then simply take x
0
1 = x.

• Step 2:
(a) Assuming we have taken Step 1(a), if xk−2 = 0, then go from x

∗
1 to x

0
2 =

x1x2 . . . xk−3000. Otherwise, if xk−2 6= 0, then let x
∗
2 = x

∗
1.

(b) Assuming we have taken Step 1(b), if xk−2 6= 0, then go from x
0
1 to x

∗
2 =

x1x2 . . . xk−3x
∗
k−2x

∗
k−1x

∗
k. Otherwise, if xk−2 = 0, then let x

∗
2 = x

∗
1.

...
• Step k − 1 (with k odd, the case of even k being similar):
(a) Assuming we have taken Step (k − 2)(a), if either x1 = 0 or x1, y1 6= 0, then go

from x
∗
k−2 = x1x

∗
2x

∗
3 . . . x∗

k to x
0
k−1 = 000 . . . 0 = r. Otherwise, if x1 6= 0, y1 = 0,

then let x
∗
k−1 = x

∗
k−2 = x∗

1x
∗
2 . . . x∗

k.
(b) Assuming we have taken Step (k − 2)(b),

(b1) if x1 6= 0 and y1 = 0, then go from x
0
k−2 = x100 . . . 0 to x

∗
k−1 = x∗

1x
∗
2 . . . x∗

k,
(b2) if x1, y1 6= 0 and y1 6= x1, then go from x

0
k−2 to y

∗
k−2 := y100 . . . 0. Other-

wise, if y1 = x1, then let y
∗
k−2 = x

∗
k−2,

(b3) if x1 = 0, then let x
0
k−1 = x

0
k−2 = r.

• Step k:
(a) Assuming we have taken Step (k − 1)(a), if y1 6= 0, then go from x

0
k−1 = r

to y
∗
k−1 = y1y

∗
2y

∗
3 . . . y∗

k, where y∗
i = yi for every 2 ≤ i ≤ k such that yi 6= 0.

Otherwise, if y1 = 0, then let y
0
k−1 = x

0
k−1 = r.

(b) Assuming we have taken Step (k − 1)(b),
(b1) if we have taken Step (b1), where x1 6= 0, y1 = 0, then go from x

∗
k−1 =

x∗
1x

∗
2 . . . x∗

k, to y
0
k−1 = 00 . . . 0 = r,

(b2) if we have taken Step (b2), where x1, y1 6= 0, then go on from y
∗
k−2 :=

y100 . . . 0,
(b3) if we have taken Step (b3), where x1 = 0, then proceed as in the above

case (a).

• Steps k + 1, k + 2, . . . , 2k − 1:
Go from either, r = 00 . . . 0, y

∗
k−2 := y100 . . . 0 or y

∗
k−1 = y1y

∗
2y

∗
3 . . . y∗

k, following
the above k steps in inverse order, until reaching vertex y = y1y2 . . . yk.

For a better understanding of the above procedure, a diagram of this algorithm for
the case k = 5 is depicted in Fig. 2. Continuous lines correspond to going through
an edge (that is, adjacency between vertices), whereas dashed lines indicate that we
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Figure 2. A routing algorithm in Hn,5.

are already there (that is, identical vertices). Note that, as commented above, all
the paths go through the root r, excepting in the case of Step k−1 (b2). Notice also
that, in fact, we can assume that x and y have no common prefix, so that x1 6= y1.
Otherwise, if x = αxi+1xi+2 . . . xk and y = αyi+1yi+2 . . . yk, denoted α = x∩y and
i = |α| > 0, we are in the subgraph Hα

n,k−i (by property (c) in Subsection 2.2) and,
hence, we can apply the routing algorithm to the vertices x

′ = xi+1xi+2 . . . xk and
y
′ = yi+1yi+2 . . . yk of Hn,k−i.
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Figure 3. Case (i): A routing example in Hn,5 when x1, y1 6= 0.

Examples of the routings obtained in the three basic cases are shown in Fig. 3: (i)
x1, y1 6= 0; and Fig. 4: (ii) x1 = 0, y1 6= 0; and (iii) x1 6= 0, y1 = 0. In each case it
has been supposed that the vertices x and y are such that the path joining them
has maximum length or number of edges (continuous lines). Note that, depending
on the label of x, the first part of the path goes either on the left (starting with Step
1(a)) or on the right (starting with Step 1(b)). Here, it is also worth noting that
that the vertices and paths of cases (ii) and (iii) are conjugate and symmetrical,
respectively, of each other.

3.2 Radius and Diameter

First, we introduce some notation concerning Hn,k, which is useful to find its metric
parameters. Let ∂k(x,y) denote the distance between vertices x,y ∈ Vn,k in Hn,k;
and ∂k(x, U) := minu∈U{∂(x,u)}. Let r

α = 00 . . . 0 be the root vertex of Hα
n,k−1,

α ∈ Zn (as stated before, r stands for the root vertex of Hn,k). Let P and Pα,
α ∈ Zn, denote the set of peripheral vertices of Hn,k and Hα

n,k−1, respectively.

The following results on the metric parameters of Hn,k are direct consequence of
the proposed routing algorithm.

Proposition 3.1 Let rk, ecck(r), Dk denote, respectively, the radius, the eccentric-

ity of the root r, and the diameter of Hn,k. Then,

(a) rk = ecc(r) = k.

(b) Dk = 2k − 1.

Then, from the result on the diameter and property (c) in Subsection 2.2, we have
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Figure 4. Cases (ii) and (iii): A routing algorithm in Hn,5 when x1 = 0, y1 6= 0 and
x1 6= 0, y1 = 0.

that the distance between two vertices x, y of Hn,k, with maximum common prefix
|x ∩ y|, satisfies

∂(x,y) ≤ 2|x ∩ y| − 1.

Alternatively, we can give recursive proofs of these results. Indeed, let us consider
the case of the diameter. With this aim, we first give the following result which
follows from the recursive definition of Hn,k:

Lemma 3.2 Let x,y be two vertices in Hn,k, k > 1. Then, depending on the sub-

graphs Hn,k−1 where such vertices belong to, we are in one of the following three

cases:

(a) If x,y ∈ αVn,k−1 for some α ∈ Zn; that is, x = αx
′ and y = αy

′, then,

∂k(x,y) = ∂k−1(x
′,y′).

(b) If x ∈ 0Vn,k−1 and y ∈ αVn,k−1 for some α ∈ Z
∗
n; that is x = 0x′, y = αy

′,

then,

∂k(x,y) = ∂k−1(x
′, r0) + 1 + ∂k−1(y

′, Pα).

(c) If x ∈ αVn,k−1 and y ∈ βVn,k−1 for some α, β ∈ Z
∗
n, α 6= β; that is x = αx

′,

y = βy
′, then,

∂k(x,y) = min{∂k−1(x
′, Pα)+2+∂k−1(y

′, P β), ∂k−1(x
′, rα)+1+∂k−1(r

β,y′)}.
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Lemma 3.3 For any vertex x in Hn,k we have:

∂k(x, r) ≤











k − 1 if x = 0x′,

k otherwise,
and ∂k(x, P ) ≤











k if x = 0x′,

k − 1 otherwise.

Proof. By induction on k.
Case k = 1: If x = 0 = r, then ∂1(x, r0) = 0 and ∂1(x, P ) = 1. Otherwise,
x ∈ P = Z

∗
n, and then ∂1(x, r) = 1 and ∂1(x, P ) = 0.

Case k > 1: We observe that, from the recursive definition of Hn,k,

∂k(x, r) =











∂k−1(x
′, r0) if x = 0x′,

∂k−1(x
′, Pα) + 1 if x = αx

′, α 6= 0,

and

∂k(x, P ) =











∂k−1(x
′, r0) + 1 if x = 0x′,

∂k−1(x
′, Pα) if x = αx

′, α 6= 0.

Then, by the induction hypothesis, the lemma holds. 2

In the next result, z
01 = 0101 . . . and z

10 = 1010 . . . denote any vertex x1x2 . . . xi . . .
of Hn,k or Hn,k−1, where xi ≡ i + 1 (mod 2) and xi ≡ i (mod 2), respectively.

Lemma 3.4 In Hn,k we have the following distances:

(a) ∂k(z
01, r) = ∂k(z

10, P ) = k − 1,
(b) ∂k(z

10, r) = ∂k(z
01, P ) = k.

Proof. By induction on k.
Case k = 1: Hn,k is the complete graph Kn and the result clearly holds.
Case k > 1: From Lemma 3.2 we have:

(a) ∂k(z
01, r) = ∂k−1(z

10, r0) = k − 1,
∂k(z

10, P ) = ∂k−1(z
01, P 0) = k − 1;

(b) ∂k(z
10, r) = ∂k−1(z

01, P 1) + 1 = k,
∂k(z

01, P ) = ∂k−1(z
10, r0) + 1 = k − 1 + 1 = k.

2

Now we can give the result about the diameter of Hn,k:

Proposition 3.5 The diameter of Hn,k is Dk = 2k − 1.

Proof. First we prove by induction on k that, for any given pair of vertices of
Hn,k, x and y, we have ∂k(x,y) ≤ 2k − 1.
Case k = 1: The result trivially holds since Hn,1 = Kn and D1 = 1.
Case k > 1: Considering the three cases of Lemma 3.2 and by using the induction
hypothesis, we have:
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(a) If x,y ∈ αVn,k−1 for some α ∈ Zn, then,

∂k(x,y) = ∂k−1(x
′,y′) ≤ 2(k − 1) − 1 = 2k − 3 < 2k − 1.

(b) If x ∈ 0Vn,k and y ∈ αVn,k−1 for some α ∈ Z
∗
n, then,

∂k(x,y) = ∂k−1(x
′, r0) + 1 + ∂k−1(y

′, Pα) ≤ 2(k − 1) + 1 = 2k − 1

since, by Lemma 3.3, ∂k−1(x
′, r0) ≤ k − 1 and ∂k−1(y

′, Pα) ≤ k − 1.
(c) If x ∈ αVn,k and y ∈ βVn,k−1 for some α, β ∈ Z

∗
n, α 6= β, then,

∂k(x,y) = min{∂k−1(x
′, Pα) + 2 + ∂k−1(y

′, P β), ∂k−1(x
′, rα) + 1 + ∂k−1(r

β,y′)}

≤ 2(k − 1) + 1 = 2k − 1

since, by Lemma 3.4, ∂k−1(x
′, rα) ≤ k − 1 and ∂k−1(r

β,y′) ≤ k − 1.

Now, we have to prove that there exist two vertices in Hn,k at distance exactly 2k−1.
Let x = z

01 and y = z
10. It follows from Lemmas 3.2 and 3.4 that ∂k(x,y) = 2k−1

(see Fig. 4, case (ii) on the left). This completes the proof. 2

Note that the diameter scales logarithmically with the order N = |Vn,k| = nk, since
Dk = 2

log n
log N − 1. This property, together with the high value of the clustering

coefficient (see next section), shows that this is a small-world network.

4 Degree and clustering distribution

In this section we study the degree and clustering distributions of the graph Hn,k.
From the definition of the graph, the degree distribution is obtained straightfor-
wardly.

Proposition 4.1 The vertex degree distribution in Hn,k is as follows:

(a) The root vertex r of Hn,k has degree

δ(r) =
(n − 1)k+1 − (n − 1)

n − 2
.

(b) The degree of the root vertex r
α

k−i of each of the (n − 1)ni−1 subgraphs Hα

n,k−i,

with i = 1, 2, . . . , k − 1, α = α1α2 . . . αi ∈ Z
i
n and αi 6= 0, is

δ(rα

k−i) =
(n − 1)k−i+1 − (n − 1)

n − 2
+ (n − 2).

(c) The degree of the (n − 1)k peripheral vertices p of Hn,k is

δ(p) = n + k − 2.

11



(d) The degree of the (n− 1)k−ini−1 peripheral vertices p
α

k−i of the subgraphs Hα

n,k−i,

with i = 1, 2, . . . , k − 1, α = α1α2 . . . αi ∈ Z
i
n and αi 6= 0, is

δ(pα

k−i) = n + k − i − 2.

Proof. (a) By the adjacency conditions (3) and (4), the root of Hn,k has degree

δ(r) =
∑k

i=1(n − 1)i = (n−1)k+1−(n−1)
n−2

.

(b) The root of the subgraph Hα

n,k−i, 1 ≤ i ≤ k − 1, αi 6= 0, is adjacent, by (a), to
(n−1)k−i+1−n+1

n−2
vertices belonging to the same subgraph, and also, by (5), to n − 2

vertices which are the other roots “at the same level”.

(c) Each peripheral vertex of Hn,k is adjacent, by (3), to n− 1 vertices and, by (4),
to k − 1 vertices (which are roots of other subgraphs).

(d) Each peripheral vertex of Hα

n,k−i, 1 ≤ i ≤ k − 1, αi 6= 0, is adjacent, by (3),
to n − 1 vertices (of the subgraph isomorphic to Kn) and, by (4), to k − i vertices
(roots of other subgraphs). 2

The above results on the degree distribution of Hn,k are summarized in Table 1.
Note that, from such a distribution, we can obtain again Proposition 2.2 since the
number of edges can be computed from

2|En,k| = δ(r) +
k−1
∑

i=1

(n − 1)ni−1δ(rα

k−i) + (n − 1)kδ(p) +
k−1
∑

i=1

(n − 1)k−ini−1δ(pα

k−i),

which yields (7). Moreover, using such a result, the average degree and its asymp-
totic behavior, when k → ∞, turn out to be

δ =
2|En,k|

|Vn,k|
=

3nk+1 − 4nk − 2(n − 1)k+1 − n + 2

nk
∼ 3n − 4.

From the degree distribution and for large k we see that the number of vertices
with a given degree z, Nn,k(z), decreases as a power of the degree z and therefore
the graph is scale-free [3,6,8]. As the degree distribution of the graph is discrete, to
relate the exponent of this discrete degree distribution to the standard γ exponent of
a continuous degree distribution for random scale free networks we use a cumulative
distribution

Pcum(z) ≡
∑

z′≥z

|Nn,k(z
′)|/|Nn,k(z)| ∼ z1−γ ,

where z and z′ are points of the discrete degree spectrum. When z = (n−1)k−i+1−n+2
n−2

,

there are exactly (n − 1)ni−1 vertices with degree z. The number of vertices with
this or a higher degree is

(n − 1)ni−1 + · · · + (n − 1)n + (n − 1) + 1 = 1 + (n − 1)
i−1
∑

j=0

nj = ni.

12



Then, we have z1−γ = ni/nk = ni−k. Therefore, for large k, ((n − 1)k−i)1−γ ∼ ni−k

and

γ ∼ 1 +
log n

log(n − 1)
.

For n = 5 this gives the same value of γ as in the case of the hierarchical network
introduced in [17]. This network can be obtained from H5,k by deleting the edges
which join the roots of Hj

5,k−i, j 6= 0, 1 ≤ i ≤ k − 2.

Table 1
Degree and clustering distribution for Hn,k

Vertex class Num. vertices Degree Clustering

Hn,k root 1 (n−1)k+1−(n−1)
n−2

(n−2)2

(n−1)k+1−2(n−1)+1

Hα

n,k−i roots (n − 1)ni−1 (n−1)k−i+1−(n−1)
n−2

(n−2)2

(n−1)k−i+1+(n−1)2−3(n−1)+1

i = 1, 2, . . . , k − 1,
α ∈ Z

i
n, αi 6= 0

+n − 2

Hn,k peripheral (n − 1)k n + k − 2 (n−1)2+(2k−3)(n−1)+2−2k
(n+k−2)(n+k−3)

Hα

n,k−i peripheral (n − 1)k−ini−1 n + k − i − 2 (n−1)2+(2k−2i−3)(n−1)+2+2i−2k
(n+k−i−2)(n+k−i−3)

i = 1, 2, . . . , k − 1,
α ∈ Z

i
n, αi 6= 0

Next we find the clustering distribution of the vertices of Hn,k. The clustering coef-
ficient of a graph G measures its “connectedness” and is another parameter used to
characterize small-world and scale-free networks. The clustering coefficient of a ver-
tex was introduced in [21] to quantify this concept: For each vertex v ∈ V = V (G)

with degree δv = |Γ(v)|, its clustering c(v) is defined as the fraction of the
(

δv

2

)

possible edges among the neighbors of v that are present in G. More precisely, if
εv = ‖〈Γ(v)〉‖ is the number of edges between the δv vertices adjacent to vertex v,
its clustering coefficient is

c(v) =
2εv

δv(δv − 1)
, (13)

whereas the clustering coefficient of G, denoted by c(G), is the average of c(v) over
all nodes v of G:

c(G) =
1

|V |

∑

v∈V

c(v). (14)
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Another definition of clustering coefficient of G was given in [15] as

c′(G) =
3 T (G)

τ(G)
(15)

where τ(G) and T (G) are, respectively, the number of triangles (subgraphs isomor-
phic to K3) and the number of triples (subgraphs isomorphic to a path on 3 vertices)
of G. A triple at a vertex v is a 3-path with central vertex v. Thus the number of
triples at v is

τ(v) =

(

δv

2

)

=
δv(δv − 1)

2
. (16)

The total number of triples of G is denoted by τ(G) =
∑

v∈V τ(v). Using these
parameters, note that the clustering coefficient of a vertex v can also be written as
c(v) = T (v)

τ(v)
, where T (v) =

(

δv

2

)

is the number of triangles of G which contain vertex

v. From this result, we get that c(G) = c′(G) if, and only if,

|V | =

∑

v∈V τ(v)
∑

v∈V T (v)

∑

v∈V

T (v)

τ(v)
.

This is true for regular graphs or for graphs such that all vertices have the same
clustering coefficient. In fact, c′(G) was already known in the context of social
networks as transitivity coefficient.

We first compute the clustering coefficient and then the transitivity coefficient.

Proposition 4.2 The clustering distribution of Hn,k is the following:

(a) The root r of Hn,k has clustering

c(r) =
(n − 2)2

(n − 1)k+1 − 2n + 3
.

(b) The clustering of the root vertex r
α

k−i of each of the (n− 1)ni−1 subgraphs Hα

n,k−i,

with i = 1, 2, . . . , k − 1, α = α1α2 . . . αi ∈ Z
i
n and αi 6= 0, is

c(rα

k−i) =
(n − 2)2

(n − 1)nk−i+1 + (n − 1)2 − 3n + 4
.

(c) The clustering of the (n − 1)k peripheral vertices p of Hn,k is

c(p) =
(n − 1)2 + (2k − 3)(n − 1) + 2 − 2k

(n + k − 2)(n + k − 3)
.

(d) The clustering of the (n − 1)k−ini−1 peripheral vertices p
α

k−i of the subgraphs

Hα

n,k−i, with i = 1, 2, . . . , k − 1, α = α1α2 . . . αi ∈ Z
i
n and αi 6= 0 is

c(pα

k−i) =
(n − 1)2 + (2k − 2i − 3)(n − 1) + 2 + 2i − 2k

(n + k − i − 2)(n + k − i − 3)
.
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Figure 5. The clustering coefficient of Hn,k for n = 4, 6, . . . 20.

Proof. We prove only three of the cases, as the proof of the other is similar.

(a) As the root of Hn,k is adjacent to
∑k

i=1(n− 1)i vertices which have degree n− 2,
its clustering is

c(r) =
n−2

2
(n−1)k+1−n+1

n−2

1
2

(n−1)k+1−n+1
n−2

(

(n−1)k+1−n+1
n−2

− 1
) =

(n − 2)2

(n − 1)k+1 − 2n + 3
.

(b) The roots of Hα

n,k−i (i = 1, 2, . . . , k − 1, αi 6= 0) have clustering

c(rα

k−i) =
n−2

2
(n−1)k−i+1−n+1

n−2
+ (n−2)(n−3)

2

1
2

(

(n−1)k−i+1−n+1
n−2

+ n − 2
) (

(n−1)k−i+1−n+1
n−2

+ n − 3
)

=
(n − 2)2

(n − 1)k−i+1 + (n − 1)2 − 3n + 4
.

(d) The clustering of the peripheral vertices of Hα

n,k−i (i = 1, 2, . . . , k − 1, αi 6= 0), is

c(pα

k−i) =
(n−1)(n−2)

2
+ (n − 2)(k − i − 1)

1
2
(n + k − i − 2)(n + k − i − 3)

=
(n − 1)2 + (2k − 2i − 3)(n − 1) + 2 + 2i − 2k

(n + k − i − 2)(n + k − i − 3)
.

In particular, note that for i = k − 1, the peripheral vertices of Hα
n,1, α 6= 0, have

clustering (n−1)2−n+1
(n−1)n

= 1.

2

The above results on the clustering distribution are summarized in Table 1. From
these results we can compute the clustering coefficient of Hn,k, which is shown in
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Figure 6. Comparison between the exact value of the clustering for H60,k (black line) and
the asymptotic approximation (grey line).

Fig. 5. The clustering coefficient tend to 1 for large n.

For each degree, the clustering of the corresponding vertices is inversely proportional
to it. Then, the clustering distribution verifies c(z) ∼ z−1. In [4], this is considered
the most important signature of hierarchical modularity. However, another relevant
characteristic of the clustering of Hn,k is that, for k large enough, it has an almost
constant value with k. More precisely, for large n, it tends very quickly to a constant
value as k → ∞, which is

c(Hn,k) ∼ capp(Hn,k) = 1 −
1

n
−

1

n

k
∑

i=1

(

1 −
1

n

)i (

i

n + i

)2

.

See Fig. 6. This value corresponds to the contribution of the peripheral vertices of
Hα

n,k−i (i = 1, 2, . . . , k− 1, α ∈ Z
i
n, αi 6= 0), as the contribution of the other vertices

to the clustering of Hn,k tends to zero as n, k → ∞.

We think that this constant value for the clustering (which is independent of the
order of the graph), together with the γ value of the power law distribution of the
degrees, is also a good characterization of modular hierarchical networks. Observa-
tions in metabolic networks of different organism show that they are highly modular
and have these properties, confirming the claim, see [4,18]

To find the transitivity coefficient we need to calculate the number of triangles and
the number of triples of the graph.

Proposition 4.3 The number Tn,k of triangles of Hn,k is:

Tn,k =
1

2
(n − 2)

(

1 −
n

3
− (n − 1)k+1 +

2

3
nk(2n − 3)

)

.
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Figure 7. Transitivity coefficient of Hn,k for n = 4, 6, . . . , 20

Proof.

When constructing Hn,k from n copies of Hn−1,k, the adjacencies (1) and (2) intro-

duce (n − 1)k−1
(

n−1
2

)

and
(

n−1
3

)

new triangles, respectively. Therefore,

Tn,k = nTn,k−1 + (n − 1)k−1

(

n − 1

2

)

+

(

n − 1

3

)

.

By applying recursively this formula and taking into account that Tn,1 =
(

n

3

)

, we
get the result. 2

Moreover, from the results of Proposition 4.1 (or Table 1) giving the number of
vertices of each degree, we have the following result for the number of triples (we
omit the obtained explicit formula, because of its length):

Proposition 4.4 The number of triples, τn,k, of Hn,k is:

τn,k =
(

δ(r)
2

)

+(n−1)
∑k−1

i=1 ni−1
(

δ(rα

k−i
)

2

)

+(n−1)k
(

δ(p)
2

)

+
∑k−1

i=1 (n−1)k−ini−1
(

δ(pα

k−i
)

2

)

.

Now the transitivity coefficient follows from the former two results and, as Fig. 7
shows, it tends quickly to zero as k → ∞.

5 Conclusions

In this paper we have provided a family of graphs which generalize the hierarchi-
cal network introduced in [18], and combine a modular structure with a scale-free
topology in order to model modular structures associated to living organisms, social
organizations and technical systems. For the proposed graphs, a routing algorithm
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is given. Moreover, we have calculated the radius, diameter, degree distribution and
the clustering of such graphs, and we have seen that they are scale-free with a power
law exponent which depends on the initial complete graph, that the clustering dis-
tribution c(z) scales with the degree as z−1, and the clustering coefficient does not
depend on the graph order, as in many networks associated to real systems [4,17,18].
Finally, it is worthy mentioning that our definition can be generalized by taking the
vertex set Zn1

× Zn2
× · · · × Znk

(instead of Z
k
n). In this case, all the results on the

routing algorithm and the metric parameters still hold without changes.

Acknowledgment

Research supported by the Ministerio de Educación y Ciencia, Spain, and the Eu-
ropean Regional Development Fund under projects MTM2005-08990-C02-01 and
TEC2005-03575 and by the Catalan Research Council under project 2005SGR00256.

References

[1] R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Rev Mod
Phys 74 (2002), 47–97.

[2] R. Albert, H. Jeong, and A.-L. Barabási, Diameter of the world wide web, Nature
401 (1999), 130–131.

[3] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286
(1999), 509–512.

[4] A.-L. Barabási and Z.N. Oltvai, Network biology: Understanding the cell’s functional
organization, Nature Rev Genetics 5 (2004), 101–113.

[5] A.-L. Barabási, E. Ravasz, and T. Vicsek, Deterministic scale-free networks, Physica
A 299 (2001) 559–564.

[6] F. Comellas, G. Fertin, and A. Raspaud, Recursive graphs with small-world scale-free
properties, Phys Rev E 69 (2004), 037104.

[7] S.N. Dorogovtsev, A.V. Goltsev, and J.F.F. Mendes, Pseudofractal scale-free web,
Phys Rev E 65 (2002), 066122.

[8] S.N. Dorogvtsev and J.F.F. Mendes, Evolution of networks, Adv Phys 51 (2002),
1079–1187.

[9] M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the
internet topology. Comput Commun Rev 29 (1999), 251–260.

[10] H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.-L. Barabási, The large-scale
organization of metabolic networks, Nature 407 (2000), 651–654.

[11] H. Jeong, S. Mason, A.-L. Barabási, and Z.N. Oltvai, Lethality and centrality in
protein networks, Nature 411 (2001) 41–42.

18



[12] S. Jung, S. Kim, and B. Kahng, Geometric fractal growth model for scale-free
networks, Phys Rev E 65 (2002), 056101.

[13] M.E.J. Newman, The structure of scientific collaboration networks, Proc Natl Acad
Sci USA 98 (2001), 404–409.

[14] M.E.J. Newman, The structure and function of complex networks, SIAM Rev 45
(2003), 167–256.

[15] M.E.J. Newman, D.J. Watts, and S.H. Strogatz. Random graph models of social
networks, Proc Natl Acad Sci USA 99 (2002), 2566–2572.

[16] J.D. Noh, Exact scaling properties of a hierarchical network model, Phys Rev E 67
(2003), 045103.

[17] E. Ravasz and A.-L. Barabási, Hierarchical organization in complex networks, Phys
Rev E 67 (2003), 026112.

[18] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barabási, Hierarchical
organization of modularity in metabolic networks, Science 297 (2002), 1551–1555.

[19] C.M. Song, S. Havlin, and H.A. Makse, Self-similarity of complex networks Nature
433 (2005), 392–395.
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