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Abstract Basic entrainment equations applicable to the sheared convective boundary layer
(CBL) are derived by assuming an inversion layer with a finite depth, i.e., the first-order
jump model. Large-eddy simulation data are used to determine the constants involved in the
parameterizations of the entrainment equations. Based on the integrated turbulent kinetic
energy budget from surface to the top of the CBL, the resulting entrainment heat flux nor-
malized by surface heat flux is a function of the inversion layer depth, the velocity jumps
across the inversion layer, the friction velocity, and the convection velocity. The developed
first-order jump model is tested against large-eddy simulation data of two independent cases
with different inversion strengths. In both cases, the model reproduces quite reasonably the
evolution of the CBL height, virtual potential temperature, and velocity components in the
mixed layer and in the inversion layer.
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1. Introduction

In order to represent subgrid processes in the convective boundary layer (CBL), large-scale
atmospheric models have adopted the mixed-layer model (Deardorff 1972; Suarez et al. 1983;
Ayotte et al. 1996). The key process in the mixed-layer model is the entrainment parameter-
ization. The entrainment parameterization used in these models should be able to represent
the entrainment flux for both pure buoyancy and sheared environments. The entrainment heat
flux and temperature jump across the inversion layer (or entrainment zone) determine the
entrainment rate that is used to predict the mixed-layer height and diagnose the entrainment
momentum fluxes. Much work has been done for the purely buoyancy-driven CBL and thus
the uncertainties for the entrainment process are relatively small compared to the sheared
CBL. The representation of entrainment in the purely buoyancy-driven CBL has been studied
using zero-order jump models, first-order jump models, and “realistic” models. The zero-
order jump model represents the inversion layer as an infinitesimally thin interface (Tennekes
1973), while the first-order jump model treats the inversion layer with a finite depth (Betts
1973). In the first-order jump model, a linear variation of variables with height in the inver-
sion layer is assumed. Realistic models consider the variation of variables with height in the
inversion layer with a high order polynomial function in order to incorporate the curvature
of the profiles (Deardorff 1979; Fedorovich and Mironov 1995).

The influence of shear on the entrainment flux has mostly been based on the zero-order
jump model (e.g., Zeman and Tennekess 1977; Pino et al. 2003). The finite thickness of
the inversion layer is not considered in the zero-order model framework (Conzemius and
Fedorovich 2004). Despite the simplistic approach, results from studies using the zero-order
jump model have shown that shear near the surface and across the inversion layer plays an
important role in the growth of the boundary layer (Pino et al. 2003).

Recent large-eddy simulations (LES) (Kim et al. 2003) showed that shear can thicken the
depth of the entrainment zone through the action of Kelvin–Helmholz billows. Consequently,
an accurate representation of the entrainment flux must account for an inversion layer with
a finite depth, which is best done using the first-order jump (FOJ) model. In this study, we
develop a new entrainment parameterization using the first-order jump model for the sheared
CBL, which includes the effect of surface buoyancy flux and shear at the surface and the
inversion layer.

In Section 2, we derive the basic entrainment equations and then describe six LES exper-
iments utilized for the closure of the entrainment equations. Next, the parameterizations of
the entrainment flux and the inversion depth are presented. In Section 3, the developed entrain-
mentparameterization is tested for twoshearedCBLsbycomparingparameterized resultswith
results from the large-eddy simulation. Finally the conclusions are given in Section 4.

2. Model development

2.1. Basic equations

The governing equations for a convective boundary layer with shear are given by

∂�v

∂t
= −∂wθv

∂z
− W

∂�v

∂z
, (1)

∂U

∂t
= f (V − Vg) − ∂uw

∂z
− W

∂U

∂z
, (2)
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∂V

∂t
= − f (U − Ug) − ∂vw

∂z
− W

∂V

∂z
, (3)

where �v is the horizontally averaged virtual potential temperature, wθv is the horizontally
averaged heat flux, W is the large-scale vertical velocity, U and V are the horizontally aver-
aged velocity components, uw and vw are the horizontally averaged momentum fluxes, Ug

and Vg are the geostrophic wind components in the x and y directions, respectively, and f is
the Coriolis parameter. Figures 1 and 2 show the idealized vertical profiles of the horizontally
averaged virtual potential temperature and the wind with their corresponding vertical fluxes
in a first-order jump model.

Developing the mixed-layer model starts with vertically integrating Eqs. (1)–(3) from 0
to h1, from h1 to h2, and from h2 to h2 + ε (ε is the infinitesimal), where h1 is the height
of the heat flux minimum, and h2 is the top of the convective boundary layer where the heat
flux vanishes. The assumption is made that the mean virtual potential temperature and mean
velocity components are constant over the mixed-layer depth and linearly varying between
h1 and h2. For detailed derivations, see Appendix A. The integrations of Eq. (1) give

h1
∂�vm

∂t
= wθvs − wθvh1 , (4)

��v
∂h1

∂t
= δ

∂(�vm + (1/2)��v)

∂t
− wθvh1 + ��vWh1 , (5)

∂(�vm + ��v)

∂t
= γ

(
∂h1

∂t
− Wh1

)
, (6)

where �vm is the mean mixed-layer virtual potential temperature, ��v is the virtual potential
temperature jump across h1 and h2, wθvs is the surface heat flux and wθvh1 is the entrainment
heat flux at z = h1, δ is the distance between h1 and h2, Wh1 is the vertical velocity at z = h1

and γ is the vertical gradient of virtual potential temperature in the free atmosphere.
The integrations of Eqs. (2) and (3) give

h1
∂Um

∂t
= f h1(Vm − Vg) + uws − uwh1 , (7)

Fig. 1 Sketch of the profiles of
virtual potential temperature and
heat flux in a first-order jump
model (modified from van Zanten
et al. 1999).
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Fig. 2 Sketch of the profiles of (a) U and uw, (b) V and vw in a first-order jump model

�U
∂h1

∂t
= δ

∂ (Um + (1/2)�U )

∂t
− uwh1 + �U Wh1 − f δ

(
Vm + �V

2
− Vg

)
, (8)

∂ (Um + �U )

∂t
= Sx

(
∂h1

∂t
− Wh1

)
+ f (Vm + �V − Vg), (9)

h1
∂Vm

∂t
= − f h1(Um − Ug) + vws − vwh1 , (10)

�V
∂h1

∂t
= δ

∂ (Vm + (1/2)�V )

∂t
− vwh1 + �V Wh1 + f δ

(
Um + �U

2
− Ug

)
, (11)

∂ (Vm + �V )

∂t
= Sy

(
∂h1

∂t
− Wh1

)
− f (Um + �U − Ug), (12)

where Um and Vm are mean mixed-layer velocity components, �U and �V are velocity
jumps across the inversion layer, Ug and Vg are geostrophic wind components, uws and vws

are surface momentum fluxes, uwh1 and vwh1 are momentum fluxes at z = h1, Sx and Sy

are the free atmosphere wind shears in the x and y directions, respectively.
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When deriving Eqs. (4)–(12), we have assumed Wh1 = Wh1+ δ
2

= Wh2 ,
∂γ
∂t = ∂Sx

∂t =
∂Sy
∂t = ∂δ

∂t = 0 (similar to van Zanten et al. 1999), and a constant divergence. Eqs. (4)–(12)
have the following unknowns: �vm, Um, Vm, ��v,�U, �V, wθh1 , uwh1 , vwh1 , h1, δ.
To close the equation set, wθvh1 and δ need to be parameterized. Merging (4) and (6) into
(5) yields (

��v − 1

2
γ δ

) (
∂h1

∂t
− Wh1

)
= δ

2h1
wθvs −

(
1 + δ

2h1

)
wθvh1 . (13)

Equation (13) indicates that once the entrainment heat flux and the inversion layer depth

are known, the entrainment rate we

(
= ∂h1

∂t − Wh1

)
can be determined. Also, once wθh1 is

known, ∂�vm
/
∂t and ∂��v

/
∂t can be obtained by means of Eqs. (4) and (6). Merging

Eqs. (7) and (9) into (8) leads to

uwh1 =

[
δ

2h1
uws −

(
�U − Sx

δ

2

) (
∂h1

∂t
− Wh1

)]

1 + δ

2h1

. (14)

Then, ∂Um
/
∂t and ∂�U

/
∂t can be determined from Eqs. (7) and (9). In a similar way, from

Eqs. (10), (11) and (12), the entrainment momentum flux vwh1 is given by

vwh1 =

[
δ

2h1
vws −

(
�V − Sy

δ

2

) (
∂h1

∂t
− Wh1

)]

1 + δ

2h1

. (15)

Then, ∂Vm
/
∂t and ∂�V

/
∂t are determined from Eqs. (10) and (12).

2.2. Description of LES experiments

Six CBL flows under varying geostrophic wind speeds and varying inversion strengths are
simulated with the LES model to provide a basic dataset for adjusting the constants in the
entrainment parameterization. The LES model used for this purpose was developed by Moeng
(1984) and refined by Sullivan et al. (1994, 1996). A spectral method is used for horizontal
spatial derivatives, while a centered finite difference method with a vertically staggered grid
is used in the vertical direction. All prognostic quantities were integrated in time by the
third-order Runge-Kutta scheme with a variable timestep (Spalart et al. 1991). A periodic
boundary condition is adopted in the horizontal directions. The bottom boundary condition
uses the Monin–Obukhov similarity law, and the upper boundary condition allows an upward
radiation of internal gravity waves (Klemp and Durran 1983). The modified subgrid-scale
model proposed by Sullivan et al. (1994) is applied.

The simulation domain is 6000 × 6000 × 1800 m3 in the x , y, and z directions covered
by 120 × 120 × 120 grid points. The prescribed east–west component of geostrophic wind is
constant with height. Depending on the numerical experiment, the geostrophic wind varies
from 5 m s−1 to 15 m s−1. The north–south component of geostrophic wind is set to zero
for all the experiments. The surface kinematic heat flux is fixed at 0.05 K m s−1. Initially,
the temperature jump at the top of the boundary layer for the weak inversion cases is set to
zero, whereas the temperature jump for the strong inversion cases is set to 8 K. The initial
velocity jump is set to zero for all cases. The vertical gradient of potential temperature in
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Table 1 LES simulated variables. “W” and “S” in the case name represent weak and strong inversion strength,
respectively

Case h1 (m) h2 (m) δ (m) ��v (K) �U (m s−1) �V (m s−1) u∗ (m s−1) w∗ (m s−1) wθvh1
/

Q0

W15 870 1065 195 1.61 4.55 −2.24 0.67 1.138 −0.28
W10 825 990 165 1.29 2.81 −1.35 0.52 1.119 −0.20
W05 795 915 120 0.94 0.92 −0.45 0.32 1.105 −0.13
S15 490 560 70 6.23 7.52 −3.71 0.57 0.940 −0.47
S10 480 540 60 6.11 4.45 −2.22 0.45 0.933 −0.31
S05 470 520 50 5.52 1.86 −0.96 0.30 0.926 −0.20

Numbers in the case name denote the magnitude of the geostrophic wind speed. h1 is the height of the mini-
mum heat flux, h2 is the height at which heat flux disappears, δ is the inversion layer depth, ��v is the virtual
potential temperature jump in the inversion layer, �U is the east–west component of velocity jump, �V is the
north–south component of velocity jump in the inversion layer, u∗ is the friction velocity, w∗ is the convection
velocity, wθvh1 is the entrainment heat flux, and Q0 is the surface heat flux

the free atmosphere is 0.005 K m−1. The surface roughness length is 0.16 m, and the Coriolis
parameter f is fixed to a constant value of 10−4 s−1; the variation of f with latitude can be
neglected within the simulated domain.

Each simulation lasts about 12,000 s and data are saved for the last one hour of the simu-
lation at approximately 100-s intervals. The parameters are averaged over 38 output samples
that cover the last one hour of simulation (Table 1). As shown in Table 1, h2, the lowest
height beyond which the heat flux and its vertical derivative vanishes, and h1, the height of
the maximum negative heat flux (referred to a boundary layer height), become larger with
increasing wind shear. The absolute value of the entrainment heat flux relative to the surface
heat flux tends to increase from 0.13 to 0.30 (from 0.2 to 0.47) for the weak (strong) inversion
case with increasing geostrophic wind speed from 5 m s−1 to 15 m s−1.

2.3. Parameterization of the entrainment flux

Previous studies (Driedonks 1982; Boers et al. 1984; Gryning and Batchvarova 1990;
Flamant and Pelon 1996; Betts and Barr 1996; Flamant et al. 1997; Pino et al. 2003) have
used the turbulent kinetic energy (TKE) equation to parameterize the entrainment heat flux.
This parameterization of the entrainment heat flux can be developed by either using a local
TKE budget or using an integrated TKE budget. First, we compare the parameterization of
Tennekes and Driedonks (1981) with the LES results described in Section 2.2. This popular
scheme is one example of the local TKE budget approach.

2.3.1. An example of the parameterization using local turbulent kinetic energy budget

The parameterization of the entrainment heat flux using the TKE budget at the mixed-layer
height, h1, in the framework of a zero-order jump model (Tennekes and Driedonks 1981) is
given as

− g

�v0
wθvh1 = −CT

w2
m

h1

dh1

dt
+ CF

w3
m

h1
− CDw2

m N + CM
(
�U 2 + �V 2) 1

h1

dh1

dt
, (16)

where w2
m = w2∗ + 4u2∗ and CF = 0.6, CT = 4.3, CD = 0.03, and CM = 1. The left-hand

side of Eq. (16) is the buoyancy term of the TKE equation. The first term on the right-hand
side represents the rate of change of TKE, the second term the sum of transport of TKE
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Table 2 Entrainment closure
ratios (absolute value of
entrainment heat flux normalized
by surface heat flux) derived by
LES data and by Eq. (16)

Case LES EQ 16 Difference (%)

W15 0.28 1.36 387
W10 0.20 0.87 337
W05 0.13 0.47 261
S15 0.47 1.90 305
S10 0.31 1.28 313
S05 0.20 0.78 288

and pressure transport, the third term the dissipation, and the fourth term the TKE generated
by velocity jumps at the top of the mixed layer. Table 2 shows the comparison between the
parameterized entrainment heat fluxes (normalized by the surface heat flux) determined by
Eq. (16) and the entrainment heat fluxes derived from the LES data. As shown, the param-
eterized entrainment heat fluxes calculated by Eq. (16) are three to four times larger than
the LES results. This is mainly due to the overestimation of wind shear production, the
transport of TKE, and the pressure transport terms. The parameterization discussed above
is one example of local TKE budget approach. It does not imply that every local TKE bud-
get approach produces incorrect results. Pino et al. (2003) showed that the entrainment heat
fluxes from the modified version of Eq. (16) in their zero-order jump approach agree well
with LES results. However, the local TKE approach does have difficulty in determining an
accurate and representative TKE budget at a single level, z = h1. For this reason, we develop
a parameterization based on the integrated TKE budget.

2.3.2. New parameterization using integrated turbulent kinetic energy budget

The vertically integrated TKE budget from the surface to the top of the CBL (h2) reads

h2∫
0

d E

dt
dz =

h2∫
0

g

�v0
wθvdz −

h2∫
0

[
uw

∂U

∂ Z
+ vw

∂V

∂ Z

]
dz

−
h2∫

0

[
∂

∂z
(wp + wE)

]
dz +

h2∫
0

ε dz. (17)

The left-hand side of Eq. (17) is the rate of change of TKE (E) storage in the CBL. Each term
on the right-hand side of Eq. (17), in order from left to right, is the total buoyancy produc-
tion/consumption of TKE, the total TKE production by wind shear, the vertical redistribution,
and the viscous dissipation. As in Driedonks (1982) and Randall (1984), the left-hand side
of Eq. (17) is small compared to other terms except for the early stage of the CBL growth.
The LES data we use for the determination of the empirical coefficients are in quasi-steady
state when the time change of TKE is negligible. Thus, in this study, we ignore the temporal
change of the TKE term. This assumption can be a possible source of error at the early stage
of CBL development. The third term on the right-hand side of Eq. (17) is set to zero as found
in our LES results (see also Moeng and Sullivan 1994). There may be an energy flux at the
top of the CBL produced by propagating internal gravity waves. Our knowledge about this
energy flux generated by internal gravity waves is not sufficient to parameterize it because
measurement of pressure fluctuations in the atmosphere is very difficult (Stull 1988). Thus,
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in developing our parameterization, we set the energy fluxes at the surface and the top of the
CBL to zero.

By assuming a linear variation of fluxes through the mixed layer, the integrated buoyancy
term in Eq. (17) becomes

h2∫
0

g

�v0
wθvdz = 1

2

g

�v0
wθvsh1 + 1

2

g

�v0
wθvh1(h1 + δ), (18)

and the integrated shear production term is

−
h2∫

0

[
uw

∂U

∂ Z
+ vw

∂V

∂ Z

]
dz = C−1/2

D u3∗ + 1

2

δ u2∗
(

Um

M
�U + Vm

M
�V

)
+ 2h1

(
�Ũ

)2
we

2h1 + δ
,

(19)

where CD is the drag coefficient, M = √
U 2

m + V 2
m and

(
�Ũ

)2 = (�U )2 + (�V )2. See

Appendix B for the detailed derivation of Eq. (19). Strictly speaking, as in the inversion layer,
if temperature is a linear function of z, its flux is a quadratic function of z. To make the deri-
vations as simple as possible, we assumed the fluxes as linear functions of z. The entrainment
flux determined from the linear flux profile in the inversion layer is overestimated relative to
the one calculated by considering the curvature of the flux profile. We ignore this error in the
present study. However, the use of the corrected entrainment fluxes for the first-order jump
modelling framework or the development of parameterization using the realistic profiles is
an important topic for further investigation. Finally, the integration of the dissipation term
results in

h2∫
0

ε dz =α1
1

2

g

�v0
wθvsh1+α2C−1/2

D u3∗+α3
1

2

δ u2∗
(

Um

M
�U + Vm

M
�V

)
+ 2h1

(
�Ũ

)2
we

2h1 + δ
,

(20)

where α1, α2, and α3 are constants. In deriving Eq. (20), the total dissipation of TKE in the
whole boundary layer is assumed to be proportional to the production of TKE. We followed
the approach of Flamant et al. (1999).

The integrated total TKE budget in the parameterized form is given by

− g

�v0
wθvh1(h1 + δ) = A1w

3∗ + A2u3∗

+A3

[
δ u2∗

4h1 + 2δ

(
Um

M
�U + Vm

M
�V

)
+ h1(�Ũ )2we

2h1 + δ

]
,

(21)

where A1 = 1 − α1, A2 = 2C−1/2
D (1 − α2), A3 = 2(1 − α3), w3∗ = g

�v0
wθvsh1. In the

present study, we treat A2 as a constant. This assumption may not be correct since it does
not incorporate the effect of various surface roughness lengths. However, for simplification,
we set it as a constant such as is done in Flamant et al. (1999).
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Fig. 3 The relationship between term I and Ae in Eq. (22). The circle represents data from the LES model.
The line is the least squares fit to the LES data

Fig. 4 The same as in Fig. 3 except for term II
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The entrainment ratio is

Ae = −wθvh1

wθvs

= A1
1

1+δ/h1
+ A2

u3∗
w

′3∗
+ A3

1

w
′3∗

[
δ u2∗

4h1 +2δ

(
Um

M
�U + Vm

M
�V

)
+ h1(�Ũ )2we

2h1 +δ

]
,

(22)

where, w
′3∗ = g

�v0
wθvs(h1 + δ). From Eq. (13), the entrainment velocity we is given by

we =
δ

2h1
wθ s −

(
1 + δ

2h1

)
wθh1(

��v − 1
2γ δ

) . (23)

Replacing we in Eq. (22) by Eq. (23) yields

Ae = −wθvh1

wθvs

=
A1

1
1+δ/h1

+ A2
u3∗
w

′3∗
+ A3

1
w

′3∗
δ

(4h1+2δ)

[
u2∗

(
Um
M �U + Vm

M �V
)

+ wθvs(
��v− 1

2 γ δ
) (�Ũ )2

]

[
1 − (�Ũ )2

2 g
�v0

(
��v− 1

2 γ δ
)
(h1+δ)

A3

] .

(24)

If wind shear is neglected, then Eq. (24) reduces to

Ae = A1
1

1 + δ/h1
. (25)

In Eq. (25), δ/h1 is known to be inversely proportional to the convective Richardson number,
Ri∗ = (g/�0)��vh1

w2∗
(Driedonks 1984) or the stability of the inversion layer. Depending on

the inversion strength Ae becomes close to A1 (strong inversion) or Ae becomes less than A1

(weak inversion). For instance, Ae is 0.2 for the S05 experiment, while Ae is 0.13 for W05.
We obtain coefficients A1 to A3 by applying multiple linear regression analysis, to give

A1 = 0.35, A2 = 1.36, and A3 = 0.44. A1 = 0.35 is too big relative to the classical closure
value of 0.2 for a CBL with negligible shear. This discrepancy may reflect the limitation of our
dissipation parameterization or assumption in the first-order jump model. Figures 3, 4 and 5
illustrate whether the multiplication factors of A1, A2, and A3 in Eq. (22) can be assumed to
be linearly proportional to the normalized entrainment heat flux. The multiplication factors
of A1, A2 and A3 in Eq. (22) are given by

Term I = 1
/(

1 + δ
/

h1
)
,

Term II = u3∗/w
′3∗ ,

Term III =
(

1/w
′3∗
) [

δ/(4h1 + 2δ)u2∗
(

Um
M �U + Vm

M �V
)

+ h1(�Ũ )2we/(2h1 + δ)
]
.
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Fig. 5 The same as in Fig. 3 except for term III

Table 3 Entrainment closure
ratios (absolute value of
entrainment heat flux normalized
by surface heat flux) derived by
LES data and by Eqs. (24) and
(26)

Case LES EQ24 EQ26 Error (%)

EQ24 EQ26

W15 0.28 0.35 0.35 25 25
W10 0.20 0.25 0.23 25 15
W05 0.13 0.19 0.17 46 31
S15 0.47 0.43 0.44 −9 −6
S10 0.31 0.27 0.26 −13 −16
S05 0.20 0.20 0.20 0 0

Figure 3 shows that the relationship between Term I and Ae is not clear. However, from
Figs. 4 and 5, Ae is approximately linearly proportional to Term II and Term III. Uncertain-
ties in the estimation of h2 may be one possible reason for the poor correlation between Term I
and Ae. Since the LES heat flux profile above h1 does not converge to zero quickly and some-
times shows positive and negative fluctuations near h2, estimation of δ is not straightforward.
To develop the parameterization, hereafter, we set A1 = 0.2, which is the value for the strong
inversion case (S05) and also the classical closure value for CBL with negligible shear.
Using A1 = 0.2, A2 and A3 are determined by the multiple linear regression of LES. Thus,
by using multiple regression to determine A2 and A3, we find A2 = 0.6 and A3 = 0.474.
The parameterized entrainment flux ratios in Eq. (24) with A1 = 0.2, A2 = 0.6, A3 = 0.474
are compared with ones from LES data in Table 3. The parameterized entrainment flux
ratio is in good agreement with those calculated from LES data. The difference ranges from
−13 % to 46 %.

The other form of entrainment closure ratio is proposed because Eq. (24) includes the
signs of �U and�V , and effects of direction of elevated wind shear on the entrainment rate
are still being debated (e.g., Fedorovich et al. 2001).
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Ae = −wθvh1

wθvs

=
A1

1
1+δ/h1

+ A2
u3∗
w′3∗

+ A3
1

w
′3∗

δ
(4h1+2δ)

[
u2∗(�Û ) + wθvs

(��v− 1
2 γ δ)

(�Û )2
]

[
1 − (�Û )2

2 g
�v0

(
��v− 1

2 γ δ
)
(h1+δ)

A3

] , (26)

where �Û = 0.5 (|�U | + |�V |), A1 = 0.2, A2 = 0.26, and A3 = 1.44. The param-
eterized entrainment flux ratios in Eq. (26) are also compared with ones from LES data
in Table 3. The parameterized entrainment flux ratio from Eq. (26) is also in good agreement
with those calculated from LES data. The difference ranges from −16% to 31%. Equation
(26) is introduced because it is used in Pino et al. (2006), a mixed-layer model comparison
study.

2.4. Parameterization of the inversion layer depth

To solve the basic entrainment equations in a first-order jump model, the inversion layer
depth, δ (= h2 − h1) must be estimated. A parcel method is applied to diagnose δ . If the
wind shear across the inversion layer is negligible, the parcel method yields

δ

h1
= w2

c

(g/�v0)��vh1
, (27)

where wc is the characteristic velocity associated with the impinging of thermals at the base
of the inversion layer. We assume that wc depends on the friction velocity and the convection
velocity, w2

c ∼ f (w2∗, u2∗). If a large wind shear exists at the inversion layer, δ is enhanced
due to greater TKE compared to the situation without wind shear in the inversion layer. The
effect of the increased wind shear in the inversion layer on δ is the same as the effect of the
decreased temperature jump in the inversion layer on δ. A modified temperature jump that
incorporates the impact of wind shear across the inversion layer can be defined as

��v mod = ��v(1 − Ri−1
IL ), (28)

where RiIL = (g/�0)��vδ

w2
IL

is a newly defined Richardson number in the inversion layer and

w2
IL ∼ f (�U 2,�V 2). When wind shear across the inversion layer is considered, Eq. (27)

reads

δ

h1
= w2

c

(g/�v0)��vmodh1
. (29)

By rearranging Eq. (29) with Eq. (28), the inversion layer depth is

δ

h1
= a Ri−1 + b, (30)

where Ri = (g/�v0)��vh1

w2
δ

, w2
δ = w2∗ + cu2∗ + d(�U 2 + �V 2), and a, b, c, and d are

constants. The constants a, b, c, and d are found by a least squares fit to the LES datasets
resulting in a = 0.075, b = 0.0925, c = 180.21, and d = 0.15 with a non-zero y-intercept
(r2 = 0.999). If we apply multiple linear regression with the y-intercept = 0, a = 2.68, b = 0,
c = 2.99, d = 0.03(r2 = 0.958). We also include the inversion layer parameterization with
coefficients a = 1.12 and b = 0.08 with an ad-hoc choice of c = 4 and d = 0.1 because
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Table 4 Parameterization formulae for the inversion layer depth

IL1 δ
h1

= 0.075Ri−1 + 0.0925, w2
δ = w2∗ + 180.21 u2∗ + 0.15 (�U2 + �V 2)

IL2 δ
h1

= 2.68Ri−1, w2
δ = w2∗ + 2.99 u2∗ + 0.03 (�U2 + �V 2)

IL3 δ
h1

= 1.12Ri−1 + 0.08, w2
δ = w2∗ + 4 u2∗ + 0.1 (�U2 + �V 2)

Table 5 Initial data for the first-order jump model

Case h1 (m) δ (m) �vm (K) ��v (K) Um (m s−1) �U (m s−1) Vm (m s−1) �V (m s−1)

W20 750 250 301.75 1.20 16.50 3.50 0.83 −0.83
S20 704 190 303.16 2.16 14.93 5.07 1.85 −1.85

Pino et al. (2006) used Eq. (26) and this inversion layer depth formula in their comparison
of mixed-layer models. For summary, the inversion layer formulae are listed in Table 4.

3. Evaluation of the parameterization

In order to evaluate the first-order jump model developed in Section 2, the model is tested
for two LES generated CBLs with stronger wind shear and more intense surface heating
conditions. The time evolution of the boundary-layer height (h1), entrainment closure ratio
(Ae), �vm, ��v, Um, �U , Vm and �V from our first-order jump model are compared with
those derived from new LES data. The LES model used in this section is described in Cuijpers
and Holtslag (1998), which has previously been used in the shear-driven CBL by Pino et al.
(2003). The two LES models give similar results for predicting entrainment into the sheared
convective boundary layer (Fedorovich et al. 2004). Thus, the evaluation of the first-order
jump model parameterization should give results comparable to those of the LES described
earlier. The simulation domain is 10000 × 10000 × 2000 m3 in the x, y, and z directions
covered by 256 × 256 × 64 grid points. The geostrophic wind speed and initial wind profiles
in the LES are Ug = 20 m s−1, Vg = 0 m s−1 constant with height and the surface kinematic
heat flux is 0.1 K m s−1. Two cases characterized by different inversion strengths were sim-
ulated. The initial slope of the potential temperature vertical profile has a constant value in
the whole domain of 0.003 K m−1 and 0.006 K m−1 for the weak and strong inversion cases,
respectively. A more detailed description of the LES simulations is presented by Fedorovich
et al. (2004). The initial data for the first-order jump model are summarized in Table 4.

The time evolutions of h1, δ, Ae, �vm, ��v, Um, �U , Vm and �V are shown in
Figs. 6 and 7 for both the first-order jump model and the LES model for the weak and strong
inversion cases, respectively. Three versions of the first-order jump model are tested. The
first is the combination of Eq. (24) and IL1 in Table 4 (hereafter FOJ1). The second is the
same as the first version except for the inversion layer depth parameterization, IL2 in Table
4 (hereafter FOJ2). The last is the version using Eq. (26) and IL3 in Table 4, which is tested
in Pino et al. (2006) (hereafter FOJ3). Overall, three versions of the first-order jump model
perform similarly and show good agreement with LES data for both stability regimes.

For the weak inversion case, the mixed-layer height prediction from FOJ2 shows the
best agreement with LES data (Fig. 6a); Ae from FOJ2 is also closest to the LES data
(Fig. 6b). However, it should be mentioned that δ from FOJ2 is overestimated compared to
LES (Fig. 6a). The δ values from FOJ1 and FOJ3 is similar and close to those from LES.
The Ae values from FOJ1 and FOJ3 are also in reasonable agreement with LES. However,
the mixed-layer height predicted by FOJ1 and FOJ3 are slightly underestimated. The �vm



468 Boundary-Layer Meteorol (2006) 120:455–475

Fig. 6 Comparison of mixed-layer model results (lines) with LES (symbols) for the weak inversion case: (a)
boundary-layer height h1 and inversion layer depth δ, (b) entrainment closure ratio Ae, (c) �vm, (d) ��,
(e) Um, (f) �U , (g) Vm, and (h) �V. Dotted lines denote the model output with Eq. (24) and IL1 in Table 4
(FOJ1), dashed lines show the results with Eq. (24) and IL2 (FOJ2), and solid lines indicate the results with
Eq. (26) and IL3 (FOJ3), which is the same as in Pino et al. (2006)
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Fig. 7 The same as in Fig. 6 except for the strong inversion case

values from all of the models are in quite good agreement with LES data. The ��v values
from FOJ2 are closer to LES data than those from FOJ1 and FOJ3 (Fig. 6d). Compared to
the �vm values, the ��v values are less similar to LES data. Greater ��v fluctuations in
LES are associated with greater h2 fluctuations in LES. Since a strong temperature gradient
exists in the inversion layer and free atmosphere, the ��v value is quite sensitive to the small
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fluctuation in h2. The model-simulated Um, �U , Vm and �V values are also in reasonable
agreement with LES data (Fig. 6e–h). It is interesting that FOJ1 and FOJ3, which diagnose
the inversion layer depth similarly, predict �vm, ��v, Um, �U , Vm and �V quite closely.
Now a question can be raised: why does the model with Ae closest to LES and overestimated
inversion layer depth predict the mixed-layer height best? One possible reason is the underes-
timation of the inversion layer depth from LES. Pino et al. (2006) indicated that the inversion
layer depth from LES used in both this study and their study may be slightly underestimated.
Thus, it implies that the inversion layer depths from FOJ1 and FOJ3 may be underestimated.
Following Eq. (23), underestimation of the inversion layer depth leads to underestimation
of the entrainment rate. Uncertainties in the inversion layer depth derived from LES should
be kept in mind. The other possible reason is associated with the definitions of entrainment
heat flux in the first-order jump model and in LES data. The entrainment heat flux, wθvh1 ,
which in the first-order jump model is determined by a linear extension of the heat flux profile
from the surface to h1, should be greater than wθvh1 calculated by the LES. Therefore, the
slight overestimation of Ae may be required to predict mixed-layer height better due to the
curved heat flux profile in the LES. If this is true, the overestimated inversion layer depth
from FOJ2 compensates the error from the underestimation of Ae, which, in turn, predicts
the mixed-layer height correctly. This suggests that a way to decrease the discrepancies of
the entrainment heat flux between the first-order jump model and LES needs to be found.

For strong inversion cases, the mixed-layer heights predicted by three first-order jump
models are slightly underestimated compared to those from LES. FOJ2 and FOJ3 simulated
the mixed-layer height better than FOJ1 (Fig. 7a). The Ae values from three models are in
good agreement with those from LES; the Ae values from FOJ1 lie between FOJ2 and FOJ3
(Fig. 7b). It should be mentioned that the inversion layer depth from FOJ1 is much underes-
timated, which leads to an underestimation of the entrainment rate following Eq. (23). The
inversion layer depths from FOJ2 and FOJ3 are similar to those from LES. Thus, the entrain-
ment rate and mixed-layer height prediction from FOJ2 and FOJ3 are similar. The values of
�vm, Um, �U , Vm and �V from FOJ2 and FOJ3 are also close (Fig. 7c, and e–h), while
those from FOJ1 are different from the two other models. Compared to the �vm values, the
��v values are less similar to LES data for the same reason discussed in the weak inversion
case. Although all of the three models predict Ae reasonably well, all of them underestimate
the mixed-layer height. As mentioned above, one possible reason for this is related to the
discrepancy of the entrainment heat flux between the first-order jump model and LES. The
slight overestimation of Ae may be needed to predict mixed-layer height better. Another
reason is associated with quality of inversion layer depth parameterization and uncertainties
in the estimation of inversion layer depth from LES data. If inversion layer depth from LES
in Fig. 7a is underestimated as mentioned in Pino et al. (2006), the modelled inversion layer
depth from FOJ2 and FOJ3 should be regarded as underestimated, which, in turn, underes-
timates the entrainment rate following Eq. (23). It indicates that the parameterization of the
inversion layer depth needs to be improved because the inversion layer depths from the three
models can be regarded as underestimated.

In summary, our first-order jump model produces accurate Ae values compared to LES.
However, mixed-layer growth and predictions of mixed-layer variables are sensitive to inver-
sion layer parameterizations. When the inversion layer depth is overestimated compared to
LES as determined in Pino et al. (2006), the model shows better mixed-layer growth. The
evaluation in this section is limited because the LES data are case- and time-limited (total sim-
ulation time of 18,000 s) and the comparison of the parameterization has not been made with
observations. In a future study, systematic evaluation of the parameterization with extensive
observational data (e.g., wind profiler and lidar data) and more LES datasets with different
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surface heat flux and wind shear forcing should be pursued. Our parameterization is not
tested against baroclinic CBL cases. Recently, Conzemius and Fedorovich (2004) compared
different entrainment flux parameterizations with LES for cases with Sx �= 0 and Sx = 0
where Sx is the free atmosphere shear in the x-direction. They found that both cases produced
similar values of the entrainment ratio, and the analyzed parameterizations produce similar
results for both cases. However, if one wants to study the performance of the parameteri-
zation in a real baroclinic case, it is not sufficient to perform Sx �= 0. We need to relate
this to a temperature advection as done by Sorbjan (2004). This fact implies that periodic
boundary conditions used in the LES simulations are not a proper assumption for the study
of a baroclinic CBL.

4. Conclusions

The basic entrainment equations applicable to the shear-driven convective boundary layer
(CBL) are derived by incorporating a finite inversion depth. By integrating over two dis-
tinct layers, i.e., the mixed layer and the inversion layer, we derive an expression of the
entrainment heat and momentum fluxes in the framework of the first-order jump model. The
parameterization of the entrainment heat flux includes the effect of the inversion layer depth,
the convection velocity, the friction velocity, and the velocity jump across the inversion layer.
In addition, the inversion layer depth is estimated by the parcel method incorporating velocity
jumps across the interfacial layer. Various equations diagnosing the interfacial layer depth
are proposed.

The entrainment parameterization developed in this study is further tested with the LES
results of two strongly sheared CBLs with different inversion strengths. Compared to the
LES data, the first-order jump model described here accurately predicts the evolution of
CBL height, CBL mean temperature, CBL mean wind components, temperature jump, and
velocity jump across the inversion layer. Even though our model determines the entrainment
closure ratio correctly, overall mixed-layer growth and predictions of mixed-layer and inver-
sion layer jumps are somewhat sensitive to the parameterization of inversion layer depth. In
this study, the inversion layer depth is parameterized with only six available LES datasets. A
better parameterization of the inversion layer depth is needed using LES data under various
inversion strength and shear conditions.
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Appendix A

A.1. Derivations of Basic Equations (4)–(6)

In the following, the derivations of Eqs. (4)–(6) are described. These procedures are applied
similarly to the derivations of Eqs. (7)–(12), which are not shown here. The virtual potential
temperature profile in the idealized convective boundary layer is givenby
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�v =



�vm, 0 ≤ z ≤ h1

�vm + ��v

δ
(z − h1), h1 ≤ z ≤ h2

�vm + ��v + γ (z − h2), z ≥ h2

(A1)

where �v is the virtual potential temperature, �vm is the mean mixed-layer virtual potential
temperature, ��v is the virtual potential temperature jump across h1 and h2, h1 is the height
of minimum heat flux or mixed-layer height, h2 is the top of boundary layer where the heat
flux vanishes, δ is the distance between h1 and h2, and γ is the vertical virtual potential
temperature gradient in the free atmosphere. Equation (4) is obtained by integrating Eq. (1)
from 0 to h1 and using Leibniz’s rule.

∫ h1

0

∂�v

∂t
dz = −

∫ h1

0

∂wθv

∂z
dz −

∫ h1

0
W

∂�v

∂z
dz , (A2)

where wθv is the heat flux and W represents the large-scale rising and sinking motions. The
left-hand side of (A2) can be rewritten as

∫ h1

0

∂�v

∂t
dz = ∂

∂t

∫ h1

0
�vdz − �vm

∂h1

∂t
= ∂

∂t
(�vmh1) − �vm

∂h1

∂t
= h1

∂�vm

∂t
.

(A3)

Since the vertical virtual potential temperature gradient in the mixed layer is neglected in
this idealized temperature profile, the right-hand side of (A2) becomes

−
∫ h1

0

∂wθv

∂z
dz −

∫ h1

0
W

∂�v

∂z
dz = wθvs − wθvh1 , (A4)

where wθvs is the surface heat flux and wθvh1 is the heat flux at z = h1. By combining (A3)
and (A4), Equation (4) is obtained.

Equation (5) is derived by integrating Equation (2) from h1 to h2 and using Leibniz’s rule.
∫ h2

h1

∂�v

∂t
dz = −

∫ h2

h1

∂wθv

∂z
dz −

∫ h2

h1

W
∂�v

∂z
dz . (A5)

The left-hand side of Eq. (A5) can be rewritten as
∫ h2

h1

∂�v

∂t
dz = ∂

∂t

∫ h2

h1

�vdz − (�vm + ��v)
∂h2

∂t
+ �vm

∂h1

∂t

= ∂

∂t

(
�vmδ + ��v

δ

2

)
− (�vm + ��v)

∂h2

∂t
+ �vm

∂h1

∂t
. (A6)

The right-hand side of Eq. (A5) is rearranged to

−
∫ h2

h1

∂wθv

∂z
dz −

∫ h2

h1

W
∂�v

∂z
dz = wθv

∣∣
h1

−
∫ h2

h1

(−Dz)
∂�v

∂z
dz

= wθv
∣∣
h1

+ ��v D

(
h1 + δ

2

)

= wθv
∣∣
h1

− ��vWh1+ δ
2
. (A7)

Here D(= −∂W
/
∂z) denotes the divergence, and is constant with height. With the assump-

tion of ∂δ
/
∂t = 0, Wh1+ δ

2
= Wh1 and setting (A6) = (A7) Eq. (5) is derived.



Boundary-Layer Meteorol (2006) 120:455–475 473

Equation (6) is obtained by integrating Eq. (2) from h2 to h2 + ε, using Leibniz’s rule,
and applying lim

ε→0
to the integrated equation,

∫ h2+ε

h2

∂�v

∂t
dz = −

∫ h2+ε

h2

∂wθv

∂z
dz −

∫ h2+ε

h2

W
∂�v

∂z
dz . (A8)

The left-hand side of Eq. (A8) is rearranged to

∫ h2+ε

h2

∂�v

∂t
dz = ∂

∂t

∫ h2+ε

h2

�vdz − (�vm + ��v + γ ε)
∂(h2 + ε)

∂t
+ (�vm + ��v)

∂h2

∂t

= ∂

∂t
(�vmε + ��vε + 1

2
γ ε2) − γ ε

∂h2

∂t
. (A9)

The right-hand side of Eq. (A8) is rewritten as

−
∫ h2+ε

h2

∂wθv

∂z
dz −

∫ h2+ε

h2

W
∂�v

∂z
dz = 1

2
γ D(2h2ε + ε2). (A10)

By assuming ∂γ
/
∂t = 0, dividing (A9) and (A10) by ε, and applying lim

ε→0
to (A9) and (A10),

(A8) becomes

∂(�vm + ��v)

∂t
= γ

(
∂h2

∂t
+ Dh2

)
= γ

(
∂h2

∂t
− Wh2

)
. (A11)

With the assumptions of ∂δ
/
∂t = 0 and Wh2 = Wh1 , (A11) is equal to Eq. (6).

Appendix B

B.1. Derivations of Eq. (19)

Below are the derivations of Eq. (19),

∫ h2

0

[
uw

∂U

∂z
+ vw

∂V

∂z

]
dz =

∫ hs

0

[
uw

∂U

∂z
+ vw

∂V

∂z

]
dz +

∫ h1

hs

[
uw

∂U

∂z
+ vw

∂V

∂z

]
dz

+
∫ h2

h1

[
uw

∂U

∂z
+ vw

∂V

∂z

]
dz. (B1)

The first term on the right-hand side (rhs) in (B1) is integrated such that

∫ hs

0

[
uw

∂U

∂z
+ vw

∂V

∂z

]
dz = uws Um + vws Vm = − C−1/2

D u3∗. (B2)

To derive Eq. (B2), the following relationships are used: uws = − CD M Um, vws =
− CD M Vm, M = √

U 2
m + V 2

m, u2∗ =
√

(uws)
2 + (vws)

2 = CD M2 (Stull, 1988).
Since the gradient of wind in the mixed layer can be neglected, the second term on the rhs

in (B1) is

∫ h1

hs

[
uw

∂U

∂z
+ vw

∂V

∂z

]
dz = 0. (B3)
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The third term on the rhs in (B1) is integrated such that
∫ h2

h1

[
uw

∂U

∂z
+ vw

∂V

∂z

]
dz = 1

2
uwh1�U + 1

2
vwh1�V . (B4)

To derive Eq. (B4), the following relationships are used: uw = − uwh1
δ

(z − h1) + uwh1 ,

vw = − vwh1
δ

(z − h1) + vwh1 , ∂U
∂z = �U

δ
, ∂V

∂z = �V
δ

. Equation (B4) is arranged such as

1

2
uwh1�U + 1

2
vwh1�V =

−δ u2∗
( U

M �U + V
M �V

) − 2h1we

(
�Ũ

)2

4h1 + 2δ
. (B5)

To derive Eq. (B5), Equations (14) and (15), uws = − CD M Um, vws = − CD MVm,
M = √

U 2
m + V 2

m, and u2∗ =
√

(uws)
2 + (vws)

2 = CD M2 are used.
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