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bstract

This paper proposes a novel method to measure the electrical conductivity of solutions in the time domain by using a single square-wave current

nd two titanium electrodes. This method allows us to determine both the conductivity (σ) of the solution and the two parameters of the constant-
hase element (CPE) due to the electrodes. Experimental results show that the proposed method achieves conductivity measurement ranges close
o those obtained with platinum probes or tetrapolar measurements, which are more expensive, and provides information about electrode condition.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The conductivity of solutions is a very important parameter
n many industrial material-manufacturing processes. Conduc-
ivity sensors for solutions involve ionic and electronic currents,
o they use electrodes that convert ionic currents into electronic
urrents, and conversely [1]. Industrial applications need con-
uctivity probes based on electrode materials such as stainless
teel or titanium, which are more robust than platinum and
raphite, common in laboratory measurements. Because of their
igh impedance, the usual measurement range for those robust
lectrodes is two orders of magnitude narrower than that for
latinum. For this reason, high conductivity (σ > 30 mS cm−1)
ndustrial probes are normally tetrapolar, hence more expensive
han two-electrode probes.

Electrical impedance is normally measured by injecting a
inusoidal stimulus. Square-wave stimuli are easier to gener-
te but need special detection methods unless the measured
mpedance is a simple resistance. Complex impedances can be
easured with square-wave stimuli but most of the reported
ethods that use them rely on calculations that involve Fourier

ransforms, hence they are difficult to apply in compact systems.
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Some conductivity measurements in the time domain use tri-
ngular signals [2], for example, by analysing the time derivative
f the applied voltage or the current through the material, or
y applying a step current and measuring the drop in voltage
cross the electrodes after a few microseconds (transient resis-
ance measurement) [3]. These methods are not analytical, so
hey do not need to previously model the impedance to be mea-
ured. But they do not measure the electrode impedance and
herefore cannot provide self-diagnostic capability to the sys-
em.

This paper proposes a novel method to measure the electrical
onductivity of solutions that uses a single square-wave current
nd a conductivity cell built from two titanium electrodes, yet
chieves a measurement range close to that obtained with plat-
num electrodes. The proposed method reduces manufacturing
osts and allows us to measure electrodes’ impedance, which is
seful to assess their condition.

. Equivalent circuits in conductivity sensors

Electrode–electrolyte systems are often modelled by lumped-

lement circuits [4]. Fig. 1a shows the equivalent circuit for a
ystem that comprises two electrodes and a liquid solution [5],
here ZS is the solution impedance, RF the Faradic resistance

nd ZCPE is the so-called constant-phase element, which models
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enough and the current density is small enough, non-linearity
ig. 1. Equivalent circuit for: (a) an electrolyte measured with a pair of electrodes
nd (b) a saline solution when the two electrodes are equal.

he electrodes [6],

CPE = 1

Asα
(1)

For saline solutions, ZS = RS, the electrolyte resistance ([1],
hapter 2), and, if the two electrodes in Fig. 1a have similar
haracteristics, the equivalent circuit reduces to that shown in
ig. 1b. Therefore, determining those three impedance compo-
ents would enable us to calculate RS. Fig. 2 shows the complex
mpedance plot for the impedance of the electrode–electrolyte
ystem for a sample saline solution.

The constant-phase element ZCPE involves two independent
arameters (1), A and the exponent α (0 ≤ α ≤ 1). When α = 1, A
as the dimension of a capacitance, otherwise its dimension is
−1 × s−α (s = jω), hence the name pseudocapacitance for ZCPE.
hen α = 0.5, ZCPE becomes a series RC circuit, often termed
arburg impedance. When α = 0, ZCPE becomes a resistance [7].
Using a four-wire (Kelvin) measurement set-up would over-

ome the effect of electrode impedance in Fig. 1a ([8], Section
.1), but the two additional electrodes needed make conductivity
robes more difficult to manufacture, and add complexity and

ost to circuit design.

Impedance can be measured by applying a single square-
ave current and then measuring the resulting voltage (V1, V2

nd V3) at different times (Fig. 3b). P independent impedance

ig. 2. Complex impedance plot for a system that consists of two electrodes
mmersed in a saline solution.

w

F
f

ig. 3. (a) Equivalent measurement circuit and (b) voltage measurement at three
iven times.

omponents can be determined from at least P independent
easurements, as performed in impedance spectroscopy using

ine waves [6], or with P current measurements after apply-
ng a single square-wave voltage [9]. Here we extend the
ethod developed in [9] for constant-value impedance com-

onents, to CPE elements, until now determined from complex
mpedance diagrams. We apply a single square-wave current
rather than a voltage as in [9]), and measure the resulting
oltage at three different times (Fig. 3b). RF has been deter-
ined to be very large for our titanium electrodes and hence

ts effect is negligible. Solving the equation system consist-
ng of the three voltage amplitudes at the measurement times
ields the three independent components. From these compo-
ents we can determine RS if the system has been previously
alibrated.

Figs. 4 and 5 show that the series combination of the solution
esistance plus the constant-phase element ZCPE is non-linear
ith the stimulus amplitude. Fig. 4 shows that for sine wave cur-

ents of 20 mA and 0.5 mA, the difference between the measured
esistance for each current intensity decreases when the fre-
uency increases. The same happens for the reactance (Fig. 5).
herefore, from Figs. 4 and 5, the non-linear effect of current
armonics is much smaller than that of the fundamental cur-
ent. Hence, for a square-wave stimulus, if its frequency is high
ill be negligible [4].

ig. 4. Real part of the electrode–electrolyte impedance as a function of the
requency for sine wave current intensities of 0.5 mA and 20 mA.
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ig. 5. Imaginary part of the electrode–electrolyte impedance as a function of
he frequency for sine wave current intensities of 0.5 mA and 20 mA.

. Circuit analysis

The overall impedance of the conductivity cell plus elec-
rolyte in Fig. 3a is

(s) = RS + 1

Asα
(2)

The drop in voltage across that impedance when a current
tep of intensity I0 is applied is (see Appendix A)

U =
[
I0RS + I0

A

tα

Γ (α + 1)

]
u(t) (3)

here u(t) is the unity step function. Hence, vU depends on tα

ather than t−α as in [10,11], because here we apply current
nd measure voltage instead of applying voltage and measuring
urrent.

A square-wave current can be decomposed in a sum of cur-
ent steps of different intensities, each delayed by T seconds, as
ollows

(t) = I0[0.5u(t) − 1.5u(t − T ) + 2u(t − 2T ) − 2u(t − 3T )

+ 2u(t − 4T )· · ·] (4)

The application of a square-wave current of intensity I0 and
eriod 2T yields a drop in voltage across the impedance

m = v(2MT + m �T ) = I0RS + I0

A

�Tα

Γ (α + 1)
Ψm(α, M, N)

(5)

here M is the number of periods elapsed after applying the
ignal, and
T = T

N
(6)

here N is the number of voltage measurements to perform each
eriod, plus 1 (e.g. N = 4 if we measure three voltages); m �T is
he measurement time in the half-period T, m being any integer
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≤ m < N, and

m(α, M, N) = 0.5(2MN + m)α − 1.5(2MN − N + m)α

+ 2(2MN − 2N + m)α − 2
M∑

k=2

{[2(M − k) + 1]N + m}α

+ 2
M∑

n=2

[2(M − n)N + m]α (7)

here Ψm(α, M, N) is the result of the contributions of all pre-
ious current steps to the voltages currently being measured.

From the N − 1 individual voltage measurements we calcu-
ate the following voltage ratio:

(N) = V1 − V2

V2 − V3
= v(2MT + �T ) − v(2MT + 2 �T )

v(2MT + 2 �T ) − v(2MT + 3 �T )
(8)

nd from this ratio we obtain α by curve fitting (see Appendix
). For example, if we measure three voltages V1, V2 and V3 at

imes T1, T2 and T3, we have N = 4, and

= 0.014954 × Φ2(4) − 1.5942 × Φ(4) + 2.4501 (9)

A is obtained from the voltages Vm in (5) when m = 1 and 2,

= I0

V1 − V2

�Tα

Γ (α + 1)
[Ψ1(α, M, N) − Ψ2(α, M, N)] (10)

From A and α, it is straightforward to solve for RS in (5) when
= 1.

S = V1

I0
− 1

A

�Tα

Γ (α + 1)
Ψ1(α, M, N) (11)

Finally, from RS and the cell constant K we obtain the elec-
rolyte conductivity,

= K

RS
(12)

. Experimental results and discussion

The proposed measurement method has been implemented
y a custom circuit built on an add-on PC board, and two round
itanium electrodes of 5 mm diameter placed 10 mm apart with
m cable length. The measurement current was 0.5 mA, 1 kHz,
t low conductivities, and 5 mA, 2 kHz, at high conductivities
Table 1). The method has been first applied to measure a capac-
tor, which yielded α ≈ 1, and A very close to the capacitance
alue, as expected. Then the method has been applied to six solu-
ion samples whose conductivities, in a range from 1 mS cm−1

o 189 mS cm−1, have been determined by a WTW Multi 340i
onductimeter with a TetraCon® 325 probe, which uses a four-
lectrode graphite conductivity cell.

Geometrical factors in conductivity probes are accounted for

y the cell factor K determined as the quotient between the actual
olution conductivity and the measured conductance (GS),

= σ

GS
(13)
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Table 1
Error for two alternative circuit models for a titanium conductivity sensor for different conductivities measured at a specific current intensity and frequency

α (mS cm−1) α A (�� × sα)−1 I (mA) f (kHz) Error for R model (%) Error for R + CPE model (%)

1.0 0.7 0.07 0.5 1 4.0 0.2
1.9 0.74 0.15 0.5 1 5.5 0.5
5.5 0.81 0.51 5 1 17 2.9

42 0.92 1.37 5 2
93 0.92 1.39 5 2

189 0.92 1.77 5 2
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ig. 6. Dependence of the cell constant K on the conductivity for a titanium
robe when modelled by a single R or by R in series with a CPE.

should depend on geometry only, not on frequency or conduc-
ivity. For our titanium probe, by measuring at low conductivi-
ies, we determined K = 2.02 cm−1.

Fig. 6 shows that if the cell and electrolyte are modelled as a
ingle resistance R, K increases very much when the electrolyte
onductivity increases, which results in an error that limits its
easurement range to less than about 3.5 mS cm−1 for accepted

rrors below 10%. However, if the cell and electrolyte are mod-
lled by a resistance in series with a constant-phase element, the
rror is less than 7% along a measurement range which is about
wo decades wider than that for a simple R model. Table 1 shows

easurement errors for both models, for conductivities ranging
rom 1 mS cm−1 to 189 mS cm−1, and the values for A and α,
hich depend on the conductivity and current density. Were

ong cables used (say, 10 m) and high conductivities measured,
able capacitance (350 pF) would be negligible compared to the
mpedance of the CPE (α = 0.92, A = 1.77 (�� × sα)−1) and RS
∼10 �). Cable inductance (14 �H) would also be insignificant
ecause of the low frequency of the injected current. Cable resis-
ance (∼1 �), which adds a series resistance to the measured
mpedance, could become an issue. However, that series resis-
ance can be calibrated out before immersing the probes.

. Conclusions
Titanium conductivity probes based on two electrodes in
aline solutions are better modelled by a series resistance for
he electrolyte in series with a constant-phase element (CPE) for

i

V

39 5.7
61 5.6
74 6.4

ach electrode. Otherwise, modelling the whole cell by a single
esistance yields errors larger than 10% when measuring con-
uctivities higher than 4 mS cm−1. When a series constant-phase
lement is included, the two components and three parameters
f the model can be determined by solving the equation sys-
em formed by the three voltages measured at specific times
fter injecting a square-wave current into the cell. A custom
mplementation of this method achieves errors below 7% for
onductivities up to 189 mS cm−1. Therefore, when using the
roposed model, the conductivity range for a cell based on two
itanium electrodes is about two decades wider than that obtained
y a simple resistance model, and the knowledge of the electrode
mpedance can add self-diagnostic capability to the system by
etermining the CPE parameters A and α.
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ppendix A

The impedance of the network in Fig. 3a is

(s) = RS + 1

Asα
(A.1)

he drop in voltage across Z(s) when applying a square-wave
urrent source whose Laplace transform is I(s) is

(s) = I(s)Z(s) (A.2)

possible method to obtain the inverse Laplace transform of
(s) is to decompose the square wave of amplitude I0 and period
T into the sum of step signals delayed by T (Fig. 7). The out-
ut voltage response of a linear system can be obtained as the
ddition of the voltages contributed by each input current step.
he Laplace transform of a current step of intensity I0 is

(s) = I0

s
(A.3)

he drop in voltage across the impedance in Fig. 3a after apply-

ng such a current step is

U(s) = I(s)Z(s) = I0

s

[
RS + 1

Asα

]
= I0RS

s
+ I0

Asα+1 (A.4)
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he corresponding inverse Laplace transform is

U(t) = L−1{VU(s)} = L−1
{

I0RS

s

}
+ L−1

{
I0

Asα+1

}
(A.5)

he inverse Laplace transform of the first term is

−1
{

1

s

}
↔ u(t) (A.6)

or the second term in (A.5) we have

−1
{

1

sx

}
↔

(
tx−1

Γ (x)

)
u(t) (A.7)

herefore, if we define

= α + 1

hen in (A.5) we obtain

U(t) =
(

I0RS + I0

A

tα

Γ (α + 1)

)
u(t) (A.8)

ow, if we decompose the square-wave current as shown in
ig. 7, we have

(t) = I0[0.5u(t) − 1.5u(t − T ) + 2u(t − 2T )

−2u(t − 3T ) + · · ·] (A.9)

here u(t) is the unit step and f = 1/(2T) is the signal frequency.
The intensities of the first and second steps are not +I0 and

2I0 as it would correspond to a square wave of intensities

I0 and −I0. Because the constant-phase element is capacitive
or α > 0, there is an integration effect (A.8) that for an applied
urrent would result in a dc voltage drop across that element,
hus leading to electrolysis in the electrodes (Fig. 8b). To avoid

ig. 7. A square-wave current S(t) can be decomposed as a sum of step currents
ith amplitudes 0.5I0, −1.5I0, 2I0, −2I0, 2I0 and so on, each step delayed by
T seconds (M = 0, 1, 2, . . .).

T

v

v
2
c
o
i
Z

v

fi
V
w

0 0

s zero. (b) If the intensities of the current steps are +I0, −2I0, +2I0, −2I0,
2I0, . . ., the average drop in voltage across the constant-phase element is not
ero.

his effect, the intensity of the first step has been selected 0.5I0
nd that of the second step −1.5I0 (Fig. 8a). In both cases, α = 1.
he voltage produced by the square-wave current in (A.9) is

(t) = 0.5vU(t) − 1.5vU(t − T ) + 2vU(t − 2T )

− 2vU(t − 3T ) + · · · (A.10)

At any given instant, the voltage v(t) will be the result of the
oltages produced by the previous step currents. For t such that
MT ≤ t < (2M + 1)T, where M is any positive integer, we can
onsider t = 2MT + m �T, where �T = T/N, N being the number
f voltages measurements to perform each period plus 1, and m
s any positive integer such that 0 < m < N. The voltage across
(s) at any instant t is then

(t) = v(2MT + m �T ) = 0.5vU(2MT + m �T )

− 1.5vU(2MT − T + m �T )

+ 2vU(2MT − 2T + m �T )

− 2
M∑

k=2

iU{[2(M − k) + 1]T + m �T }

+ 2
M∑

n=2

iU[2(M − n)T + m �T ] = V0 + V− + V+

(A.11)
V0 is the sum of the three voltages that correspond to the
rst three steps, whose amplitudes are +0.5I0, −1.5I0 and +2I0.
− is the sum of the voltages produced by all current steps
hose amplitude is −2I0 (at 3T, 5T, . . .). V+ is the sum of the
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oltages produced by the current steps whose amplitude is +2I0
at 4T, 6T, . . .). For M � 1, these three voltages can be written
s, respectively

0 = 0.5vU(2MT + m �T ) − 1.5vU(2MT − T + m �T )

+ 2vU(2MT − 2T + m �T )

= I0RS + I0

A

1

Γ (α + 1)
[0.5(2MT + m �T )α

− 1.5(2MT − T + m �T )α + 2(2MT − 2T + m �T )α]

(A.12)

− = −2
M∑

k=2

vU{[2(M − k) + 1]T + m �T }

= −2
M∑

k=2

[
I0RS + I0

A

�Tα

Γ (α + 1)
{[2(M − k) + 1]N + m}α

]

(A.13)

+ = +2
M∑

n=2

vU[2(M − n)T + m �T ]

= + 2
M∑

n=2

[
I0RS + I0

A

�Tα

Γ (α + 1)
[2(M − n)N + m]α

]

(A.14)
Replacing (A.12)–(A.14) in (A.11) yields

(2MT + m �T ) = V0 + V− + V+

= I0RS + I0

A

�Tα

Γ (α + 1)

[
0.5(2MN + m)α

− 1.5(2MN − N + m)α + 2(2MN − 2N + m)α

− 2
M∑

k=2

{[2(M − k) + 1]N + m}α

+ 2
M∑

n=2

[2(M − n)N + m]α
]

(A.15)

Simplifying this equation leads to

(2MT + m �T ) = I0RS + I0

A

�Tα

Γ (α + 1)
Ψm(α, M, N)

(A.16)

here Ψm(α, M, N) is the sum of the contributions of the current
teps previous to t = 2MT + m �T,

m(α, M, N)

= 0.5(2MN + m)α − 1.5(2MN − N + m)α

+ 2(2MN − 2N + m)α − 2
M∑

{[2(M − k) + 1]N + m}α

k=2

+ 2
M∑

n=2

[2(M − n)N + m]α (A.17)
nd Actuators A 132 (2006) 122–128 127

The corresponding voltages V1, V2 and V3 at times
1 = 2MT + �T, T2 = 2MT + 2 �T and T3 = 2MT + 3 �T are

1 = v(T1) = v(2MT + �T )

= I0RS + I0

A

�Tα

Γ (α + 1)
Ψ1(α, M, N) (A.18)

2 = v(T2) = v(2MT + 2 �T )

= I0RS + I0

A

�Tα

Γ (α + 1)
Ψ2(α, M, N) (A.19)

3 = v(T3) = v(2MT + 3 �T )

= I0RS + I0

A

�Tα

Γ (α + 1)
Ψ3(α, M, N) (A.20)

In order to determine α, we first calculate the voltage differ-
nce ratio

(N) = V1 − V2

V2 − V3
= Ψ1(α, M, N) − Ψ2(α, M, N)

Ψ2(α, M, N) − Ψ3(α, M, N)
(A.21)

Then, the function that relates α to Φ(N) is determined by
alculating Ψ1(α, M, N), Ψ2(α, M, N), Ψ3(α, M, N) and Φ(N)
or each α value between 0 and 1 (0 ≤ α ≤ 1). α is calculated from
curve fit procedure applied to the voltage ratios in (A.21). For
= 4, we obtain

= 0.014954 × Φ2(4) − 1.5942Φ(4) + 2.4501 (A.22)

Once α is known, A can be calculated from (A.18) and (A.19),

1 − V2 = I0

A

�Tα

Γ (α + 1)
[Ψ1(α, M, N) − Ψ2(α, M, N)]

Because Ψ1(α, M, N) and Ψ2(α, M, N) are known for the
articular α value previously calculated, A is

= I0

V1 − V2

�Tα

Γ (α + 1)
[Ψ1(α, M, N) − Ψ2(α, M, N)] (A.23)

The series resistance in (A.1) can be obtained by solving
A.18) for RS,

S = V1

I0
− 1

A

�Tα

Γ (α + 1)
Ψ1(α, M, N) (A.24)

here α and A are those obtained in (A.22) and (A.23), respec-
ively.
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