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Abstract

The employment of haptic devices in teleoperation systems and the use of motion restrictions during robot teleoperation
provide the operator with increased awareness and can considerably improve the feeling of immersion and moreover his
ability to perform complex tasks.

In the last decade Internet has become one of the major sources of information. It already connects millions of computersand
more than a billion people. Its spectacular growth have leadto the creation of new high speed networks with new capabilities.
In the work described in this paper those networks that use recent-creation packet switched protocols like Internet Protocol
version 6 (IPv6) with high Quality of Service (QoS) will serve as the communication channel for the teleoperation system.

1. Introduction

Teleoperation systems have been studied since the late 40s.The first ‘remote-manipulators’ were developed for handling
radioactive materials. Outstanding pioneers were RaymondGoertz and his colleagues at the Argonne National Laboratory
outside of Chicago, and Jean Vertut at a counterpart nuclearengineering laboratory near Paris. From then the application of
teleoperation systems is found in a wide number of differentfields. The most illustrative are space, underwater, medicine
and hazardous environments, amongst others.

An ever-growing number of Internet connected devices are now accessible to a multitude of users. Being an ubiquitous
communication means, the Internet can enable any user to reach and command any device connected to the network. The
use of robots through Internet started with The Mercury Project in 1995 at the University of Southern California [1, 2],
allowing users to interact with a robotic arm by means of a standard web browser. Other teleoperation system named
Telerobot allowed the web user to control a robot arm at the University of Western Australia. These were the beginnings
of robots on the web. However those systems did not provide any real-time feedback to the remote user, apart from visual
information. Instead, a user generated program for the robot was sent to the remote station and then executed.

The use of haptic guidance to assist teleoperation systems allows the operator to define motion restrictions which depend on
the task to be performed. On the master side, the deviation from the restriction generates an attractive force to the restriction
subspace, providing the operator with an intuitive interface to ensure movements inside this subspace. This teleoperation
framework in which motion restrictions can be easily definedand modified by the operator can highly improve the task
performance and the sensation of immersion.

Several of the above mentioned applications involve large distances between the local and the remote centres, or limited data
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transfer. Such situations can result in substancial delaysbetween the time a command is introduced by the operator and the
time the command is executed by the remote robot. In the case of bilateral teleoperation, where force of the slave is fed back
to the operator, the same effect of delay appears on the feedback signals. This time-delay affects the overall stabilityof the
system.

This paper makes use of a communication channel passivationdescribed in a previous work [3], in which the passivation is
done using wave variables with an impedance adaptation.

This paper is organized as follows: section 2 presents a brief state of the art in teleoperation via packet switched networks,
in section 3 some theory about passivity and scattering is outlined; section 4 deals with the proposed teleoperation scheme
and in section 5 the experimental testbed with a experiment of motion along a line restriction over a rail. Finally in section 6
some conclusions and future work are proposed.

2. Teleoperation Via Packet Switched Networks

Packet switching refers to the transmission protocols in which messages are divided into packets before they are sent. Each
packet is then transmitted individually and can follow different routes to its destination. Once all packets, forming amessage,
arrive at the destination, they are recompiled into the original message. This is the case of Internet protocols TCP (Transmis-
sion Control Protocol) and UDP (User Datagram Protocol). These protocols are the most suitable to be used in teleoperation
systems. In [4] a good comparison between whether to choose TCP or UDP for real-time applications is presented.

Liu et al. [5], propose the use of a rate-based protocol for Internet teleoperated robots. In this protocol, the source adjusts the
sending rate depending on the packet RTT (Round Trip Time). It is called the trinomial protocol, and basically is a mixture
of TCP and UDP. The underlying idea of the trinomial protocolis to have the reliability of TCP with the reduced time-delay
of UDP.

The drawback of the today Internet best-effort service, is mainly the congestion over the network. With the use of high speed
networks, that incorporate recent creation protocols likethe Internet Protocol version 6 (IPv6), the performance of the whole
teleoperation system can be improved. In order to achieve this improvement,Quality of Service(QoS) based schemes have
been used to provide priorities on the communication channel, the use of the QoS resulting in a better use of the network. In
[6] it can be found a description of the QoS approach of the IPv6 domain that aims to service the real-time applications with
a minimum delay and packet loss. The work of [7] shows a comparison of QoS performance between IPv6 QoS model, and
other schemes that have been used in the last decade (IntServand DiffServ). Their results show that IPv6 QoS management
has achieved the best results compared with the others.

2.1. Haptic guided teleoperation

In recent years haptic devices have been employed in teleoperation systems in order to give force feedback to the human
operator. However, haptic devices are not only used in the field of robotics but in several other fields like designing and
modeling in 3D over virtual reality scenes.

One of the main reasons for the increase in the use of robots replacing humans in performing certain tasks, besides economic
causes, is their high accuracy, speed and high repeatability. Shon and McMains [8] describe experiments for evaluating
speed and accuracy when drawing 3D objects with a haptic device, and they conclude that, if the operator is provided with a
guidance method, the drawings are clearly better.

In order to assist humans while performing different task some approaches have been developed. These approaches can be
divided into two groups, depending on how the motion restrictions are created, by software or by hardware. To the first group
belongs the work by Turro et al. [9] that have implemented three types of constraints for the operator movements: constraint
movement along a line, virtual obstacle avoidance using a potential field force and geometric cube constraint in order to
limit the robot workspace. However, this approach needs to be reprogrammed when a new restriction must be introduced.
Moreover the teleoperation scheme does not guarantee stability with time-delay.

In [10] constrained teleoperation has been develop using predictive control techniques. The constraints act in the nominal



path of the robot end effector, but on the master side motion guidance is not implemented, it means that if the operator moves
the robot away from the nominal path, the robot will keep moving along the desired path. Also a formal description of the
stability is provided.

An often used method is to provide the obstacles with a repulsive force potential field. Thus, the operator will not make the
robot collide with the obstacles. This method has been used in [11] with a mobile robot, where the force generated by the
obstacles is fed back to the operator. The work described in [12] is one of the first that have added geometric restrictionsin
the robot workspace. In this case a stiff virtual wall is modeled as a spring-damper system.

Several authors propose the use of hardware to guide motion,for example guide-rails [13] and sliders with circled rails[14].
Mechanical guides such that only translation is needed, would make it easy to move into a restricted space [15].

3. Background

This section is intended to give a brief description of the theoretical tools that will be used along this work. This toolsare
used to study the effects of passivity on the proposed teleoperation scheme.

3.1. Passivity

The passivity formalism represents a mathematical description of the intuitive physical concepts of power and energy.It
provides a simple and robust tool to analyze the stability ofa system based only on its input-output properties. Ifx is the
input vector andy the output vector of the system, then the ‘power input’Pin is defined as the scalar product of these two
vectors

Pin = xT y (1)

This power input should be either stored or dissipated in thesystem. Let beEstore the lower bounded energy storage function
Estore ≥ Emin (generallyEmin = 0) andPdiss, the nonnegative power dissipation. A system is passive if

Pin =
d

dt
Estore + Pdiss (2)

meaning that the system does not generate energy and can provide only as much energy as was stored initially. This passivity
condition is also often expressed in the integral form

t
∫

t0

Pindτ = Estore (t) − Estore (t0) +

t
∫

t0

Pdissdτ ≥ −Estore (t0) (3)

If the power dissipation is zero for all time, the system is called lossless. Otherwise, if the power dissipation is positive, the
system is called dissipative. The use of passivity in the analysis of stability properties is mainly due to two properties: 1) a
combination of passive subsystems is passive and 2) the overall combination of passive subsystems is asymptotically stable
if at least one subsystem is dissipative.

3.2. Scattering operator
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Figure 1 Traditional force reflection scheme



In a traditional force reflection scheme, as shown in figure 1,the master, the communication channel and the slave are
represented by two-ports elements, the human operator and the environment are typified by one-port elements. For a Linear
Time Invariant (LTI) two-port system the relationship between effort (force,f ), and flow (velocity,ẋ) is defined by its hybrid
matrixH (s) according to

[

Fm(s)
−sXs(s)

]

=

[

h11 h12

h21 h22

] [

sXm(s)
Fs(s)

]

= H(s)

[

sXm(s)
Fs(s)

]

(4)

In this systemsXm(s) andFm(s) are the force and velocity of the master in the Laplace domain. The force and veloc-
ity associated to the slave are given bysXs(s) andFs(s). The elementsh11, h22 are the input and output teleoperation
impedances and the elementsh12, h21 are the force and velocity gains. In case of ideal telepresence the elements of the
hybrid matrix becomeh11 = h22 = 0, h12 = −h21 = 1, which means thatFm(s) = Fs(s) andsXs(s) = sXm(s). The
human operator feels the interaction of the slave with the environment instantaneously and the master and slave motion is
the same.

The scattering matrix (or scattering operator)S(s) for a one port system, in the laplace domain, is defined as the mathematical
operator that relates force and velocity:

[F(s) − sX(s)] = S(s) [F(s) + sX(s)]

This scattering matrix is useful in the analysis of teleoperation systems because it links the passivity theory with thesmall
gain theorem, and it is part of the main inspirations for the introduction of the wave variables. In the case of a two-port
system, the scattering matrix is related to the hybrid matrix H (s) as follows

S(s) =

(

1 0
0 −1

)

(H(s) − I) (H(s) + I)
−1 (5)

Anderson and Spong [16] state that an LTIn-port system is passive if and only if the norm of its scattering operator is less
than or equal to one.

‖S(s)‖ ≤ 1 (6)

3.3. Wave transformation

Wave
Trans.

Wave
Trans.

ẋm
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Figure 2 Wave transformation

When wave variables are used, velocityẋ and forcef are encoded with an appropriate transformation and only these wave
variables are transmitted (see figure 2). The first teleoperation system based on passivity concepts appeared in [16]. Fol-
lowing these results, Niemeyer and Slotine [17] propose thefirst wave variable scheme. The equations governing a constant
time-delay communication channel are then

us (t) = um (t − T )
vm (t) = vs (t − T )

(7)

and the wave transformation is given by

um (t) = 1√
2b

(fm + bẋm) vm (t) = 1√
2b

(fm − bẋm)

us (t) = 1√
2b

(fs + bẋsd) vs (t) = 1√
2b

(fs − bẋsd).
(8)

Although the strictly positive parameterb can be chosen arbitrarily, it defines a characteristic impedance associated with the
wave variables and directly affects the system behavior [17].

In order to verify passivity of the wave variables approach let us consider the power input as defined in eq. 1. The overall
power input for the system depicted in figure 2 will be

Pin = ẋT
mfm − ẋT

sdfs (9)



from the wave transformations (8) the next equations are obtained

ẋm = 1√
2b

(um + vm) fm = b√
2b

(um − vm)

ẋsd = 1√
2b

(us + vs) fs = b√
2b

(us − vs)

Then the power input can be rewritten as

Pin (t) =
1

2
uT

m (t)um (t) − 1

2
vT

m (t)vm (t) − 1

2
uT

s (t)us (t) +
1

2
vT

s (t)vs (t) . (10)

Substituting eqs. (7) into (10) and integrating, all power input is stored, according to the eq. (3), as

Estore (t) =

t
∫

0

Pindτ =

t
∫

t−T

(

1

2
uT

m (t)um (t) +
1

2
vT

s (t)vs (t)

)

dτ ≥ 0. (11)

Therefore, the system is passive independent of the magnitude of the delayT if zero initial conditions are assumed. The
wave energy is thus temporarily stored whilst in transit, making the communication channel passive.

4. Haptic Guidance Teleoperation Scheme
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Figure 3 Teleoperation scheme

A scheme depicting the approach proposed in this paper is shown in figure 3. Three main subsystems are pointed out
in the figure: the Local Command Center, where information concerning to the restrictions and guidance are computed;
the Communication Channel, which manages the information flow; and the Remote Robotic Cell, where the actual task is
performed.

• The Local Command Centerhosts the Force Guidance Module, which handles the forces that have to be fed to the
operator as well as the integration of position/velocity with the motion restriction data. In addition to the main control
loop a video stream provides video feedback from cameras located at the Remote Robotic Cell, whose zoom and
orientation can be remotely actuated.

• TheCommunication Channelis responsible for the management of the data flow between theLocal Command Center
and the Remote Robotic Cell. It is served by a high-speed Local Area Network (LAN) with a client-server application
structure. These structures are implemented using a socketbased configuration with TCP/UDP and IPv6 protocols.

• TheRemote Robotic Cellis composed by a robot, its controller, a force-torque sensor and a video server with two 3
DOF cameras. The subsystem sends information about the interaction of the robot with the environment to the Local
Command Center.



4.1. Local command center

One of the main components of the local command center is the Force Guidance Module, which holds different functions:

• Definition by the operator of a motion restrictionrs.

• Computation of the restriction forcefr that must be exerted to maintain the position of the end-effector inside the
currently selected motion restrictionrs, as well as of the viscous forcefv that prevents the velocity of the end-effector
from becoming too large for the robot to follow. The restriction forcefr and viscous forcefv are combined with the
force measurementfm coming from the Remote Robotic Cell to generate the total forceft, which is fed to the operator
via a haptic device.

The total force (at an instantk) that is fed back to the operator is:

ft = fm + fr + fv

wherefm is the master force generated by the interaction of the robotwith the environment,fr is the restriction force due to
the motion restriction andfv is the viscous force.

• Master force.The raw force measurement that comes from the sensor’s data is filtered in the Local Command Center
at a cutoff frequency of 500 Hz givenfe. The resulting forcefm is then calculated as follows:

fm = Tmfe

whereTm is a transformation between the force frame and the master frame.

• Restriction force.This is the attractive forcefr that tends to fix the haptic position to the restriction subspace. The
direction of this force is that of vectord (figure 7) and at instantk is given by:

frk
= KP ek + Dk

whereDk is the corresponding damping part of the controller

Dk = KD (ek − ek−1)

ek is the position errorek = xr − xm, xr is the reference point that lies on the restriction subspaceandxm is the
master position at an instantk.

The value offr will be zero if no restriction is set. Figure 4 shows an intuitive representation of the restriction force in
order to visualize the concept.KP andKD are chosen to set the stiffness and the damping of the restriction.
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Figure 4 Graphical representation of the virtual restrictions

• Viscous force.If the velocity of the master is too high, the slave may not be able to follow the velocity commands. In
order to deal with this problem an additional restriction has been implemented: above a certain velocity value, which
depends on the maximum velocity achievable by the slave, themotion restricting force is a function of the master
velocity ẋm = v̂, and it is zero below that value. The resulting force of this effect fv is given by:

fvk
= Kvv̂k



whereKv is a gain that fits the needs of restrict velocity.

vk = 1

T

(

xmk
− xmk−1

)

v′
k = vk − vk−1

v̂k = b0v
′
k + b1v

′
k−1

+ a0vk−1

v̂k corresponds to a velocity estimation using a 1st order Butterworth filter with coefficientsb0, b1, a0 calculated at a
frequency ratio (sample freq / cutoff freq) of 10, andT is the sample period (see [18] for more details).

It is important to stress the difference between the three components of the total force. While the sensed force represents
a feedback signal –the reaction arising from the interaction of the robot with its environment– the restriction and viscous
forces represent feed forward signals in the sense that theyrespond to known inputs –the deviations from the restriction
subspace and from the permitted velocities, respectively–without the need of any information from the workcell. The
motion restrictionrs is updated at a much lower frequency than the other signals.

4.2. Communication channel
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ẋm ẋ′
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Figure 5 Passivity based teleoperation with impedance adaptation scheme

The overall structure of the client-server application uses the IPv6 protocol due to its Quality of Service (QoS) benefits [7].
Additional information about IPv6 can be found in reference[19]. Amongst the new implementations of IPv6 applications
over next generation networks all over the world (as an example see [20]), telerobotics have a great potential to develop.

Comparative studies between using TCP or UDP as the transport layer protocol [21, 22] state that TCP provides a point to
point channel for applications that require reliable communication while UDP provides communication that is not guaran-
teed. This is because TCP is a confirmation based protocol andUDP is not. However, TCP has the drawback that it has
an unpredictable data arrival time because it retransmiteslost packets after a timeout of any acknowledge message of the
transmitted packet. Since UDP does not require any acknowledgment message, the network delay can be substantially lower.
In this work, sockets are compatible with both transport layer protocols.

When dealing with a teleoperated system one must take into account that delay plays a critical role in the system stability.
High-speed networks with an increased QoS can reduce the delay by using communications based on priorities rather than
the usual best effort networks. For instance, in the teleoperation scheme of figure 3 the wave transformations of velocity and
force have the highest priority and the video signal the lowest.

The scheme shown in figure 5 depicts the encoding signals of velocity and force. The communication channel governing
equations are

um = 1√
2b

(fm + bẋ′
m) us = 1√

2b
(f ′s + bẋs)

vm = 1√
2b

(fm − bẋ′
m) vs = 1√

2b
(f ′s − bẋs)

ẋ′
m = ẋm − 1

b
fm f ′s = fs + bẋsd

If a force-reflection gainGf is added, the resulting description is obtained:

fm(t) = Gf

(

b
2
ẋm(t) + 1

2
fs(t − T )

)

ẋsd(t) = 1

2
ẋm(t − T ) − 1

2b
fs(t)

The corresponding hybrid matrixH(s), in the frequency domain, and its scattering matrixS(jω) associated to this scheme



are:

H(s) = 1

2

[

Gfb Gfe−sT

−e−sT 1

b

]

; S(jω) =





bG+2 b2G−2−4 b+Ge−2 jwT b
bG+2 b2G+2+4 b+Ge−2 jwT b

4 Ge−jwT b
bG+2 b2G+2+4 b+Ge−2 jwT b

−4 e−jwT b
bG+2 b2G+2+4 b+Ge−2 jwT b

Ge−2 jwT b+bG+2−2 b2G−4 b
bG+2 b2G+2+4 b+Ge−2 iwT b





In figure 6 it can be seen that the plot of‖S(s)‖ clearly fulfills the condition to preserve passivity, and this is preserved even
though any constant time-delay occurs, and a variation of the force-reflection gainGf does not lead to passivity loss.
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Figure 6 Plot of the scattering matrix norm‖S(s)‖ for different force reflection gainsGf

4.3. Remote robotic cell

The robot controller inputs are either position or velocitycommands, sent from the master site. Depending on the task,
the robot can move strictly in the restriction subspace (xr) or with a deviation from it (xhd), allowed by the stiffness and
damping implemented in the Force Guidance Module. In figure 7, vectord represents the deviation of the position or velocity
command produced by the operator.

The position control scheme of the Remote Robotic Cell is stable. Then, if the input references (position/velocity) of the
controller are bounded the overall system will also be stable. The drawback of this straightforward approach is that in some
cases transparency of the overall system is sacrificed for the sake of system stability.

xhd xr

d xhd

xr

d

xhd

xr

d

(a) Point (b) Line (c) Plane

Figure 7 Motion with restrictions

5. Experimental Test-bed

Figure 8 shows the experimental testbed that mainly consists of a TX-90 Sẗaubli robot, with CS8–C Stäubli controller and
JR3 force–torque sensor, a PHANToM 1.5TM 6DOF haptic device from Sensable Technologies, and two CANON VC–C5
video cameras with an AXIS 2400 video server which provides a10–20 fps motion JPEG video stream.

On the software side, interaction with the haptic device is done with Sensable Technologies’ GHoSTTM libraries. The haptic’s
control loop runs at 1kHz, and forces must be calculated within the millisecond time window. All software is written in C++
using sockets and POSIX threads. The Graphic User Interfacehas been developed with Trolltech’s QT library.
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Figure 8 Physical system architecture

5.1. Experimental test –motion with a line restriction over a rail–

In order to validate the proposed approach an experimental test was remotely performed using the proposed teleoperation
architecture. It consists on moving the robot end-effectoralong a rail with a line restriction. There are two experiments,
in the first the robot motion is constrained to the restriction subspace (xr) and in the second the robot trends to follow the
human position, moving with a deviation|d| from the restriction subspace.

The proposed test has the following characteristics:

• The motion of the robot end-effector is restricted to a line in the x axis as shown in figure 9. In figure 10 two
photographs of the test are depicted.

Restriction 

line

xy
z

l = 25cm

Figure 9 Line restriction over a rail

• The forces coming from the remote robotic cellfm provide information about the interaction of the end effector with
the environment contact status.

• On the first test the velocity commandsẋm correspond to the velocity along the restricted line, namely ẋr, and on the
second test these commands are deviated from the restriction, hence following the human restricted motion.

• Packets have been transmitted using TCP/IPv6 sockets with the scheme of a classical client-server application, pro-
viding higher IPv6 QoS to control commands than the video transmission. The Round Trip Time Delay varies from
5ms to 50ms.

Figures 11 and 12 plot the time evolution of positions and forces along thex, y andz directions. The force figures show
the three components of the total forceft: the restriction forcefr, the viscous forcefv, and the master forcefm. The line
restriction is along thex axis.

The first three graphics (fig 11a, b and c) represent the resulting data from the first test, which describe the motion of the robot
along the restricted subspace (xr). The graphics have three zones separated by dashed vertical lines: zone A corresponds to
free space without motion restriction; B represents free space in which the restriction has been set; and in zone C the end
effector moves along the rail.



(a) View from theyz plane (b) View from thexz plane

Figure 10 Snapshots of the test

In these graphics it can be seen that when the restriction is set (at around 4.3s) position inz andy axis goes to the origin, and
motion only takes place in thex direction. Near the 7th second where zone C begins the end-effector comes in contact with
the rail and the forces produced by this interaction (fm) are felt to the master.

Since the task has been performed at low speed, the viscous force (fv) does not have a significant contribution to the total
force, and the restriction force is dominated by its spring component. This can be verified comparing the restriction force
and position plots.

The second three graphics (fig 12a, b and c) show the results for the second test, which describe the motion of the robot along
the human restricted space (xm). These graphics are also divided in three parts. In zone A the line restriction has been set,
in zone B the end-effector gets into the rail and in zone C the restriction is released because the end effector has reachedthe
end of the rail, it can be seen that the robot moves freely in space.

6. Conclusions and Future Work

The presented teleoperation framework can lower the burdenon the operator while remotely executing a task. This is
achieved through haptic guidance with force feedback. In addition to the visual and force feedback that are sent from the
remote site, the operator is provided with additional forceinformation that guides its motion according to some predefined
geometric constraints between the robot tool and its environment. The IPv6 protocol was used to handle communications in
an efficient manner, enabling important data such as controlsignals to be transmitted with higher priority than less relevant
and bandwidth-consuming signals like video feeds. The presented approach was validated through a motion with a line
restriction over a rail task. A future work will also deal with rotational torques, which will be fed back to the operator.
Through the passive scheme used in the communication channel, stability can be guaranteed.
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Figure 11 First experiment. Motion is constrained to the line restriction (xr). fr is the restriction force,fv the viscous force andfm the
force feedback. Zones A: free space, no restriction; B: free space, restriction; C: limited space, restriction
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c) Position and force in thez axis.

Figure 12 Second experiment. Motion with a deviation|d| from the restriction subspacers. fr is the restriction force,fv the viscous force
andfm the force feedback. Zones A: free space, restriction; B: limited space, restriction; C: free space, no restriction
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